簡易檢索 / 詳目顯示

研究生: 張毅偉
Chang, Yi-Wei
論文名稱: (一)熱休克蛋白質Hsp70兩區段間調控機制之結構研究(二)酵母菌蛋白質複合體Get4-Get5之結構研究
(一)Crystal Structures of the 70-kDa Heat Shock Proteins in Domain Disjoining Conformation(二)Crystal Structure of Saccharomyces cerevisiae Get4-Get5 Complex Involved in Tail-anchored Membrane Protein Targeting
指導教授: 孫玉珠
Sun, Yuh-Ju
蕭傳鐙
Hsiao, Chwan-Deng
口試委員:
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物資訊與結構生物研究所
Institute of Bioinformatics and Structural Biology
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 90
中文關鍵詞: 熱休克蛋白質膜蛋白運輸蛋白質晶體學
外文關鍵詞: hsp70, chaperone, membrane protein targeting, GET
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • (第一部份)
    熱休克蛋白質Hsp70是一種存在於大多數生物體內有高度保留性的分子伴護子,其主要的功能是維持細胞內其他蛋白質的正常摺疊,以幫助細胞對抗外來的不正常環境(如高溫、低溫、壓力等…)。該蛋白質由兩個主要的區段組合而成,分別是氨基末端的核酸結合區段以及羧基末端的受質結合區段,而區段之間的交互作用則主導了該伴護子的功能。本報告中為了提供該種蛋白質之詳細結構資訊以利進一步之研究,共解出了嗜熱菌Geobacillus kaustophilus HTA426內之Hsp70同源蛋白質DnaK,以及褐鼠Rattus norvegicus內之Hsp70同源蛋白質Hsc70的三度空間立體結晶結構。此二結構皆為與雙磷酸腺苷-無機磷之結合狀態,並且呈現出獨特的區段分離構型。而為了進一步偵測此區段分離動作的成因,一個色氨酸更被建構於兩個主要區段的交互作用界面上,藉由測量其螢光強度的變化,我們成功得知水溶液中之熱休克蛋白質Hsp70在與雙磷酸腺苷以及與受質結合時,確實會促進其兩主要區段的分離。

    (第二部份)
    尾端固定膜蛋白是一類利用其梭基末端固定於細胞或胞器之磷脂質雙層膜上的蛋白質。在酵母菌體內,將此類膜蛋白插入內質網上的工作已知是由蛋白質Get1、Get2、Get3、Get4和Get5所負責,為了進一步研究其間的詳細分子機轉,此報告中解出了酵母菌Saccharomyces cerevisiae內之Get4全長與Get5氨基末端的蛋白質複合體晶體結構,該結構顯示出Get4與Get5之間的結合力量主要來自於疏水性作用力,在充滿水溶液的生理環境中該兩蛋白質的結合非常穩定。此外,酵母菌雙雜交實驗結果顯示出Get3與Get5之間的交互作用需要有Get4的存在才能達成,而在進一步利用Get4的不同片段進行酵母菌雙雜交實驗後,更確認了Get4是分別利用其氨基半部以及其梭基半部與Get3以及Get5進行交互作用。


    (Part1)
    The 70-kDa heat shock proteins (Hsp70s) are highly conserved ATP-dependent molecular chaperones composed of an N-terminal nucleotide binding domain (NBD) and a C-terminal protein substrate binding domain (SBD) in a bilobate structure. Interdomain communication and nucleotide-dependent structural motions are critical for Hsp70 chaperone functions. Our understanding of these functions remains elusive due to insufficient structural information of functionally intact Hsp70s in different chaperone cycle states. We report here the crystal structures of DnaK from Geobacillus kaustophilus HTA426 bound with ADP-Mg2+-Pi at 2.37 Å and 70-kDa heat shock cognate protein from Rattus norvegicus bound with ADP-Pi at 3.5 Å. The NBD and SBD in these structures are significantly separated from each other and they may be corresponding to the ADP-bound conformation. Moreover, a Trp reporter was introduced at the potential interface region between NBD and interdomain linker of GkDnaK to probe the environmental changes. The result of fluorescence measurement further supports that the substrate binding enhanced domain disjoining behavior for Hsp70 chaperone family.

    (Part2)
    The tail-anchored (TA) proteins are a typical class of membrane proteins, which present a single transmembrane domain (TMD) located near their C-termini. By anchoring the single TMD into the phospholipid bilayer surrounding cellular organelles, the N-terminal cytosolic portion of TA proteins can be properly arranged to cytosol for particular functional purposes. Get3, Get4 and Get5 in Saccharomyces cerevisiae participate in the insertion of tail-anchored proteins into the endoplasmic reticulum membrane. We elucidated the interaction between Get4 and Get5 and investigated their interaction with Get3. Based on crystallographic studies, Get4 and Get5 formed a tight complex, suggesting that they constitute subunits of a larger complex. The Get4 structure shows an overall oblong shape and uses its C-terminal part to interact with Get5. Yeast two-hybrid experiment revealed that Get4 mediates the communication between Get3 and Get5 by interact with these two proteins through its different bisections.

    Contents List of figures List of tables List of abbreviations Part 1. Crystal Structures of the 70-kDa Heat Shock Proteins in Domain Disjoining Conformation 1.1 Abstract in Chinese 1.2 Abstract 1.3 Introduction 1.4 Materials and methods 1.5 Results 1.6 Discussion 1.7 Figures and tables Part 2. Crystal Structure of Saccharomyces cerevisiae Get4-Get5 Complex Involved in Tail-anchored Membrane Protein Targeting 2.1 Abstract in Chinese 2.2 Abstract 2.3 Introduction 2.4 Materials and methods 2.5 Results 2.6 Discussion 2.7 Figures and tables References

    Anderson, J.V., Haskell, D.W. and Guy, C.L. (1994) Differential influence of ATP on native spinach 70-kilodalton heat-shock cognates. Plant Physiol, 104, 1371-1380.
    Becker, J., Walter, W., Yan, W. and Craig, E.A. (1996) Functional interaction of cytosolic hsp70 and a DnaJ-related protein, Ydj1p, in protein translocation in vivo. Mol. Cell. Biol., 16, 4378-4386.
    Benaroudj, N., Triniolles, F. and Ladjimi, M.M. (1996) Effect of nucleotides, peptides, and unfolded proteins on the self-association of the molecular chaperone HSC70. J Biol Chem, 271, 18471-18476.
    Bhattacharyya, T., Karnezis, A.N., Murphy, S.P., Hoang, T., Freeman, B.C., Phillips, B. and Morimoto, R.I. (1995) Cloning and subcellular localization of human mitochondrial hsp70. J Biol Chem, 270, 1705-1710.
    Blond-Elguindi, S., Fourie, A.M., Sambrook, J.F. and Gething, M.J. (1993) Peptide-dependent stimulation of the ATPase activity of the molecular chaperone BiP is the result of conversion of oligomers to active monomers. J Biol Chem, 268, 12730-12735.
    Brown, C.R., Martin, R.L., Hansen, W.J., Beckmann, R.P. and Welch, W.J. (1993) The constitutive and stress inducible forms of hsp 70 exhibit functional similarities and interact with one another in an ATP-dependent fashion. J Cell Biol, 120, 1101-1112.
    Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G.L. (1998a) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. D Biol. Crystallogr., 54, 905-921.
    Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G.L. (1998b) Crystallography & NMR system: A new software suite for macromolecular structure determination. Acta Crystallogr. Sect. D, 54, 905-921.
    Buchanan, G., Ricciardelli, C., Harris, J.M., Prescott, J., Yu, Z.C., Jia, L., Butler, L.M., Marshall, V.R., Scher, H.I., Gerald, W.L., Coetzee, G.A. and Tilley, W.D. (2007) Control of androgen receptor signaling in prostate cancer by the cochaperone small glutamine rich tetratricopeptide repeat containing protein alpha. Cancer Res., 67, 10087-10096.
    Buchberger, A., Theyssen, H., Schroder, H., McCarty, J.S., Virgallita, G., Milkereit, P., Reinstein, J. and Bukau, B. (1995) Nucleotide-induced conformational changes in the ATPase and substrate binding domains of the DnaK chaperone provide evidence for interdomain communication. J. Biol. Chem., 270, 16903-16910.
    Bukau, B. and Horwich, A.L. (1998) The Hsp70 and Hsp60 chaperone machines. Cell, 92, 351-366.
    Carlino, A., Toledo, H., Skaleris, D., DeLisio, R., Weissbach, H. and Brot, N. (1992) Interactions of liver Grp78 and Escherichia coli recombinant Grp78 with ATP: multiple species and disaggregation. Proc Natl Acad Sci U S A, 89, 2081-2085.
    Chou, C.C., Forouhar, F., Yeh, Y.H., Shr, H.L., Wang, C. and Hsiao, C.D. (2003) Crystal structure of the C-terminal 10-kDa subdomain of Hsc70. J. Biol. Chem., 278, 30311-30316.
    Collaborative Computational Project, N. (1994) The CCP4 suite: programs for protein crystallography. Acta Crystallogr. Sect. D, 50, 760-763.
    Creighton, T.E. (1993) Proteins: Structures and Molecular Properties-2nd ed. Proteins: Structures and Molecular Properties-2nd ed., 5.
    Cupp-Vickery, J.R., Peterson, J.C., Ta, D.T. and Vickery, L.E. (2004) Crystal structure of the molecular chaperone HscA substrate binding domain complexed with the IscU recognition peptide ELPPVKIHC. J. Mol. Biol., 342, 1265-1278.
    D'Andrea, L.D. and Regan, L. (2003) TPR proteins: the versatile helix. Trends Biochem. Sci., 28, 655-662.
    De Los Rios, P., Ben-Zvi, A., Slutsky, O., Azem, A. and Goloubinoff, P. (2006) Hsp70 chaperones accelerate protein translocation and the unfolding of stable protein aggregates by entropic pulling. Proc. Natl. Acad. Sci. U. S. A., 103, 6166-6171.
    DeLano, W.L. (2002) The PyMOL User's Manual, Delano Scientific, San Carlos, CA. The PyMOL User's Manual, Delano Scientific, San Carlos, CA.
    Dutta, S. and Tan, Y.J. (2008) Structural and functional characterization of human SGT and its interaction with Vpu of the human immunodeficiency virus type 1. Biochemistry, 47, 10123-10131.
    Evans, P. (2006) Scaling and assessment of data quality. Acta Crystallogr. D Biol. Crystallogr., 62, 72-82.
    Fernandes, J.M., Macqueen, D.J., Lee, H.T. and Johnston, I.A. (2008) Genomic, evolutionary, and expression analyses of cee, an ancient gene involved in normal growth and development. Genomics, 91, 315-325.
    Flaherty, K.M., DeLuca-Flaherty, C. and McKay, D.B. (1990) Three-dimensional structure of the ATPase fragment of a 70K heat-shock cognate protein. Nature, 346, 623-628.
    Fleischer, T.C., Weaver, C.M., McAfee, K.J., Jennings, J.L. and Link, A.J. (2006) Systematic identification and functional screens of uncharacterized proteins associated with eukaryotic ribosomal complexes. Genes Dev., 20, 1294-1307.
    Freiden, P.J., Gaut, J.R. and Hendershot, L.M. (1992) Interconversion of three differentially modified and assembled forms of BiP. Embo J, 11, 63-70.
    Gavin, A.C., Aloy, P., Grandi, P., Krause, R., Boesche, M., Marzioch, M., Rau, C., Jensen, L.J., Bastuck, S., Dumpelfeld, B., Edelmann, A., Heurtier, M.A., Hoffman, V., Hoefert, C., Klein, K., Hudak, M., Michon, A.M., Schelder, M., Schirle, M., Remor, M., Rudi, T., Hooper, S., Bauer, A., Bouwmeester, T., Casari, G., Drewes, G., Neubauer, G., Rick, J.M., Kuster, B., Bork, P., Russell, R.B. and Superti-Furga, G. (2006) Proteome survey reveals modularity of the yeast cell machinery. Nature, 440, 631-636.
    Hainzl, O., Wegele, H., Richter, K. and Buchner, J. (2004) Cns1 is an activator of the Ssa1 ATPase activity. J. Biol. Chem., 279, 23267-23273.
    Harrison, C.J., Hayer-Hartl, M., Di Liberto, M., Hartl, F. and Kuriyan, J. (1997) Crystal structure of the nucleotide exchange factor GrpE bound to the ATPase domain of the molecular chaperone DnaK. Science, 276, 431-435.
    Hartl, F.U. (1996) Molecular chaperones in cellular protein folding. Nature, 381, 571-579.
    Hillenmeyer, M.E., Fung, E., Wildenhain, J., Pierce, S.E., Hoon, S., Lee, W., Proctor, M., St Onge, R.P., Tyers, M., Koller, D., Altman, R.B., Davis, R.W., Nislow, C. and Giaever, G. (2008) The chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science, 320, 362-365.
    Ikebe, M. and Hartshorne, D.J. (1985) Proteolysis of smooth muscle myosin by Staphylococcus aureus protease: preparation of heavy meromyosin and subfragment 1 with intact 20 000-dalton light chains. Biochemistry, 24, 2380-2387.
    Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M. and Sakaki, Y. (2001) A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. U.S.A., 98, 4569-4574.
    Jiang, J., Prasad, K., Lafer, E.M. and Sousa, R. (2005) Structural basis of interdomain communication in the Hsc70 chaperone. Mol. Cell, 20, 513-524.
    Jonikas, M.C., Collins, S.R., Denic, V., Oh, E., Quan, E.M., Schmid, V., Weibezahn, J., Schwappach, B., Walter, P., Weissman, J.S. and Schuldiner, M. (2009) Comprehensive characterization of genes required for protein folding in the endoplasmic reticulum. Science, 323, 1693-1697.
    Kordes, E., Savelyeva, L., Schwab, M., Rommelaere, J., Jauniaux, J.C. and Cziepluch, C. (1998) Isolation and characterization of human SGT and identification of homologues in Saccharomyces cerevisiae and Caenorhabditis elegans. Genomics, 52, 90-94.
    Krogan, N.J., Cagney, G., Yu, H., Zhong, G., Guo, X., Ignatchenko, A., Li, J., Pu, S., Datta, N., Tikuisis, A.P., Punna, T., Peregrin-Alvarez, J.M., Shales, M., Zhang, X., Davey, M., Robinson, M.D., Paccanaro, A., Bray, J.E., Sheung, A., Beattie, B., Richards, D.P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M.M., Vlasblom, J., Wu, S., Orsi, C., Collins, S.R., Chandran, S., Haw, R., Rilstone, J.J., Gandi, K., Thompson, N.J., Musso, G., St Onge, P., Ghanny, S., Lam, M.H., Butland, G., Altaf-Ul, A.M., Kanaya, S., Shilatifard, A., O'Shea, E., Weissman, J.S., Ingles, C.J., Hughes, T.R., Parkinson, J., Gerstein, M., Wodak, S.J., Emili, A. and Greenblatt, J.F. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature, 440, 637-643.
    Laufen, T., Mayer, M.P., Beisel, C., Klostermeier, D., Mogk, A., Reinstein, J. and Bukau, B. (1999) Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proc. Natl. Acad. Sci. U. S. A., 96, 5452-5457.
    Liberek, K., Marszalek, J., Ang, D., Georgopoulos, C. and Zylicz, M. (1991a) Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK. Proc. Natl. Acad. Sci. U. S. A., 88, 2874-2878.
    Liberek, K., Skowyra, D., Zylicz, M., Johnson, C. and Georgopoulos, C. (1991b) The Escherichia coli DnaK chaperone, the 70-kDa heat shock protein eukaryotic equivalent, changes conformation upon ATP hydrolysis, thus triggering its dissociation from a bound target protein. J. Biol. Chem., 266, 14491-14496.
    Liou, S.T., Cheng, M.Y. and Wang, C. (2007) SGT2 and MDY2 interact with molecular chaperone YDJ1 in Saccharomyces cerevisiae. Cell Stress Chaperones, 12, 59-70.
    Liu, Q. and Hendrickson, W.A. (2007) Insight into Hsp70 Chaperone Activity from a Crystal Structure of the Yeast Hsp110 Sse1. Cell, 131, 106-120.
    Mayer, M.P., Schroder, H., Rudiger, S., Paal, K., Laufen, T. and Bukau, B. (2000) Multistep mechanism of substrate binding determines chaperone activity of Hsp70. Nat. Struct. Biol., 7, 586-593.
    McRee, D.E. (1999) XtalView/Xfit--A versatile program for manipulating atomic coordinates and electron density. J. Struct. Biol., 125, 156-165.
    Moro, F., Fernandez-Saiz, V. and Muga, A. (2006) The allosteric transition in DnaK probed by infrared difference spectroscopy. Concerted ATP-induced rearrangement of the substrate binding domain. Protein Sci., 15, 223-233.
    Murshudov, G.N., Vagin, A.A. and Dodson, E.J. (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr., 53, 240-255.
    Neupert, W. and Brunner, M. (2002) The protein import motor of mitochondria. Nat. Rev. Mol. Cell Biol., 3, 555-565.
    O'Brien, M.C., Flaherty, K.M. and McKay, D.B. (1996) Lysine 71 of the chaperone protein Hsc70 Is essential for ATP hydrolysis. J. Biol. Chem., 271, 15874-15878.
    Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol., 276, 307-326.
    Palleros, D.R., Reid, K.L., Shi, L. and Fink, A.L. (1993a) DnaK ATPase activity revisited. FEBS Lett, 336, 124-128.
    Palleros, D.R., Reid, K.L., Shi, L., Welch, W.J. and Fink, A.L. (1993b) ATP-induced protein-Hsp70 complex dissociation requires K+ but not ATP hydrolysis. Nature, 365, 664-666.
    Rabu, C., Schmid, V., Schwappach, B. and High, S. (2009) Biogenesis of tail-anchored proteins: the beginning for the end? J. Cell Sci., 122, 3605-3612.
    Rabu, C., Wipf, P., Brodsky, J.L. and High, S. (2008) A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum. J. Biol. Chem., 283, 27504-27513.
    Raviol, H., Sadlish, H., Rodriguez, F., Mayer, M.P. and Bukau, B. (2006) Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor. Embo J, 25, 2510-2518.
    Richarme, G. and Kohiyama, M. (1993) Specificity of the Escherichia coli chaperone DnaK (70-kDa heat shock protein) for hydrophobic amino acids. J. Biol. Chem., 268, 24074-24077.
    Rudiger, S., Buchberger, A. and Bukau, B. (1997a) Interaction of Hsp70 chaperones with substrates. Nat. Struct. Biol., 4, 342-349.
    Rudiger, S., Germeroth, L., Schneider-Mergener, J. and Bukau, B. (1997b) Substrate specificity of the DnaK chaperone determined by screening cellulose-bound peptide libraries. Embo J, 16, 1501-1507.
    Schmid, D., Baici, A., Gehring, H. and Christen, P. (1994) Kinetics of molecular chaperone action. Science, 263, 971-973.
    Schonfeld, H.J., Schmidt, D., Schroder, H. and Bukau, B. (1995) The DnaK chaperone system of Escherichia coli: quaternary structures and interactions of the DnaK and GrpE components. J Biol Chem, 270, 2183-2189.
    Schuldiner, M., Metz, J., Schmid, V., Denic, V., Rakwalska, M., Schmitt, H.D., Schwappach, B. and Weissman, J.S. (2008) The GET complex mediates insertion of tail-anchored proteins into the ER membrane. Cell, 134, 634-645.
    Shen, S., Tobery, C.E. and Rose, M.D. (2009) Prm3p is a pheromone-induced peripheral nuclear envelope protein required for yeast nuclear fusion. Mol. Biol. Cell., 20, 2438-2450.
    Sriram, M., Osipiuk, J., Freeman, B., Morimoto, R. and Joachimiak, A. (1997) Human Hsp70 molecular chaperone binds two calcium ions within the ATPase domain. Structure, 5, 403-414.
    Swain, J.F., Dinler, G., Sivendran, R., Montgomery, D.L., Stotz, M. and Gierasch, L.M. (2007) Hsp70 chaperone ligands control domain association via an allosteric mechanism mediated by the interdomain linker. Mol. Cell, 26, 27-39.
    Takenaka, I.M., Leung, S.M., McAndrew, S.J., Brown, J.P. and Hightower, L.E. (1995) Hsc70-binding peptides selected from a phage display peptide library that resemble organellar targeting sequences. J. Biol. Chem., 270, 19839-19844.
    Terwilliger, T.C. (2000) Maximum-likelihood density modification. Acta Crystallogr. D Biol. Crystallogr., 56, 965-972.
    Terwilliger, T.C. and Berendzen, J. (1999) Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr., 55, 849-861.
    Wegele, H., Haslbeck, M., Reinstein, J. and Buchner, J. (2003) Sti1 is a novel activator of the Ssa proteins. J. Biol. Chem., 278, 25970-25976.
    Wegele, H., Muller, L. and Buchner, J. (2004) Hsp70 and Hsp90--a relay team for protein folding. Rev. Physiol. Biochem. Pharmacol., 151, 1-44.
    Weiss, M.S. (2001) Global indicators of X-ray data quality. J. Appl. Crystallogr., 34, 130-135.
    Wilbanks, S.M., Chen, L., Tsuruta, H., Hodgson, K.O. and McKay, D.B. (1995) Solution small-angle X-ray scattering study of the molecular chaperone Hsc70 and its subfragments. Biochemistry, 34, 12095-12106.
    Winnefeld, M., Grewenig, A., Schnolzer, M., Spring, H., Knoch, T.A., Gan, E.C., Rommelaere, J. and Cziepluch, C. (2006) Human SGT interacts with Bag-6/Bat-3/Scythe and cells with reduced levels of either protein display persistence of few misaligned chromosomes and mitotic arrest. Exp. Cell Res., 312, 2500-2514.
    Young, J.C., Agashe, V.R., Siegers, K. and Hartl, F.U. (2004) Pathways of chaperone-mediated protein folding in the cytosol. Nat. Rev. Mol. Cell Biol., 5, 781-791.
    Young, J.C., Hoogenraad, N.J. and Hartl, F.U. (2003) Molecular chaperones Hsp90 and Hsp70 deliver preproteins to the mitochondrial import receptor Tom70. Cell, 112, 41-50.
    Yu, H., Braun, P., Yildirim, M.A., Lemmens, I., Venkatesan, K., Sahalie, J., Hirozane-Kishikawa, T., Gebreab, F., Li, N., Simonis, N., Hao, T., Rual, J.F., Dricot, A., Vazquez, A., Murray, R.R., Simon, C., Tardivo, L., Tam, S., Svrzikapa, N., Fan, C., de Smet, A.S., Motyl, A., Hudson, M.E., Park, J., Xin, X., Cusick, M.E., Moore, T., Boone, C., Snyder, M., Roth, F.P., Barabasi, A.L., Tavernier, J., Hill, D.E. and Vidal, M. (2008) High-quality binary protein interaction map of the yeast interactome network. Science, 322, 104-110.
    Zhu, X., Zhao, X., Burkholder, W.F., Gragerov, A., Ogata, C.M., Gottesman, M.E. and Hendrickson, W.A. (1996) Structural analysis of substrate binding by the molecular chaperone DnaK. Science, 272, 1606-1614.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE