簡易檢索 / 詳目顯示

研究生: 鍾郡哲
Chung, Chun Che
論文名稱: 利用邏輯蘊含技巧以最小化多數閘邏輯電路
Minimization of Majority Logic Circuits Using Logic Implications
指導教授: 王俊堯
Wang, Chun Yao
口試委員: 黃俊達
林榮彬
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊工程學系
Computer Science
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 21
中文關鍵詞: 多數邏輯節點合併邏輯合成邏輯優化
外文關鍵詞: majority logic, node merging, logic synthesis, logic optimization
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子點細胞元自動化 (Quamtum-dot Cellular Automata) 在奈米技術上已經成為一種新的設計範例。由於在量子點細胞元自動化上的運算邏輯為多數邏輯,近年來已有許多關於多數邏輯電路的合成和優化的研究。在本論文中,我們對於一個表達多數邏輯電路的表示法:多數反相圖,提出一個合併節點的優化方法以減少電路的面積。我們的方法不須使用可滿足性問題求解器,而是利用邏輯蘊含技巧辨識出合併的節點。我們利用EPFL之測試電路進行實驗,其結果顯示當我們的方法與最新的方法結合使用後,平均可以減少21%之節點個數。


    Quantum-dot Cellular Automata (QCA) has emerged as a new design paradigm for nanotechnologies. Since the operational logic in QCA is the majority logic, much research about the synthesis and optimization of majority logic has been proposed recently. In this thesis, we propose an optimization method by merging nodes in the Majority-Inverter-Graph, which is the representation of majority logic circuits. Instead of using satisfiability solvers, our approach can identify the node mergers by using logic implications for circuit size reduction. The experimental results show that for a set of EPFL benchmarks, our approach can minimize the node count by 21% when integrated with the state-of-the-art on average.

    中文摘要 i Abstract ii Acknowledgement iii Contents iv List of Tables v List of Figures vi 1 Introduction 1 2 Preliminaries 5 3 The Proposed Node Merging Approach 7 3.1 Example 7 3.2 Noncontrolling Pair 8 3.3 Logic Implications in Majority Logic 8 3.4 MA Computation 10 3.5 Overall Algorithm 13 4 Experimental Results 15 5 Conclusions 19

    [1] L. Amaru, P.-E. Gaillardon, and G. De. Micheli, “Majority Logic Representation and Satisfiability,” in Proc. International Workshop on Logic & Synthesis, 2014.
    [2] L. Amaru, P.-E. Gaillardon, and G. De. Micheli, “Majority-Inverter Graph: A Novel Data-Structure and Algorithm for Efficient Logic Optimization,” in Proc. Des. Autom. Conf., pp. 1-6, 2014.
    [3] L. Amaru, P.-E. Gaillardon, and G. De. Micheli, “Boolean Logic Optimization in Majority-Inverter Graphs,” in Proc. Des. Autom. Conf., pp. 1-6, 2015.
    [4] Y.-C. Chen and C.-Y. Wang, “Fast Detection of Node Mergers Using Logic Implications,” in Proc. Int. Conf. Conput.-Aided Des., pp. 785-788, 2009.
    [5] Y.-C. Chen and C.-Y. Wang, “Fast Node Merging with Don't Cares Using Logic Implications,” IEEE Trans. Comput.-Aided Design, vol. 29, no. 11, pp. 1827-1832, Nov. 2010.
    [6] Y.-M. Chou, Y.-C. Chen, C.-Y. Wang, and C.Y. Huang, “MajorSat: A SAT Solver to Majority Logic,” in Proc. Asia South Pacific Des. Autom. Conf., pp. 480-485, 2016.
    [7] H. A. Fahmy and R. A. Kiehl, “Complete Logic Family Using Tunneling-Phase-Logic Devices,” in Proc. Asia South Pacific Des. Autom. Conf., pp. 22-24, Nov. 1999.
    [8] L. Hellerman, “A Catalog of Three-Variable Or-Invert and And-Invert Logical Circuits,” IEEE Trans. Electron. Comput., vol. EC-12, no. 3, pp. 198-223, 1963.
    [9] T. Kirkland and M. R. Mercer, “A Topological Search Algorithm for ATPG,” in Proc. Des. Autom. Conf., pp. 502-508, 1987.
    [10] W. Kunz and D. K. Pradhan, “Recursive Learning: A New Implication Technique for Efficient Solutions to CAD Problems-Test, Verification, and Optimization,” IEEE Trans. Comput.-Aided Des., vol. 13, no. 9, pp. 1143-1158, Sep. 1994.
    [11] K. Kong, Y. Shang, and R. Lu, “An Optimized Majority Logic Synthesis Methodology for Quantum-Dot Cellular Automata,” IEEE Trans. on Nanotechnology, vol. 9, no. 2, pp. 170-183, Mar. 2010.
    [12] C. S. Lent, P. D. Tougaw, and W. Porod, “Bistable Saturation in Coupled Quantum Dots for Quantum Cellular Automata,” Applied Physics Letters, vol. 62, no.7, pp. 714-716, 1993.
    [13] C. S. Lent and P. D. Tougaw, “A Device Architecture for Computing with Quantum Dots,” in Proc. IEEE, vol. 85, no. 4, pp. 541-557, Apr. 1993.
    [14] S. M. Plaza, K.-H. Chang, I. L. Markov, and V. Bertacco, “Node Mergers in the Presence of Don't Cares,” in Proc. Asia South Pacific Des. Autom. Conf., pp. 414-419, 2007.
    [15] M. Soeken, L. Amaru, P.-E. Gaillardon, and G. De. Micheli, “Optimizing Majority-Inverter Graphs with Functional Hashing,” in Proc. Des., Autom. and Test in Europe, pp. 1030-1035, 2016.
    [16] J. Timler and C. S. Lent, “Power Gain and Dissipation in Quantum-Dot Cellular Automata,” Journal of Applied Physics, vol. 91, no. 2, pp. 823-831, 2002.
    [17] P. D. Tougaw and C. S. Lent, “Logical Devices Implemented Using Quantum Cellular Automata,” Journal of Applied Physics, vol. 75, no. 3, pp. 1818-1825, 1994.
    [18] M. Wilson, K. Kannangara, G. Smith, M. Simmons, and B. Raguse,
    Nanotechnology: Basic Science and Emerging Technologies, Chapman & Hall/CRC, 2002.
    [19] R. Zhang, P. Gupta, and N. K. Jha, “Majority and Minority Network Synthesis With Application to QCA-, SET-, and TPL-Based Nanotechnologies,” IEEE Trans. on Comput.-Aided Des., vol. 26, no. 7, pp. 1233-1245, July 2007.
    [20] R. Zhang, K. Walus, W. Wang, and G. A. Jullien, “A Method of Majority Logic Reduction for Quantum Cellular Automata,” IEEE Trans. on Nanotechnology, vol. 3, no. 4, pp. 443-450, Dec. 2004.
    [21] L. Zhuang, L. Guo, and S. Y. Chou, “Silicon Single-Electron QuantumDot Transistor Switch Operating at Room Temperature,” Applied Physics Letters, pp. 1205-1207, 1998.
    [22]
    http://lsi.epfl.ch/MIG

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE