簡易檢索 / 詳目顯示

研究生: 達斯
Arindam Das
論文名稱: Transition Metal-Catalyzed Alkyne Activation Comprising Cycloisomerization, Hydrative Carbocyclizaton and Oxidative Cleavage Reaction
指導教授: 劉瑞雄
Liu, Rai-Shung
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 616
中文關鍵詞: 金催化三鍵加成
外文關鍵詞: Transition Metal-Catalyzed Alkyne Activation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要

    本論文分為五個章節,主要是利用過渡金屬催化環化異構化、水合環化以及分子內氧化斷裂反應的研究。
    第一章主要是探討過渡金屬催化分子內三鍵環內六環環化反應反應中伴隨著結構的重組並生成□的衍生物。我們發現反應是經由雙鍵的斷裂而造成亞烷基的轉移,而此類型的反應可很容易利用PtCl2、Zn(OTf)2,AuCl以及AuCl3催化進行反應。
    第二章主要是探討利用三炔類化合物經由水合環化反應可得到雙螺環醇類化合物接著進行脫水反應可得到雙環酮類化合物。此反應是利用鉑催化經由選擇性的水合、三鍵的嵌入以及醛類化合物自身縮合反應。
    第三章主要是探討一鍋化合成1,2-苯並菲的衍生物,反應利用PtCl2催化水合雙聚合反應生成二烷基一乙醯基苯。此反應經由三鍵選擇性的水合反應接著由雙酮基的中間體進行具有化學選擇性的雙聚化反應,而此類型的反應機構經由13C的標定實驗並分離出反應中間體進行驗證。
    第四章主要是探討由氧化雙炔化合物利用過渡金屬PtCl2以及PPh3AuCl/AgOTf催化水合環化反應生成苯□喃酮以及三螺環酮。而在反應中發現三鍵上鄰近的取代基會進而影響產物的位像選擇性。
    第五章主要是探討利用過渡金屬金在室溫下利用氧氣使芳香基炔醚類進行氧化斷裂,此類反應可應用再C-H,C-C以及C≡C的斷裂。


    ABSTRACT

    Transition metal-catalyzed cycloisomerization, hydrative carbocyclization and oxidative- cleavage of appropriately functionalized organic molecules are described in this dissertation. For sake of convenience and better understanding, the thesis is divided into five chapters.
    In the first chapter a new metal-catalyzed 6-endo-dig cyclization of 1-(2-(2-methylprop-1-enyl)phenyl)prop-2-yn-1-ol has been described, which produces substituted naphthalene derivatives with structural reorganization. In this process, we observed a 1,3-alkylidene migration via cleavage of the olefin double bond of the starting substrates. The ease and reliability of this cyclization were manifested by its compatibility with a wide diverse substrates and π-alkyne activators including PtCl2, Zn(OTf)2, AuCl and AuCl3.
    The second chapter deals with a novel hydrative cyclization of triynes to afford bicyclic spiro alcohols, which undergo subsequent dehydration to give bicyclic ketones. This platinum catalysis has proposed to comprise a sequence of cascade reactions including, two selective hydrations, alkyne insertion and aldol condensations.
    The third chapter describes, one-pot syntheses of chrysene derivatives via PtCl2-catalyzed hydrative dimerization of readily available 2-alkynyl-1-acetylbenzenes. This new tandem catalysis comprises an initial selective hydration of the alkyne, followed by chemoselective dimerization of diketone intermediates. The mechanism of this cyclization has been elucidated by 13C-labeling experiments as well as isolation of reaction intermediates.
    The fourth chapter presents a unique synthesis of benzopyrones and tricyclic spiroketones from hydrative carbocyclization of oxodiyne substrates catalyzed by PtCl2 and PPh3AuCl/AgOTf, respectively. These distinct carbocyclizations with Pt and Au catalysts stem from their altered regioselectivity in the oxo-assisted hydration of the neighboring alkyne carbons.
    The last chapter discusses a gold-catalyzed oxidative cleavage of aryl-substituted alkynyl ethers using molecular oxygen under ambient conditions; the transformation involves a remarkable cleavage of C-H, C-C and C≡C bonds simultaneous.

    Contents Acknowledgement IV Abstract VI List of Schemes VII List of Tables XIII List of Publications XVI Abbreviations XVIII Chapter I: Metal-Catalyzed cycloisomerization of En-Yne Functionalities via 1,3-Alkylidene Migration Introduction 1 Results and Discussion 14 Conclusion 20 Experimental Procedure and Spectral Data 21 Reference 35 Chapter II: PtCl2-Catalyzed Hydrative Cyclization of Trialkyne Functionalities to Form Bicyclic Spiro Ketones. Introduction 38 Results and Discussion 48 Conclusion 58 Experimental Procedure and Spectral Data 59 Reference 74 Chapter III: Platinum-Catalyzed Chemoselectively Hydrative Dimerization of 2-Alkynyl-1-acetylbenzenes for One-Pot Facile Synthesis of Chrysene Derivatives. Introduction 76 Results and Discussion 82 Conclusion 94 Experimental Procedure and Spectral Data 95 Reference 118 Chapter IV: Platinum- and Gold-Catalyzed Hydrative Carbocyclization of Oxo Diynes for One-Pot Synthesis of Benzopyrones and Bicyclic Spiro Ketones. Introduction 121 Results and Discussion 132 Conclusion 140 Experimental Procedure and Spectral Data 141 Reference 163 Chapter V: Gold-Catalyzed Oxidative Cleavage of Aryl-Substituted Alkynyl Ethers using Molecular Oxygen. Simultaneous Degradation of C-H and Single and Triple Carbon-Carbon bonds under Ambient Conditions. Introduction 165 Results and Discussion 176 Conclusion 186 Experimental Procedure and Spectral Data 187 Reference 204 Crystal structures and 1H & 13 C NMR spectra 207 List of Schemes Chapter I Scheme 1: Various pathways of enyne isomerization 2 Scheme 2: Skeletal reorganization vs. enyne metathesis 3 Scheme 3: Alder-ene cycloisomerization of enynes 4 Scheme 4: First example of cycloisomerization of enynes catalyzed by platinum salt 4 Scheme 5: Pd(II) complex catalyzed skeletal reorganisation of 1,6-enynes to 1-vinylcyclopentenes 5 Scheme 6: Ru(II) catalyzed skeletal reorganisation of 1,6- and 1,7-enynes 6 Scheme 7: Carbocation analogy of Ru(II) catalyzed cycloisomerization 6 Scheme 8: Platinum-catalyzed skeletal rearrangment of enyne to a 1,3-diene 7 Scheme 9: Synthesis of macrocyclic molecules via Platinum- catalyzed enyne cycloisomerization 7 Scheme 10: Enyne cyclorearrangment in presence of aryl-and halide-substituted triple bonds 8 Scheme 11: Enyne cycloisomerization in presence of various gold catalyst 9 Scheme 12: Interpretation of metal-activated enynes in the sense of a "Nonclassical" carbocation rendition 10 Scheme 13: Ruthenium-catalyzd cycloisomerization of enynes via 1,2-alkyl shift 10 Scheme 14: 1,3-alkylidene migration in the cycloisomerization of 1,6-enynes using AuPPh3+ 11 Scheme 15: Orbital diagram of Fischer and Schrock carbene 12 Scheme 16: Cyclopropanation of Pt-carbenes generated from 5-en-1-yn-3-ol derivatives 13 Scheme 17: Intramolecular cyclopropanation of Au-carbenoids 13 Scheme 18: General reaction 14 Scheme 19: List of substrates 14 Scheme 20: Synthesis of 1-(2-(2-methylprop-1-enyl)phenyl)prop- 2-yn-1-ol(1-1) 13 Scheme 21: 13C labeling study to confirm 1,3-alkylidene migration 19 Scheme 22: Pt-catalyzed cycloisomerization of 1-(2-(2-methylprop-1-enyl)phenyl)but-2-yn-1-ol 19 Scheme 23: Plausible Mechanism 20 Chapter II Scheme 1: Qualitative orbital diagram showing the interaction between a transition metal and an alkyne ligand. 39 Scheme 2: Hydrative carbocyclization of 1,6- and 1,7-diynes 41 Scheme 3: Synthetic application of hydrative cyclization of 1,7-diynes 42 Scheme 4: Ru catalysed hydrative cyclization of tertiary1,6-diyneols 43 Scheme 5: Hydrative aromatisation of enediynes. 44 Scheme 6: Pd catalysed hydrative cyclisation of enediynes 44 Scheme 7: Gold-Catalyzed Hydrative Cyclization Reaction of 1,6-Heptadiynes 45 Scheme 8: Gold-catalyzed hydrative carbocyclisation of 1,5 and 1,7- allenynes 46 Scheme 9: The active hydration catalyst in PtCl4 - CO catalyst system 47 Scheme 10: General reaction 48 Scheme 11: Comperative hydration study of chemically two distinct alkyne 48 Scheme 12: List of substrates 49 Scheme 13: Synthesis of 1,2-bis(2-(prop-1-ynyl)phenyl)ethyne (2-1) 50 Scheme 14: Model reactions to simulate the cyclization mechanism 55 Scheme 15: Plausibility of a triketone intermediate 56 Scheme 16: A proposed mechanism for the formation of spiro ketones 57 Scheme 17: Regio-selective hydration of alkyne via benzo[c]pyrylium intermediate 58 Chapter III Scheme 1: The formation of chrysene by photochemical-oxidation of 1,6-diphenyl-1,3,5-hexatriene 78 Scheme 2: Reaction of benzyne with 1-vinylnaphthalene to form chrysene 78 Scheme 3: Synthesis of chrysene via acid-catalyzed rearrangement of cyclobutanones 79 Scheme 4: Synthesis of chrysene via titanium(IV)-catalyzed aldol-type condensation of silylenol ether with 2-arylacetaldehyde 79 Scheme 5: Synthesis of chrysene via twin annulation of naphthalene 80 Scheme 6: Synthesis of chrysene via intramolecular Diels-Alder reaction 80 Scheme 7: Benzopyrylium salt based synthesis of chrysene derivatives 81 Scheme 8: [TpRuPPh3(CH3CN)2]PF6-catalyzed cycization of diyne-ene to chrysene 81 Scheme 9: General reaction 82 Scheme 10: List of substrates 83 Scheme 11: Synthesis of 2-phenyl-1-(2-(prop-1-ynyl)phenyl)ethanone (3-1) 84 Scheme 12: Synthesis of 1-(2-(hex-1-ynyl)phenyl)ethanone (3-9) 85 Scheme 13: Synthesis of 1-(1-(prop-1-ynyl)naphthalen-2-yl)ethanone (3-19) 85 Scheme 14: Chemo- and regio-selectivity in platinum-catalyzed hydrative cyclization 86 Scheme 15: Synthesis of polyaromatic compound 91 Scheme 16: 13C-labeling experiment 93 Scheme 17: A Plausible Mechanism 94 Chapter IV Scheme 1: The neighboring group assisted metal-catalyzed nucleophilic addition to alkyne 122 Scheme 2: Platinum catalyzed synthesis of 4-alkoxy-1- naphthanal via benzopyrilium intermediate. 123 Scheme 3: Pt catalyzed synthesis of 8-oxabicyclo[3.2.1]octane frame work via benzopyrilium intermediate. 124 Scheme 4: Gold-catalyzed annulation of oxoalkyne with Indole 125 Scheme 5: Gold-catalyzed annulation of oxoalkyne with enol ether 125 Scheme 6: Intramolecular Huisgen-type reaction via platinum bound pyrilium ion 126 Scheme 7: Metal-catalyzed [4+2] cycloaddition of o-alkynyl(oxo) benzenes with olefins via benzopyrilium intermediate 127 Scheme 8: Synthesis of spiroketones via regio-selective alkyne hydration 128 Scheme 9: Platinum catalyzed regio-selective hydration and dimerization to chrysene derivatives 128 Scheme 10: Gold-catalyzed hydrative carbocyclization of 2-(alk-2-yn-1-onyl)-1- alkynylbenzenes and 1,5-diyn-3-ones 129 Scheme 11: Directed gold-catalyzed hydration of alkynes through neighboring group assistance 130 Scheme 12: Benzopyrone framework in naturally occuring compounds 131 Scheme 13: General Reaction 131 Scheme 14: List of Substrates 132 Scheme 15: Synthesis of 1-(2-(2-(2-(prop-1-ynyl)phenyl)ethynyl)phenyl)ethanone(4-1) 133 Scheme 16: Deuterium-labeling experiment 137 Scheme 17: A plausible mechanism for formation of benzoisochromene 139 Scheme 18: A plausible mechanism for the formation of bicyclic spiro ketone 140 Chapter V Scheme 1: Stoichiometric Reactions Involving Alkyne Cleavage 166 Scheme 2: Mortreux's discovery 167 Scheme 3: Cross-metathesis 167 Scheme 4: Ring closing alkyne metathesis 168 Scheme 5: Rhodium-catalyzed cleavage of alkyne via hydroiminoacylation 169 Scheme 6: C-C triple bond cleavage of diynes through the hydroamination with transition metal catalysts 170 Scheme 7: Ru-catalyzed cleavage of C-C triple bonds of ethynyl alcohols 171 Scheme 8: Au-catalyzed cascade cyclization / oxidative cleavage of (Z)-enynols. 172 Scheme 9: Lewis acid promoted palladium-catalyzed C-C triple bond cleavage with molecular oxygen 172 Scheme 10: Five-Bond Cleavage in Copper-Catalyzed Skeletal Rearrangement of O-Propargyl Arylaldoximes to b-Lactams 173 Scheme 11: Representative example of C=C double bond cleavage 174 Scheme 12: Metal-catalyzed C-C single bond cleavage of strained alkanes 175 Scheme 13: Cleavage of cyclohexane's C-C single bond with Cobalt(II1) acetate 176 Scheme 14: General Reaction 176 Scheme 15: List of Substrates 177 Scheme 16: Synthesis of 1-(1-methoxybut-2-ynyl)benzene (5-1) 177 Scheme 17: Mechanistic study 184 Scheme 18: A Plausible Mechanism 185 List of Tables Chapter I Table 1: The chemoselectivity in the cyclization of substrate (1-1) with various metal catalyst 16 Table 2: Zn(OTf)2-catalyzed cyclisation of various alcohols via 1,3-alkylidene migration 18 Chapter II Table 1: Hydrative carbocyclization of compound (2-1) with various metal catalyst. 51 Table 2: PtCl2-catalyzed hydrative cyclization of symmetric triynes 53 Table 3: Deuterium-Labeling Experiments 54 Chapter III Table 1: Catalytic dimerization of 1-carbonyl-2-(prop-1-yn-1-yl)benzene over various acid catalysts. 88 Table 2: Catalytic Synthesis of Chrysenes from 2-Alkynyl-1- acetylbenzenes 90 Table 3: Synthesis of benzothiophene based chrysene derivatives 91 Chapter IV Table 1: Classification of Ring-Closure Types 123 Table 2: Chemoselectivity with Gold and Platinum Catalysts 134 Table 3: Platinum-catalyzed synthesis of benzoisochromenes 135 Table 4: Au(I)-Catalyzed synthesis of spiro ketones 136 Chapter V Table 1: Screning of Metal-Catalyst for Oxidative Cleavage of Aryl Substituted Alkynyl Ethers (5-1) using Molecular Oxygen 179 Table 2: Gold-catalyzed oxidative cleavage 4-phenyl-4-alkoxy-2-butyne 180 Table 3: Substrates scope of gold-catalyzed oxidative cleavage reaction 182 Table 4: 183 List of Figures Chapter II Figure 1: Alkyne-complex 39 Figure 2: 47 Figure 3: ORTEP drawing of bicyclic spiro ketone (2-11) 52 Figure 4: Product distribution over reaction time 56 Chapter III Figure 1: ORTEP drawing of compound (3-25) 87 Figure 2: ORTEP drawing of compound (3-44) 92 Chapter IV Figure 1: ORTEP drawing of bicyclic spiro ketone 4-32(A) 137

    ChapterI
    References :
    (1) a) Comprehensive Organometallic Chemistry, Wilkinson, G.; Stone, F. G. A.; Abel, E. W.; Eds., Pergamon Press: Oxford, 1982; b) Green, M. L. H.; Davies, S.G. Philos. Trans. R. Soc. London A 1988, 326, 501; c) Collman, J.P.; Hegedus, L.S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry, University Science Books: Mill Valley, California, 1987; d) Seebach, D. Angew. Chem. Int. Ed. Engl. 1990, 29, 1320.
    (2) a) Trost, B. M. Acc. Chem. Res. 2002, 35, 695. b) Trost, B. M. Angew. Chem. 1995, 107, 285; Angew. Chem. Int. Ed. Engl. 1995, 34, 259. c) Trost, B. M. Science 1991, 254, 1471.
    (3) a) Anastas, P.; Warner, J. C. in Green Chemistry, Theory and Practice, Oxford University Press, Oxford, 1998. b) Anastas, P.T.; Kirchhoff, M. M. Acc. Chem. Res. 2002, 35, 686. c) Anastas, P. T.; Zimmerman, J. B. Environ. Sci. Technol. 2003, 37, 94A. d) Poliakoff, M.; Fitzpatrick, J. M.; Farren, T. R.; Anastas, P. T. Science 2002, 297, 807. e) Trost, B. M.; Toste, D. F.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067.
    (4) See selected reviews: (a) Ma, S.-M.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. 2006, 45, 200. (b) Bruneau, C. Angew. Chem. Int. Ed. 2005, 44, 2328. (c) Aubert, C.; Buisine, O.; Malacria, M. Chem. Rev. 2002, 102, 813. (d) Mendez, M.; Mamane, V.; F□rstner, A. Chemtracts, 2003, 16, 397. (e) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317.
    (5) a) Nakamura, I.; Yamamoto, Y. Chem. Rev. 2004, 104, 2127. b) Ojima, I.; Tzamarioudaki, M.; Li, Z.; Donovan, R. J. Chem. Rev. 1996, 96, 635. c) Lautens, M.; Klute, W.; Tam, W. Chem. Rev. 1996, 96, 49.
    (6) a) Michelet, V.; Toullec, P. Y.; Genet, J.-P. Angew. Chem. Int. Ed. 2008, 47, 4268. b) F□rstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410. c) Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317. d) Zhang, L.; Sunm, J.; Kozmin, S. A. Adv. Synth. Catal. 2006, 348, 2271.
    (7) Mendez, M.; Munoz, M. P.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511.
    (8) a) Blum, J.; Beer-Kraft, H.; Badrieh, Y. J. Org. Chem. 1995, 60, 5567. b) F□rstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863. c) Nevado, C.; Ferrer, C.; Echavarren, A. M. Org. Lett. 2004, 6, 3191.
    (9) a) Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1988, 110, 1636; b) Trost, B. M.; Tour, J. M. J. Am. Chem. Soc. 1987, 109, 4753.
    (10) Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. J. Am. Chem. Soc. 1994, 116, 6049.
    (11) a) Trost, B. M.; Chang, V. K. Synthesis 1993, 824; b) F□rstner, A.; Szillat, H.; Gabor, B.; Mynott, R. J. Am. Chem. Soc. 1998, 120, 8305. c) F□rstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. d) Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. Organometallics 1996, 15, 901. e) Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue, Y. Organometallics 2001, 20, 3704. f) Bajracharya, G. B.; Nakamura, I.; Yamamoto, Y. J. Org. Chem. 2005, 70, 892. g) Fernandez-Rivas, C.; Mendes, M.; Echavarren. J. Am. Chem. Soc. 2000, 122, 1221.
    (12) a) Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395. b) Hashmi, A. S. K.; Hutchings, G. J. Angew. Chem. Int. Ed. 2006, 45, 7896. c) Jimenez-Nunez, E.; Echavarren, A. M. Chem. Commun. 2007, 333. d) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. e) Hoffmann-Roder, A.; Krause, N. Org. Biomol. Chem. 2005, 3, 387. f) Hashmi, A. S. K. Gold Bull. 2004, 37, 51. g) Arcadi, A.; Di Giuseppe, S. Curr. Org.Chem.2004, 8, 795. h) Bianchi, G.; Arcadi, A. Targets Heterocycl Syst. 2004, 8. 82. i) Dyker, G. Angew. Chem. Int. Ed. 2000, 39, 4237.
    (13) a) Bond, G. C. Gold Bull. 1972, 5, 11. b) Haruta, M.; Kobayashi, T.; Sano, H.; Yamada, N. Chem. Lett. 1987, 405. c) Hutchings, G. J. J. Catal. 1985, 96, 292. d) Ito, Y.; Sawamura, M.; Hayashi, T. J. Am. Chem. Soc. 1986, 108, 6405.
    (14) a) Nieto-Oberhuber, C.; Paz Munoz, M.; Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402.
    (15) Madhushaw, R.; Lo, C.-Y.; Hwang, C.-W.; Su, M.-D.; Shen, H.-C.; Pal, S.; Shaikh, I. R.; Liu, R.-S. J. Am. Chem. Soc. 2004, 126, 15560.
    (16) Selected examples for metathesis-type products besides Grubbs’catalyst: (a) Trost, B. M.; Yanai, M.; Hoogstein, K. J. Am. Chem. Soc. 1993, 115, 5294. (b) Chatani, N. Kataoka, K.; Murai, S. Furukawa, N, Seki, Y. J. Am. Chem. Soc. 1998, 120, 9104. (c) Mendez, M.; Munoz, M. P.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2001, 123, 10511. (d) F□rstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785. (e) Nieto-Oberhuber, C.; Munoz, P. M.; Bunuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem. Int. Ed. 2004, 43, 2402.
    (17) (a) Zhang, L.; Sun, S.; Kozmin, S. Adv. Synth. Catal. 2006, 348, 2271. (b) Ma, S. M.; Yu, S.; Gu, Z. Angew. Chem. Int. Ed. 2006, 45, 200. (c) Bruneau, C. Angew. Chem. Int. Ed. 2005, 44, 2328. (d) Hashmi, A. S. K.; Angew. Chem. Int. Ed. 2005, 44, 6990. (e) Echavarren, A. M., Nevado, C. Chem. Soc. Rev. 2004, 33, 431. c)Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouri□s, V.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656.
    (18) Luzung, M. R.; Markham, J. P.; Toste, J. F. J. Am. Chem. Soc. 2004, 126, 10858.
    (19) Tang, J. M.; Bhunia, S.; Sohel, S. M. A.; Lin, M. Y.; Liao, H. Y.; Datta, S.; Das, A.; Liu, R-.S. J. Am. Chem. Soc. 2007, 129, 15677.
    (20) For the 5-exo-dig cyclizations of 1,6-enynes, see references: (a) Hashmi, A. S. K.; Frost, T. M.; Bats, J. W. J. Am. Chem. Soc. 2000, 122, 11553. (b) Nevado, C.; C□rdenas, . J.; Echavarren, A. M. Chem. Eur. J. 2003, 9, 2627. (c) Amijs, C. H. M.; Ferrer, C.; Echavarren, A. M. Chem. Commun. 2007, 698. (d) Charruault, L.; Michelet, V.; Taras, R.; Gladiali, S.; Genet, J.-P. Chem. Commun. 2004, 850.
    (21) Chan, W.-C.; Lau, C.-P.; Chen, Y.-Z.; Fang, Y.-Q.; Ng, S.-M.; Jia, G. Organometallics 1997, 16, 34.
    Chapter II
    References :
    1)a) Tietze, L. F.; Beifuss, U. Sequential transformations in organic chemistry: a synthesis strategy with a future. Angew. Chem. Int. Ed. Engl. 1993, 32, 131. b) Tietze, L. F. Domino Reactions in Organic Synthesis. Chem. Rev. 1996, 96, 115.
    2)A) Dewar, M. J. S. Bull. Soc. Chim. Fr. 1951, 18, C71-C79. b) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939-2947.
    3)D. M. P. Mingos in Comprehensive Organometallic Chemistry, Vol. 3 (Eds.: G. Wilkinson, F. G. A. Stone, E. W. Abel), Pergamon, Oxford, 1982, pp. 1-88. b) Frenking, G.; Frohlich, N. Chem. Rev. 2000, 100, 717. c) Dedieu, A. Chem. Rev. 2000, 100, 543, and references therein.
    4)Modern Carbonyl Chemistry; Otera, J., Ed.; Wiley-VCH: Weinheim, Germany, 2000.
    5)Trost, B. M. Science 1991, 254, 1471-1477.
    6)Kucherov, M. Chem. Ber. 1881, 14, 1540-1542.
    7)For an excellent review on alkyne hydration, see: Hintermann, L.; Labonne, A. Synthesis 2007, 1121-1150.
    8)a) Schrohe, A. Chem. Ber. 1875, 8, 367; b) Baeyer, A. Ber. 1882, 15, 2705; c) Perkin, W. H., Jr. J. Chem. Soc. 1884, 45, 170; d) Tsuchimoto, T.; Joya, T.; Shirakawa, E.; Kawakami, Y. Synlett 2000, 12, 1777; e) Izumi, Y. Catal. Today 1997, 33, 371; f) Kozhevnikov, I. V. Chem. Rev. 1998, 98, 171.
    9)a) Drenth, W.; Hogeveen, H.; Recl. Trav. Chim. Pays-Bas 1960, 79, 1002.; b) Allen, A. D.; Chiang, Y.; Kresge, A. J.; Tidwell, T. T. J. Org. Chem. 1982, 47, 775, and references their in.
    10)Thomas, R. J.; Campbell, K. N.; Hennion, G. F. J. Am. Chem. Soc. 1938, 60, 718.; b) Stacy, G. W.; Mikulec, R. A. in Organic Syntheses, Coll. Vol. 4 (Ed.: N.Rabjohn), Wiley, New York, 1963, 13.; c) Olah, G. A.; Meider, D. Synthesis 1978, 671.
    11)a) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2003, 125, 11516. b) Trost, B. M.; Rudd, M. T. Org. Lett. 2003, 5, 4599. c) Trost, B. M.; Rudd, M. T. J. Am. Chem. Soc. 2005, 127, 4763. d)Trost, B. M.; Rudd, M. T. Org. Lett. 2003, 5, 1467. e) Odedra, A.; Wu, C.-J.; Pratap, T. B.; Huang, C.-W.; Ran, Y.-F.; Liu, R.-S. J. Am. Chem. Soc. 2005, 127, 3406.
    12)Lee, C.- Y.; Wu, M. -J. Eur. J. Org. Chem. 2007, 21, 3463.
    13)a) Zhang, C.; Cui, D-. M.; Yao, L-. Y.; Wang, B-. S.; Hu, Y-. Z.; hayashi, T. J. Org. Chem. 2008, 73, 7811. b) Yang, C.-Y.; Lin, G.-Y.; Liao, H.-Y.; Datta, S.; Liu, R.-S. J. Org. Chem, 2008, 73, 4907.
    14) Baidossi, W.; Lahav, M.; Blum, M. J. Org. Chem. 1997, 62, 669.
    15)(a) Bayer, O. In Houben-Weyl: Methoden der Organische Chemie; Muller, E., Ed.; G. Thieme Verlag: Stuttgart, 1954; Vol. VII, Part 1. (b) Juger, V.; Viehe, H. G. In Houben-Weyl: Methoden der Organische Chemie; Muller, E., Ed.; G. Thieme Verlag: Stuttgart, 1977; Vol. V/2a. c) Harman, W. D.; Dobson, J. C.; Taube, H. J. Am. Chem. Soc. 1989, 111, 3061. d) Blum, J.; Huminer, H.; Alper, H. J. Mol. Catal 1992, 75, 153.
    16)a) Jimenez-Nunnez, E.; Echavarren, A. M. Chem. Commun. 2007, 333. b) Hashmi, A. S. K. Angew. Chem. Int. Ed. 2005, 44, 6990. c) Muzart, J. Tetrahedron, 2008, 64, 5815.
    17)Only highly enolizable ketones can be cyclized onto alkynes[17a] and alkenes[17b] by using suitable catalysts, see, for example: a) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526. b) Qian, H.; Widenhoefer, R. A. J. Am. Chem. Soc. 2003, 125, 2056.
    18)This system is proposed to form PtCl2(CO)n; see: a) F□rstner, A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244; b) F□rstner, A.; A□ssa, C. J. Am. Chem. Soc. 2006, 128, 6306; c) F□rstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024.
    19)Selected examples for metal-catalyzed hydration of alkynes, see: a) Hiscox, W.; P. W. Jennings, P. W. Organometallics, 1990, 9, 1997; b) Baidossi, W.; Lahav, M.; Blum, J. J. Org. Chem. 1997, 62, 669; c) Fukuda, Y.; Utimoto, K. J. Org. Chem. 1991, 56, 3729; d) Mizushima, E.; Sato, K.; Hayashi, T.; Tanaka, M. Angew. Chem. 2002, 114, 4745-4747; Angew. Chem. Int. Ed. 2002, 41, 4563-4565.
    20)For this 6-endo-dig cyclization, see: a) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650; b) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458.

    Chapter III
    References :
    (1) (a) Kishi, Y. Pure Appl. Chem. 1993, 65, 771. (b) Suh, E. M.; Kishi, Y. J. Am. Chem. Soc. 1994, 116, 11205.
    (2) (a) Tietze, L. F.; Beifuss, U. Angew. Chem. 1993, 105, 137; Angew.Chem., Int. Ed. Engl. 1993, 32, 131. (b) See also: Tietze, L. F. Chem. Ind. 1995, 453. (c) Waldmann, H. “Domino Reaction” in Organic Synthesis Highlight II; Waldmann, H., Ed.; VCH: Weinheim, 1995; pp 193-202. (d) Hall, N. Science 1994, 266, 32.
    (3) For general reviews, see: (a) Ho, T.-L. Tactics of Organic Synthesis; Wiley-Interscience: New York, 1994; p 79. (b) Tietze, L. F. Chem. Rev. 1996, 96,115. (c) Winkler, J. D. Chem. Rev. 1996, 96,167. (d) Denmark, S.E.; Thorarensen, A. Chem. Rev. 1996, 96, 137.
    (4) For selected examples, see: (a) de Meijere, A.; von Zezschwitz, P.; Brase, S. Acc. Chem. Res. 2005, 38, 413. (b) Kamijo, S.; Jin, T.; Huo, Z.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 7786. (c) Patel, S. J.; Jamison, T. F. Angew. Chem. Int. Ed. 2003, 42, 1364. (d) Yoshida, H.; Fukushima, H.; Ohshita, J.; Kunai, A. Angew. Chem. Int. Ed. 2004, 43, 3935. (e) Tamaru, Y.; Yasui, K.; Takanabe, H.; Tanaka, S.; Fugami, K. Angew. Chem. Int. Ed. 1992, 31, 645. (f) Yoshida, M.; Fujita, M.; Ishii, T.; Ihara, M. J. Am. Chem. Soc. 2003, 125, 4874. (g) Varela, J. A.; Rubin, S. G.; Gonzalez-Rodriguez, C.; Castedo, L.; Saa, C. J. Am. Chem. Soc. 2006, 128, 9262.
    (5) For selected reviews, see: (a) Overman, L. E.; Abelman, M. M.; Kucera, D. J.; Tran, V. D.; Ricca, D. J. Pure Appl. Chem. 1992, 64, 1813. (b) Grigg, R. J. Heterocycl. Chem. 1994, 31. 631. (c) de Meijere, A.; Meyer, P. E. Angew. Chem., Int. Ed. Engl. 1994, 33, 2379. (d) Nie, Y.; Niah, W.; Jaenicke, S.; Chuah, G. K. J. Catal. 2007, 248, 1. (e) Ray, D.; Ray, J. K. Org. Lett. 2007, 9, 191. (f) Quinn, K. J.; Isaacs, A. K.; Arvary, R. A. Org. Lett. 2004, 6, 4143.
    (6) For selected examples, see: (a) Trost, B. M.; Shi, Y. J. Am. Chem. Soc. 1991, 113, 701. (b) Overman, L. E.; Ricca, D. J.; Tran, V. D. J. Am. Chem. Soc. 1993, 115, 2042. (c) Trost, B. M.; Shen, H. Angew. Chem., Int. Ed. 2001, 40, 2313. (d) Trost, B. M.; Calkins, T. L.; Bochet, C. G. Angew. Chem., Int. Ed. 1997, 36, 2632. (e) Vorogushin, A. V.; Wulff, W. D.; Hansen, H.-J. J. Am. Chem. Soc. 2002, 124, 6512.
    (7) Masakazu, F. Eur. Pat. EP 1 561 794 A1.
    (8) (a) Eckert, J.-F.; Nicoud, J.-F.; Nierengarten, J.-F.; Liu, S.-G.; Echegoyen, L.; Armaroli, N.; Barigelletti, F.; Ouali, L.; Krasnikov, V.; Hadziioannou, G. J. Am. Chem. Soc. 2000, 122, 7467. (b) Cravino, A.; Sariciftci, N. S. J. Mater. Chem. 2002, 12, 1931. (c) El-Ghayoury, A.; Schenning, A. P. H. J.; van Hal, P. A.; van Duren, J. K. J.; Janssen, R. A. J.; Meijer, E. W. Angew. Chem., Int. Ed. 2001, 40, 3660. (d) Pourtois, G.; Beljonne, D.; Cornil, J.; Ratner, M. A.; Bredas, J. L. J. Am. Chem. Soc. 2002, 124, 4436.
    (9) (a) Dimitrakopoulos, C. D.; Malenfant, P. R. L. Adv. Mater. 2002, 14, 99. (b) Horowitz, G. Adv. Mater. 1998, 04, 365. (c) Cai, X.; Hara, M.; Kawai, K.; Tojo, S.; Majima, T. Chem. Phys. Lett. 2003, 368, 365.
    (10) a) Atkinson, G. H.; Gilmore, D. A.; Dosser, L. R.; Pallix, J. B. J. Phys. Chem. 1982, 86, 2305. b) Beck, S. M.; Brus, L. E.; J. Chem. Phys. 1981, 75, 1031. c) Atkinson, G. H.; Dosser, L. R.; J. Chem. Phys. 1980, 72, 2195. d) Koshihara, S.; Kobayashi, T. J. Chem. Phys. 1986, 85, 1211.
    (11) Johnston, L. J.; Redmond, R. W. J. Phys. Chem. A 1997,101, 4660.
    (12) McGimpsey, W.G.; Samaniego, W. N.; Chen, L.; Wang, F. J. Phys. Chem. 1998, 102, 8679.
    (13) For chrysene synthesis, see references 14 and (a) Clar, E. Polycyclic Hydrocarbons, Academic Press: New York 1964. (b) Wood, C. S.; Mallory, F. B. J. Org. Chem. 1964, 29, 3373. (c) Lee-Ruff, E.; Hopkinson, A. C.; Dao, L. H. Can. J. Chem. 1981, 59, 1675. (d) Gore, P. H.; Kamonah, F. S. Synthesis 1978, 773. (e) Davies, W; Wilmshurst, J. R. J. Chem. Soc. 1961, 4079. (f) Corbett, T. G.; Porter, Q. N. Aust. J. Chem. 1965, 18, 1781. (g) Levy, L. A.; Sashikumar, V. P. J. Org. Chem. 1985, 50, 1760. h) Fonken, G. J Chem. Ind. 1962, 1327.
    (14) For chrysene synthesis using functionalized naphthalenes: (a) Fonken, G. F. Chem. Ind. (London) 1962, 1327. (b) LeHoullier, C. S.; Gribble, G. W. J. Org. Chem. 1983, 48, 1682. (c) Blackburn, E. V.; Loader, C. E.; Timmons, C. J. J. Chem. Soc. 1970, 163. (d) Leznof, C. C.; Hayward, R. J. Can. J. Chem. 1972, 50, 528. (e) Leznof, C. C.; Hayward, R. J. Can. J. Chem. 1970, 48, 1842. (f) Carruthers, W.; Evans, N.; Pooranamoorthy, R. J. Chem. Soc. 1973, 144. (g) Casagrande, M.; Gennari, G.; Cauzzo, G. Gazz. Chim. Ital. 1974, 104, 1251. (h) Masetti, F.; Bartocci, G.; Galiazzo, G. Gazz. Chim. Ital. 1975, 105, 419. (i) Nagel, D. L.; Kupper, R.; Antonson, K.; Wallcave, L. J. Org. Chem. 1977, 42, 3626. (j) Harvey, R. G.. Tetrahedron Lett. 1988, 29, 3885. (k) Lyle, T. A.; Daub, G. H. J. Org. Chem. 1979, 44, 4933.
    (15) (a) Korobka, Kuznetsov, E. V. Khim. Geterotsikl. Soedin. 1982, 1184. (b) Korobka, I. V.; Voloshina, A. I.; Kuznetsov, E. V. Khim. Geterotsikl. Soedin. 1984, 1472. (c) Korobka, I. V.; Revinskii, Yu. V.; Kuznetsov, E. V. Khim. Geterotsikl. Soedin. 1985, 910.
    (16) For synthesis of benzopyrylium salt, see the review paper: Kuznetsov, E. V.; Shcherbakova, I. V.; Balaban, A. T. Adv. Heterocycl. Chem. 1990, 50, 157-254.
    (17) Shen, H. –C.; Tang, J.-M.; Chang, H.-K.; Yang, C.-W.; Liu, R.-S. J. Org. Chem. 2005, 70, 10113.
    (18) Chang, H.-K.; Datta, S.; Das, A.; Odedra, A.; Liu, R.-S. Angew. Chem. Int. Ed. 2007, 46, 4744.
    (19) In the presence of CO, PtCl2 was thought to form PtCl2(CO)n which showed better electrophilicity for alkyne; see (a) F□rstner, A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244. (b) F□rstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024. (c) F□rstner, A.; C, Aissa. J. Am. Chem. Soc. 2006, 128, 6306. (d) Taduri, B. P.; Ran, Y.-F.; Huang, C.-W.; Liu, R. -S. Org. Lett. 2006, 8, 883. (e) Lo, C.-Y.; Lin, C.-C.; Cheng, H.-M.; Liu, R.-S. Org. Lett. 2006, 8, 3153.
    (20) (a) Stille, J. K. Angew. Chem. Int. Ed. 1986, 25, 508. (b) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636. (c) Sonogashira, K.; In Handbook of Organopalladium Chemistry for Organic synthesis; Negishi, E.-i.; Ed; Wiley-Interscience: New York, 2002, pp 493-529. (d) Negishi, E.-i.; Anastasia, L. Chem. Rev. 2003, 103, 1979. (e) Tykwinski, R. R. Angew. Chem. Int. Ed. 2003, 42, 1566.
    (21) Selected examples: (a) Zhao, C.; Zhang, Y.; Ng, M.-T. J. Org. Chem. 2007, 72, 8384. (b) Silva, N. O.; Abreu, A. S.; Ferreira, P. M. T.; Monteiro, L. S.; Queiroz, M.-J. R. P. Eur. J. Org. Chem. 2002, 2524. (c) Wang, Z.; Elokdah, H.; McFarlane, G.; Pan, S.; Antane, M. Tetrahedron Lett. 2006, 47, 3365.
    (22) (a) Asao, N.; Takahashi, K.; Lee, S.; Kasahara, T.; Yamamoto, Y. J. Am. Chem. Soc. 2002, 124, 12650. (b) Iwasawa, N.; Shido, M.; Kusama, H. J. Am. Chem. Soc. 2001, 123, 5814.
    (23) (a) Asao, N.; Nogami, T.; Lee, S.; Yamamoto, Y. J. Am. Chem. Soc. 2003, 125, 10921. (b) Asao, N.; Aikawa, H. J. Org. Chem. 2006, 71, 5249.
    Chapter IV
    References :
    (1) Horva´th, I. T.; Anastas, P. T. Chem. Rev. 2007, 107, 2169.
    (2) (a) Trost, B. Acc. Chem. Res. 2002, 35, 695. (b) Trost, B. Science 1991, 254, 1471. (c) Wender, P. A.; Croatt, M. P.; Witulski, B. Tetrahedron 2006, 62, 7505.
    (3) Kummerer, K. Green Chem. 2007, 9, 899. (b) Hofer, R.; Bigorra, J. Green Chem. 2007, 9, 203.
    (4) Sheldon, R. A.; Arends, I.; Hanefeld, U. Green Chemistry and Catalysis; Wiley-VCH: Weinheim, Germany, 2007.
    (5) Anastas, P. T.; Kirchhoff, M. M.; Williamson, T. C. Appl. Catal. A: Gen. 2001, 221, 3.
    (6) Liu, S.; Xiao, J. J. Mol. Catal. A: Chem. 2007, 270, 1.
    (7) (a) Imi, K.; Imai, K.; Utimoto, K. Tetrahedron Lett. 1987, 28, 3127.; (b) Detert, H.; Meier, H. Liebigs Ann./Recl. 1997, 1565.; (c) Utimoto, K. Pure Appl. Chem. 1983, 55, 1845.; (d) Stork, G.; Borch, R. J. Am. Chem. Soc. 1964, 86, 935.; (e) Francisco, L. W.; Moreno, D. A.; Atwood, J. D. Organometallics 2001, 20, 4237–4245.; (f) Arcadi, A.; Cerichelli, G.; Chiarini, M.; Di Giuseppe, S.; Marinelli, F. Tetrahedron Lett. 2000, 41, 9195–9198.; (g) Jennings, P. W.; Hartman, J. W.; Hiscox, W. C. Inorg. Chim. Acta 1994, 222, 317–322.
    (8) a) Baldwin, J. E. "Rules for Ring Closure." J. C. S. Chem. Comm.. 1976, 18, 734-736.; b) Carey, F. A.; Sundberg, R. J. Advanced Organic Chemistry Part A: Structures and Mechanisms, 3rd ed.; Plenum Press: New York, 1990; pp. 165-167.; c) Baldwin, J. E. "Rules for Ring Closure: Ring Formation by Conjugate Addition of Oxygen Nucleophiles." J. Org. Chem. 1977,42, 3846.
    (9) Kusama, H.; Funami, H.; Takaya, J.; Iwasawa, N. Org. Lett. 2004, 6, 605.
    (10) Kusama, H.; Ishida, K.; Funami, H.; Iwasawa, N. Angew. Chem. Int. Ed. 2008, 47, 4903.
    (11) Zhang, G.; Huang, X.; Li, G.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 1814.
    (12) Li, G.; Huang, X.; Zhang, L. J. Am. Chem. Soc. 2008, 130, 6944.
    (13 a) Kim, N.; Kim, Y.; Park, W.; Sung, D.; Gupta, A. K.; Oh, C. H. Org. Lett. 2005, 7, 5289; b) Oh, C. H.; Ryu, J. H.; Lee, H. I. Synlett 2007, 2337. c) Oh, C. H.; Lee, J. H.; Lee, S. J.; Kim, J. I.; Hong, C. S. Angew. Chem. Int. Ed. 2008, 47, 7507.
    (14) Asao, N.; Kasahara, T.; Yamamoto, Y. Angew. Chem. Int. Ed. 2003, 42, 3504.
    (15) Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458.
    (16) Dyker, G.; Hildebrandt, D.; Liu, J.; Merz, K. Angew. Chem. Int. Ed. 2003, 42, 4399.
    (17) For a review about hydration of alkynes see: Hintermann, L.; Labonne, A. Synthesis 2007, 112, 1–1150.
    (18) Chang, H.-K.; Datta, S.; Das, A.; Odedra, A.; Liu, R.-S. Angew. Chem. Int. Ed. 2007, 46, 4744
    (19) Das, A.; Liao, H. -H.; Liu, R.-S. J. Org. Chem. 2007, 72, 9214.
    (20) Tang, J.-M.; Liu, T.-A.; Liu, R.-S. J. Org. Chem, 2008, 73, 8479.
    (21) Wang, w.; Xu, B.; Hammnod, G. B. J. Org. Chem, 2009, 74, 1640.
    (22) (a) Horii, S.; Fukase, H.; Mizuta, E.; Hatano, K.; Mizuno, K. Chem. Pharm. Bull. 1980, 28, 3601. (b) Nakano, H.; Matsuda, Y.; Ito, K.; Ohkubo, S.; Morimoto, M.; Tomita, F. J. Antibiot. 1981, 34, 266. (c) Matsumoto, T.; Hosoya, T.; Suzuki, K. J. Am. Chem. Soc. 1992, 114, 3568. (d) Hosoya, T.; Takashiro, E.; Matsumoto, T.; Suzuki, K. J. Am. Chem. Soc. 1994, 116, 1004. (e) Futagami, S.; Ohashi, Y.; Imura, K.; Ohmori, K.; Matsumoto, T.; Suzuki, K. Tetrahedron Lett. 2000, 41, 1063. (f) Ishii, H.; Ishikawa, T.; Haginiwa, J. Yakugaku Zasshi 1977, 97, 890. (g) Ishii, H.; Ishikawa, T.; Murota, M.; Aoki, Y.; Harayama, T. J. Chem. Soc., Perkin Trans. I 1993, 1019.
    (23) (a) F□rstner, A.; Davies, P. W.; Gress, T. J. Am. Chem. Soc. 2005, 127, 8244. (b) F□rstner, A.; Davies, P. W. J. Am. Chem. Soc. 2005, 127, 15024. (c) Zhang, G,; Catalano, V. J,; Zhang, L. J. Am. Chem. Soc. 2007, 129, 11358. (d) Taduri, B. P.; Ran, Y.-F.; Huang, C.-W.; Liu, R. -S. Org. Lett. 2006, 8, 883. (e) Lo, C.-Y.; Lin, C.-C.; Cheng, H.-M.; Liu, R.-S. Org. Lett. 2006, 8, 3153.
    (24) For platinum-catalyzed water-gas shift reaction, see: Yoshida, T.; Ueda, Y.; Otsuka, S. J. Am. Chem. Soc. 1978, 100, 3941.
    (25) Kennedy-Smith, J. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2004, 126, 4526.
    (26) For divergent reactivities between platinum and gold catalysts, see: (a) Zhang, G.; Catalano V.; Zhang L. J. Am. Chem. Soc. 2007, 129, 11358. (b) Hashimi, A. S. K.; Kurpejovic, E.; Frey, W.; Bats, J. W. Tetrahedron 2007, 63, 5879. (c) Godet, T.; Vaxelaire, C.; Michel, C.; Milet, A.; Belmont, P. Chem. Eur. J. 2007, 13, 5632.
    Chapter V
    References :
    (1) (a) M. Murakami and Y. Ito, in Topics in Organometallic Chemistry, ed. S. Murai, Springer, Berlin, Germany, 1999, pp. 97–129 and references therein.
    (2) C.-H. Jun, Chem. Soc. Rev. 2004, 33, 610.
    (3) For reviews, see: (a) Rybtchinski, B.; Milstein, D. Angew. Chem., Int. Ed. 1999, 38, 870. (b) Jennings, P. W.; Johnson, L. L. Chem. Rev. 1994, 94, 2241. (c) Crabtree, R. H. Chem. Rev. 1985, 85, 245.
    (4) (a) Moriarty, R. M.; Penmasta, R.; Awasthi, A. K.; Prakash, I. J. Org. Chem. 1988, 53, 6124. (b) Sawaki, Y.; Inoue, H.; Ogata, Y. Bull. Chem. Soc. Jpn. 1983, 56, 1133. (c) Chamberlin, R. L. M.; Rosenfeld, D. C.; Wolczanski, P. T.; Lobkovsky, E. B. Organometallics 2002, 21, 2724. (d) Figueroa, J. S.; Cummins, C. C. J. Am. Chem. Soc. 2003, 125, 4020. (e) O’Connor, J. M.; Pu, L. J. Am. Chem. Soc. 1990, 112, 9013. (f) Bianchini, C.; Casares, J. A.; Peruzzini, M.; Romerosa, A.; Zanobini, F. J. Am. Chem. Soc. 1996, 118, 4585. (g) Cairns, G. A.; Carr, N.; Green, M.; Mahan, M. F. Chem. Commun.1996, 2431. (h) Hayashi, N.; Ho, D. M.; Pascal, R. A., Jr. Tetrahedron Lett. 2000, 41, 4261.
    (5) (a) Pennella, F.; Banks, R. L.; Bailey, G. C. Chem. Commun., 1968, 1548. (b) A. Mortreux and M. Blanchard, J. Chem. Soc., Chem. Commun., 1974, 786; (c) A. Mortreux, N. Dy and M. Blanchard, J. Mol. Catal., 1975, 1, 101; (c) A. Mortreux, F. Petit and M. Blanchard, Tetrahedron Lett., 1978, 4967; (d) A. Bencheick, M. Petit, A. Mortreux and F. Petit, J. Mol. Catal., 1982, 15, 93; (e) A. Mortreux, J. C. Delgrange, M. Blanchard and B. Lubochinsky, J. Mol. Catal., 1977, 2, 73; (f) A. Mortreux, F. Petit and M. Blanchard, J. Mol. Catal., 1980, 8, 97. (g) N. Kaneta, T. Hirai, M. Mori, Chem. Lett. 1995, 627. (h) F□rstner, A.; Seidel, G. Angew.Chem. Int. Ed. 1998, 37, 1734. (i) F□rstner, A.; Davies, P. W. Chem. Cmmun., 2005, 2307.
    (6) (a) Jun, C.-H. Chem. Soc. Rev., 2004, 33, 610. (b) Jun, C.-H.; Lee, H.; Hong, J.-B.; B.-I. Kwon, Angew. Chem., Int. Ed. 2002, 41, 2146. (c) Lee, D.-Y.; Hong, B.-S.; Cho, E.-G.; Lee, H.; Jun, C.-H. J. Am. Chem. Soc. 2003, 125, 6372. (d) Shimada, T.; Yamamoto, Y. J. Am. Chem. Soc, 2003, 125, 6646.
    (7) (a) Datta, S.; Chang, C.-L.; Yeh, K.-L.; Liu, R.-S. J. Am. Chem. Soc, 2003, 125, 9294. (b) Shen, H.-C.; Su, H.-L.; Hsueh Y.-C.; Liu, R.-S. Organometallics, 2004, 23, 4332. (c) Bruneau, C.; Dixneuf, P. H. Angew. Chem., Int. Ed. 2006, 45, 2176.
    (8) Liu, Y., Song, F.; Guo, S. J. Am. Chem. Soc. 2006, 128, 11332.
    (9) Wang, A.; Jiang, H. J. Am. Chem. Soc. 2008, 130, 5030.
    (10) ) Nakamura, I.; Araki, T. Terada, M. J. Am. Chem. Soc. 2009, 131, 2804.
    (11) Lee, D. G.; Chen, T. Cleavage Reactions. In Comprehensive Organic Synthesis, 1st ed.; Trost, B. M., Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 7, pp 541-591.
    (12) Shing, T. K. M. In ComprehensiVe Organic Synthesis; Trost, B. M., Flemming, I., Eds.; Pergamon Press: Oxford, 1991; Vol. 7, pp 703- 716.
    (13) (a) Bailey, P. S. Chem. Rev. 1958, 58, 925-1010. (b) Criegee, R. Angew. Chem. Int. Ed. Engl. 1975, 14, 745-752. (c) Larock, R. C. In ComprehensiVe Organic Transformations, 2nd ed.; Wiley-VCH: New York, 1999; pp 1213-1215.
    (14) Carlsen, P. H. J.; Katsuki, T.; Martin, V. S.; Sharpless, K. B. J. Org. Chem. 1981, 46, 3936-3938.
    (15) (a) Berkowitz, L. M.; Rylander, P. N. J. Am. Chem. Soc. 1958, 80, 6682. (b) Shalon, Y.; Elliott, W. H. Synth. Commun. 1973, 3, 287. (c) Lee, D. G.; Chen, T.; Wang, Z. J. Org. Chem. 1993, 58, 2918. (d) Wiberg, K. B.; Saegebarth, K. A. J. Am. Chem. Soc. 1957, 79, 2822. (e) Freeman, F.; Yamachika, N. J. J. Am. Chem. Soc. 1970, 92, 3730.
    (16) (a) Drago, R. S.; Corden, B. B.; Barnes, C. W. J. Am. Chem. Soc. 1986, 108, 2453. (b) Neumann, R.; Abu-Gnim, C. J. Chem. Soc., Chem. Commun. 1989, 1324. (c) Neumann, R.; Abu-Gnim, C. J. Am. Chem. Soc. 1990, 112, 6025. (d) Steckhan, E.; Kandzia, C. Synlett 1992, 139-140.
    (17) Crabtree, R. H. Chem. Rev. 1985, 85, 245-269.
    (18) (a) Hogeveen, H.; Volger, H. C. J. Am. Chem. Soc., 1967, 89, 2486. (b) Gassman, P. G.; Atkins, T. J.; Lumb, J. T. J. Am. Chem. Soc. 1972, 94, 7757. (c) Cassar, L.; Eaton, P. E.; Halpern, J. J. Am. Chem. Soc., 1970, 92, 3515.
    (19) (a) Suzuki, H.; Takaya, Y.; Takemori, T. J. Am. Chem. Soc., 1994, 116, 10 779; (b) Jun, C.-H.; Kang, J.-B.; Lim, Y.-G. Tetrahedron Lett., 1995, 36, 277; (c) McNeill, K. R.; Andersen, A.; Bergman, R. G. J. Am. Chem. Soc., 1997, 119, 11 244. (d) Onopchenko, A.; Schulz, J. G. D. J. Org. Chem.,1978, 38, 3729.
    (20) For formation mechanism of enone 5-19, see selected examples: (a) Engel,D. A.; Dudly, G. B. Org. Lett. 2006, 8, 4027. (b) Edens, M.; Doerner, D.; Chase, C. R.; Nass, D.; Schiavelli, M. D. J. Org. Chem. 1977, 42, 1977. (c) Andres, J.; Cardenas, R.; Silla, E.; Tapia, O. J. Am. Chem. Soc. 1988, 110, 666. (d) Meyer, K. H.; Schuster, K. Chem. Ber. 1922, 55, 819.
    (21) (a) Liu, Y.-H.; Song, F.-J.; Guo, S.-H. J. Am. Chem. Soc. 2006, 128, 11332; (e) Wang, W.; Jiang, H. J. Am. Chem. Soc. 2008, 130, 5030.
    (22) For electrophilic activation of vinylgold(I) complex, see: (a) Shi, Y.; Ramgren, S. D.; Blum, S. A. Organometallics, 2009, 28, 1275; (b) Hashmi, A. S. K.; Ramamurthi, T. D.; Rominger, F. J.Organomet.Chem. 2009, 694, 592; (c) Liu, L-P.; Xu, B.; Mashuta, M. S.; Hammond, G. B. J. Am. Chem. Soc. 2008, 130, 17642. (d) Zhang, G.; Peng, Y.; Cui, L.; Zhang, L. Angew. Chem. Int. Ed. 2009, 48, 3112.
    (23) Gibson, D. H.; Owens, K.; Ong, T.-S. J. Am. Chem. Soc. 1984, 106, 1125.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE