簡易檢索 / 詳目顯示

研究生: 何健仲
Ho, Chien-Chung
論文名稱: 雙核及三核鑭系金屬串之合成與鑑定
Synthesis and Characterizations of Lanthanide Binuclear and Trinuclear Metal String Complexes
指導教授: 黃郁文
Huang, Yu-Wen
口試委員: 彭之皓
Peng, Chi-How
劉學儒
Liu, Hsueh-Ju
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 83
中文關鍵詞: 金屬串三核金屬串雙核金屬串
外文關鍵詞: metal strings complexes, trinuclear lanthanide metal strings, dinuclear metal strings complexes
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中,使用三[N,N-雙(三甲基甲矽烷基)醯胺]鑭系金屬鹼,並以二(3,5-二叔丁基-2-羥基二苯)甲酮做為我們的配基。成功合成出不同金屬的雙核金屬串及三核金屬串,由結構鑑定得知雙核金屬與金屬間距離隨原子半徑遞減,雙核鑭系錯合物也展現出不同的螢光性質,在紅外放射光譜上銩 (Thulium)雙核錯合物具有鑭系元素的紅外放光特徵峰,並有約7 ns的發光壽命。磁性研究上,釹 (Neodymium)、鋱 (Terbium)、銩 (Thulium)、鈥 (Holmium)等雙核錯合物其χMT值在接近2 K下隨溫度而快速下降,表現反鐵磁性的特徵。此外,我們也成功開發三核鑭系金屬串,這是第一個以鑭系金屬為主軸的金屬串。


    We uesd the tris[N,N-bis(trimethylsilyl)methyl]lanthanide as the base and tert-butyl-substituted di(3,5-di-tert-butyl-2-hydroxyphenyl)methanone as the ligand to synthesize the lanthanide metal string complexes. We successfully prepared dinuclear metal strings complexes and successfully developed trinuclear lanthanide metal strings. The structural analysis revealed a decreasing distance between two metals with the shrink of atomic radius. lanthanide complexes were known to have unique fluorescent properties. Our dinuclear thulium complexes displayed Near-infrared emission with its lifetime of approximately 7 nanoseconds. In terms of magnetic properties, the rapidly decrease in the χmT value in 2 K indicated an antiferromagnetic behavior for complexes containing neodymium, terbium, thulium and holmium. Furthermore, we successfully developed trinuclear lanthanide metal strings complexes, which will be the first metal string platform based on lanthanide metals.

    目錄 摘要 i Abstract ii 謝誌 iii 目錄 v 圖目錄 viii 表目錄 xii 式目錄 xiii 第一章 緒論 1 1-1 金屬多重鍵的介紹與發展 1 1-2 金屬串之探討 2 1-3 鑭系金屬的性質探討 6 1-4 鑭系金屬錯合物之應用價值 12 1-5 研究動機與方向 15 1-5-1 配基的選擇 15 1-5-2 雙核與三核鑭系錯合物之合成策略 17 第二章 實驗及藥品 19 2-1 實驗藥品 19 2-2 實驗儀器 20 2-2-1 核磁共振光譜儀 (Nuclear Magnetic Resonance, NMR) 20 2-2-2 質譜儀 (Gas Chromatograph/ Mass Spectrometer) 20 2-2-3 X-射線單晶繞射儀 (X-ray Single Crystal Diffractometer) 21 2-2-4 全反射紅外光譜 (ATR-IR) 21 2-2-5 紫外光-可見光光譜儀 (Ultraviolet–visible spectroscopy) 21 2-2-6 超導量子干涉儀 ( SQUID) 22 2-2-7 元素分析儀 (Elemental Analyer, EA) 22 2-2-8 螢光光譜儀 (Fluorescence Spectrometer) 22 2-3 實驗步驟 23 2-3-1 Sm(HMDS)3之合成 23 2-3-2 Tb(HMDS)3之合成 23 2-3-3 Nd(HMDS)3之合成 24 2-3-4 Tm(HMDS)3之合成 25 2-3-5 Ho(HMDS)3之合成 26 2-3-6 Sm2(L2)3 之合成 27 2-3-7 Tb2(L2)3之合成 28 2-3-8 Nd2(L2)3 之合成 29 2-3-9 Tm2(L2)3之合成 30 2-3-10 Ho2(L2)3 之合成 32 2-3-11 Tb3(L3)3 之合成 33 第三章 結果與討論 35 3-1 雙核鑭系錯合物之結構性質探討 35 3-2 雙核鑭系錯合物之光學性質探討 38 3-2-1 IR紅外線光譜探討 38 3-2-2 UV-Vis光譜之探討 41 3-2-3 螢光光譜探討 44 3-2-4 紅外線放光光譜探討 45 3-3 雙核鑭系錯合物之磁性性質探討 46 3-4 三核鑭系錯合物之結構探討 51 第四章 結論 53 第五章 未來展望 54 第六章 附錄 55 6-1 核磁共振光譜 55 6-2 質譜圖 56 6-3 UV可見光光譜 62 6-4 IR紅外線光譜 65 6-5 單晶結構資料 68 第七章 參考文獻 80  

    (1) Kauffman, G. B. Alfred Werner's research on polynuclear coordination compounds. Coord. Chem. Rev. 1973, 9 (3-4), 339-363.
    (2) Dahl, L. F.; Ishishi, E.; Rundle, R. E. Polynuclear Metal Carbonyls. I. Structures of Mn2(CO)10 and Re2(CO)10. J. Chem. Phys. 1957, 26, 1750-1751.
    (3) Melvyn Rowen Churchill; Kwame N. Amoh; Wasserman, H. J. Redetermination of the crystal structure of dimanganese decacarbonyl and determination of the crystal structure of dirhenium decacarbonyl. Revised values for the manganese-manganese and rhenium-rhenium bond lengths in dimanganese decacarbonyl and dirhenium decacarbonyl. Inorg. Chem. 1981, 20 (5), 1609-1611.
    (4) Cotton, F. A.; Harris, C. B. The Crystal and Molecular Structure of Dipotassium
    Octachlorodirhenate(III) Dihydrate, K2[Re2Cl8] • 2H2O. Inorg. Chem. 1965, 4 (3), 330-333.
    (5) Bertrand, J. The Metal-Metal Bonded, Polynuclear Complex Anion in CsReCl4. J. Am. Chem. Soc. 1963, 85, 1349-1350.
    (6) Cotton, F. A.; Haas, T. E. A Molecular Orbital Treatment of the Bonding in Certain Metal Atom Clusters. Inorg. Chem. 1964, 3 (1), 10-17.
    (7) Nguyen, T.; Sutton, A. D.; Brynda, M.; Fettinger, J. C.; Long, G. J.; Power, P. P. Synthesis of a stable compound with fivefold bonding between two chromium(I) centers. Science 2005, 310 (5749), 844-847.
    (8) Hurley, T. J.; Robinson, M. A. Nickel(II)-2,2'-dipyridylamine system. I. Synthesis and stereochemistry of the complexes. Inorg. Chem. 1968, 7 (1), 33-38.
    (9) Yang, E.-C.; Cheng, M.-C.; Tsai, M.-S.; Peng, S.-M. Structure of a linear unsymmetrical trinuclear cobalt(II) complex with a localized CO (II)–CO (II)bond: dichlorotetrakis[µ3-bis(2-pyridyl)amido]tricobalt(II). J. Chem. Soc., Chem. Commun. 1994, 2377-2378.
    (10) Chih-Chieh Wang; Lo, W.-C.; Chin-Chang Chou; Gene-Hsiang Lee; Chen, J.-M.; and Shie-Ming Peng. Synthesis, Crystal Structures, and Magnetic Properties of a Series of Linear Pentanickel(II) Complexes:  [Ni5(μ5-tpda)4X2] (X = Cl-, CN-, N3-, NCS-) and [Ni5(μ5-tpda)4(CH3CN)2]- (PF6)2 (tpda2- = the Tripyridyldiamido Dianion). Inorg. Chem. 1998, 37 (16), 4059-4065.
    (11) Cotton, F. A.; Daniels, L. M.; Lu, T. B.; Murillo, C. A.; Wang, X. P. A chain of five chromium(II) atoms: a desired compound with an undesired, unsurprising, but important structure. J Chem Soc Dalton 1999, (4), 517-518.
    (12) Yeh, C. Y.; Chou, C. H.; Pan, K. C.; Wang, C. C.; Lee, G. H.; Su, Y. O.; Peng, S. M. Linear pentacobalt complexes: synthesis, structures, and physical properties of neutral and one-electron oxidation compounds. J Chem Soc Dalton 2002, (13), 2670-2677.
    (13) Caixia Yin; Gin-Chen Huang; Ching-Kuo Kuo; Ming-Dung Fu; Hao-Cheng Lu; Jhih-Hong Ke; Kai-Neng Shih; Yi-Lin Huang; Gene-Hsiang Lee; Chen-Yu Yeh; et al. Extended Metal-Atom Chains with an Inert Second Row Transition Metal: [Ru5(μ5-tpda)4X2] (tpda2− = tripyridyldiamido dianion, X = Cl and NCS). J. Am. Chem. Soc. 2008, 130 (31), 10090-10092.
    (14) Shie-Yang Lai; Tzu-Wei Lin; Yu-Hua Chen; Wang., C.-C.; Lee., G.-H.; Ming-hwa Yang; Man-kit Leung; Peng., S.-M. Metal String Complexes:  Synthesis and Crystal Structure of [Ni4(μ4-phdpda)4] and [Ni7(μ7-teptra)4Cl2] (H2phdpda = N-Phenyldipyridyldiamine and H3teptra = Tetrapyridyltriamine). J. Am. Chem. Soc. 1999, 250-251.
    (15) Chen., Y.-H.; Chung-Chou Lee; Lai., S.-Y.; Peng, S.-M. A linear metal string [Cr7(µ7-teptra)4Cl2] complex with delocalized heptachromium(II) multiple bonds (teptraH3 = tetrapyridyltriamine). Chem. Commun 1999, 1667-1668.
    (16) Shie-Ming Peng; Chih-Chieh Wang ; Yih-Lih Jang; Yu-Hua Chen ; Li, F.-Y.; Chung-Yuan Mou; Man-Kit Leung One-dimensional metal string complexes. 2000, 209 (2000), 80-83.
    (17) Chen, P. J.; Sigrist, M.; Horng, E. C.; Lin, G. M.; Lee, G. H.; Chen, C. H.; Peng, S. M. A ligand design with a modified naphthyridylamide for achieving the longest EMACs: the 1st single-molecule conductance of an undeca-nickel metal string. Chem Commun (Camb) 2017, 53 (34), 4673-4676.
    (18) Berry, J. F. Metal Metal Bonds in Chains of Three or More Metal Atoms: From Homometallic to Heterometallic Chains. Metal-Metal Bonding 2010, 136, 1-28.
    (19) Gutierrez, F.; Tedeschi, C.; Maron, L.; Daudey, J. P.; Poteau, R.; Azema, J.; Tisnes, P.; Picard, C. Quantum chemistry-based interpretations on the lowest triplet state of luminescent lanthanides complexes. Part 1. Relation between the triplet state energy of hydroxamate complexes and their luminescence properties. Dalton Transactions 2004, 9 (9), 1334-1347.
    (20) Moore, E. G.; Samuel, A. P. S.; Raymond, K. N. From Antenna to Assay: Lessons Learned in Lanthanide Luminescence. Acc. Chem. Res. 2009, 42 (4), 542-552.
    (21) Marin, R.; Brunet, G.; Murugesu, M. Shining New Light on Multifunctional Lanthanide Single-Molecule Magnets. Angew Chem Int Ed Engl 2021, 60 (4), 1728-1746.
    (22) Hong, G. S.; Antaris, A. L.; Dai, H. J. Near-infrared fluorophores for biomedical imaging. Nature Biomedical Engineering 2017, 1 (1), 0010.
    (23) Hasegawa, M.; Ohmagari, H.; Tanaka, H.; Machida, K. Luminescence of lanthanide complexes: From fundamental to prospective approaches related to water- and molecular-stimuli. Journal of Photochemistry and Photobiology C-Photochemistry Reviews 2022, 50, 100484.
    (24) Naczynski, D. J.; Tan, M. C.; Zevon, M.; Wall, B.; Kohl, J.; Kulesa, A.; Chen, S.; Roth, C. M.; Riman, R. E.; Moghe, P. V. Rare-earth-doped biological composites as in vivo shortwave infrared reporters. Nature Communications 2013, 4, 2199.
    (25) Xu, J.; Shen, X. K.; Jia, L.; Cao, J. L.; Wang, Y.; Zhao, X. L.; Bi, N.; Guo, S. L.; Ma, T. Y. A lanthanide-based magnetic nanosensor as an erasable and visible platform for multi-color point-of-care detection of multiple targets and the potential application by smartphone. Journal of Materials Chemistry B 2019, 7 (5), 734-743.
    (26) Qiao, N.; Xin, X. Y.; Guan, X. F.; Zhang, C. X.; Wang, W. M. Self-Assembly Bifunctional Tetranuclear Ln(2)Ni(2) Clusters: Magnetic Behaviors and Highly Efficient Conversion of CO(2) under Mild Conditions. Inorg Chem 2022, 61 (38), 15098-15107.
    (27) Zhao, G.; Lu, C.; Li, H.; Xiao, Y.; Zhang, W.; Fang, X.; Wang, P.; Fang, X.; Xu, J.; Yang, W. Two multinuclear GdIII macrocyclic complexes as contrast agents with high relaxivity and stability using rigid linkers. Inorg. Chim. Acta 2013, 406, 146-152.
    (28) Müller-Buschbaum, K.; Quitmann, a. C. C. Homoleptic Rare Earth Dipyridylamides [Ln2(N(NC5H4)2)6], Ln = Ce, Nd, Sm, Ho, Er, Tm, Yb, and Sc:  Metal Oxidation by the Amine Melt and in 1,2,3,4-Tetrahydroquinoline with the Focus of Different Metal Activation by Amalgams, Liquid Ammonia, and Microwaves. Inorg Chem 2006, 45 (6), 2678-2687.
    (29) Chen, C. J.; Bai, Z. Y.; Cui, Y. Q.; Cong, Y.; Pan, X. B.; Wu, J. C. ppm-Level Thermally Switchable Yttrium Phenoxide Catalysts for Moisture-Insensitive and Controllably Immortal Polymerization of rac-Lactide. Macromolecules 2018, 51 (17), 6800-6809.
    (30) Lüert, D.; Herbst‐Irmer, R.; Stalke, D. Structural and Magnetic Studies on Lanthanide Bis(benzoxazol-2-yl)methanides. Eur. J. Inorg. Chem 2021, 2021 (48), 5085-5090.
    (31) Ning, Y. Y.; Zhu, M. L.; Zhang, J. L. Near-infrared (NIR) lanthanide molecular probes for bioimaging and biosensing. Coord. Chem. Rev. 2019, 399, 213028.
    (32) Duosiken, D.; Yang, R.; Dai, Y.; Marfavi, Z.; Lv, Q.; Li, H.; Sun, K.; Tao, K. Near-Infrared Light-Excited Reactive Oxygen Species Generation by Thulium Oxide Nanoparticles. J. Am. Chem. Soc. 2022, 144 (6), 2455-2459.
    (33) Wang, B. W.; Jiang, S. D.; Wang, X. T.; Gao, S. Magnetic molecular materials with paramagnetic lanthanide ions. Science in China Series B-Chemistry 2009, 52 (11), 1739-1758.
    (34) Colin A. Gould, K. R. M., Daniel Reta, Jon G. C. Kragskow, David A. Marchiori, Ella Lachman, Eun-Sang Choi, James G. Analytis, R. David Britt, Nicholas F. Chilton, Benjamin G. Harvey and Jeffrey R. Long. Ultrahard magnetism from mixed-valence dilanthanide complexes with metal-metal bonding Science 2022, 375 (6577), 198-202.
    (35) Bain, G. A.; Berry, J. F. Diamagnetic corrections and Pascal's constants. J. Chem. Educ. 2008, 85 (4), 532-536.
    (36) Li, L. F.; Zhang, L.; Xu, Y.; Zhu, L. L.; Yang, P. P. Synthesis, crystal structure, and magnetic properties of a series of binuclear lanthanide compounds derived from the 4-Bromo-2-((quinolin-8-ylimino)methyl)phenol ligand. Inorg. Chim. Acta 2018, 482, 779-784.
    (37) Frenea-Robin, M.; Marchalot, J. Basic Principles and Recent Advances in Magnetic Cell Separation. Magnetochemistry 2022, 8 (1), 11.

    QR CODE