研究生: |
何靜玟 Ho, Ching-Wen |
---|---|
論文名稱: |
針對岩藻糖水解酶及乙醯基胺葡萄糖水解酶建立具有強效且選擇性的抑制劑 Development of Potent and Selective Iminocyclitol Inhibitors for α-Fucosidase and Hexosaminidase |
指導教授: |
林俊宏
Lin, Chun-Hung |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 174 |
中文關鍵詞: | 岩藻糖水解酶 、乙醯基胺葡萄糖水解酶 、抑制劑 |
外文關鍵詞: | Fucosidase, Hexsaminidase, Inhibitor |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Glycosidases are enzymes that catalyze the cleavage of glycosidic bonds. Because of their roles in metabolism, protein post-translational modifications, cell-cell interactions, as well as in viral and bacterial infections, glycosidases have been the target of various therapeutic interventions. The development of glycosidase inhibitors has been useful for increasing knowledge of mechanistic details of their corresponding target enzymes and for probing the functions of specific glycoconjugates. This thesis describes a rapid method for discovering potent, selective inhibitors for □- fucosidase (Fuc) and N-acetyl-□-hexosaminidase (Hex). These inhibitors were either investigated for their binding interactions using X-ray crystallography, isothermal titration calorimetry, and pH profile analysis, or were evaluated at the cellular level to explore their potential for use in future applications. Chapter 1 describes the significance of, and presents background information on, glycosidases and their inhibitors.
We developed an efficient method for examining the activity and selectivity of various inhibitors on two □-fucosidases - one (TmF) from Thermotoga maritima and the other (HuF) from human in this study. A variety of fuconojirimycin (FNJ) derivatives with substitution at C1, C2, C6, or N were prepared in microplates and then screened without purification to assess their inhibitory activity levels on the two □-fucosidases. Among the FNJ derivatives tested, the majority of the C1-substituted FNJs were slow, tight-binding inhibitors of TmF, but acted as reversible inhibitors of HuF. The best C1-substituted inhibitor exhibited a 13,700-fold difference in affinity between the two □-fucosidases (Chapter 2).
We applied C1-substituted FNJ derivatives to distinguish between TmF and Corynebacterium fucosidase. The flexibility of the loop (TmF sequence 44-65) was found to be critically associated with inhibition potency (Chapter 3). Subsequently, to determine the dynamic motion of the Fuc/inhibitor that interact from low to high binding affinities, we obtained nine X-ray structures, consisting of TmF and FNJ derivative complexes. The structures had dissociation constant (Ki) values in the □M to pM range. The analysis of these complex structures identified several factors important in improving binding affinity. The low □M Ki level structures provided sufficient electrostatic and H-bond interactions for stabilization of loops 1 and 2, in the main control of Y64, D224 and E266. Further improvement of Ki from the nM to pM is attributed to the increase of hydrophobic interactions and entropy. The flexibility of the aglycone portion and the resulting hydrophobic and H-bond interactions likely contributed to further fine-tuning of affinities in the Ki pM range (Chapter 4).
Previous works have provided evidence of the uptake of L-fucose from gastric cancer cells to H. pylori. In that study, fucosidase activity was detected in the culture medium of H. pylori-infected gastric cancer cells. Here, for the purpose of rapid and efficient purification, the previously developed 1-aminomethyl-1-deoxy-FNJ was immobilized to agarose beads. The resulting affinity chromatography and subsequent liquid chromatography-tandem mass spectrometric analysis identified human □-L-fucosidases 2 as the key enzyme involved in the aforementioned L-fucose transfer (Chapter 5).
Finally, human Hex isozymes are considered important glycosidase targets for drug discovery because of their connection to osteoarthritis and lysosomal storage disorders. We developed GlcNAc-type iminocyclitols as potent and selective Hex inhibitors. The most potent inhibitor had a Ki of 0.69 nM against human Hex B and was 2.5□105 times more selective for Hex B than for a similar human enzyme, O-GlcNAcase. These glycosidase inhibitors were shown to modulate intracellular levels of glycolipids, including ganglioside-GM2 and asialoganglioside-GM2 (Chapter 6).
Reference
1. Laine, R. A. (1994) A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 x 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems, Glycobiology 4, 759-767.
2. Maton, A. J. H., Charles William McLaughlin, Susan Johnson, Maryanna Quon Warner, David LaHart, Jill D. Wright (1993) Human Biology and Health. , Englewood Cliffs, New Jersey, USA: Prentice Hall. .
3. Holgersson, J., Gustafsson, A., and Breimer, M. E. (2005) Characteristics of protein-carbohydrate interactions as a basis for developing novel carbohydrate-based antirejection therapies, Immunol Cell Biol 83, 694-708.
4. Sels, J. P., Nauta, J. J., Menheere, P. P., Wolffenbuttel, B. H., and Nieuwenhuijzen Kruseman, A. C. (1996) Miglitol (Bay m 1099) has no extraintestinal effects on glucose control in healthy volunteers, Br J Clin Pharmacol 42, 503-506.
5. Davies, G. J., Gloster, T. M., and Henrissat, B. (2005) Recent structural insights into the expanding world of carbohydrate-active enzymes, Curr Opin Struct Biol 15, 637-645.
6. Scott, L. J., and Spencer, C. M. (2000) Miglitol: a review of its therapeutic potential in type 2 diabetes mellitus, Drugs 59, 521-549.
7. Asano, N. (2003) Glycosidase inhibitors: update and perspectives on practical use, Glycobiology 13, 93R-104R.
8. Goss, P. E., Baker, M. A., Carver, J. P., and Dennis, J. W. (1995) Inhibitors of carbohydrate processing: A new class of anticancer agents, Clin Cancer Res 1, 935-944.
9. Parish, C. R., Freeman, C., and Hulett, M. D. (2001) Heparanase: a key enzyme involved in cell invasion, Biochim Biophys Acta 1471, M99-108.
10. Henrissat, B., and Davies, G. (1997) Structural and sequence-based classification of glycoside hydrolases, Curr Opin Struct Biol 7, 637-644.
11. Henrissat, B., Callebaut, I., Fabrega, S., Lehn, P., Mornon, J. P., and Davies, G. (1996) Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases, Proc Natl Acad Sci U S A 93, 5674.
12. Davies, G., and Henrissat, B. (1995) Structures and mechanisms of glycosyl hydrolases, Structure 3, 853-859.
13. Nagano, N., Porter, C. T., and Thornton, J. M. (2001) The (betaalpha)(8) glycosidases: sequence and structure analyses suggest distant evolutionary relationships, Protein Eng 14, 845-855.
14. Vasella, A., Davies, G. J., and Bohm, M. (2002) Glycosidase mechanisms, Curr Opin Chem Biol 6, 619-629.
15. White, A., and Rose, D. R. (1997) Mechanism of catalysis by retaining beta-glycosyl hydrolases, Curr Opin Struct Biol 7, 645-651.
16. Koshland, D. E. (1953) Jr, Biol. Rev. 28, 416–436.
17. Vocadlo, D. J., Davies, G. J., Laine, R., and Withers, S. G. (2001) Catalysis by hen egg-white lysozyme proceeds via a covalent intermediate, Nature 412, 835-838.
18. Greenwell, P. (1997) Blood group antigens: molecules seeking a function?, Glycoconj J 14, 159-173.
19. Delves, P. J. (1998) The role of glycosylation in autoimmune disease, Autoimmunity 27, 239-253.
20. Moloney, D. J., Shair, L. H., Lu, F. M., Xia, J., Locke, R., Matta, K. L., and Haltiwanger, R. S. (2000) Mammalian Notch1 Is Modified with Two Unusual Forms of O-Linked Glycosylation Found on Epidermal Growth Factor-like Modules, J. Biol. Chem. 275, 9604-9611.
21. Xiang, J., and Bernstein, I. A. (1992) Differentiative changes in fucosyltransferase activity in newborn rat epidermal cells, Biochem Biophys Res Commun 189, 27-32.
22. Hooper, L. V., and Gordon, J. I. (2001) Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity, Glycobiology 11, 1R-10.
23. Johnson, S. W., and Alhadeff, J. A. (1991) Mammalian alpha-L-fucosidases, Comp Biochem Physiol B 99, 479-488.
24. Staudacher, E., Altmann, F., Wilson, I. B., and Marz, L. (1999) Fucose in N-glycans: from plant to man, Biochim Biophys Acta 1473, 216-236.
25. Becker, D. J., and Lowe, J. B. (2003) Fucose: biosynthesis and biological function in mammals, Glycobiology 13, 41R-53.
26. John, B. L. (2002) Glycosylation in the control of selectin counter-receptor structure and function, Immunological Reviews 186, 19-36.
27. Sinowatz, F., Plendl, J., and Kolle, S. (1998) Protein-carbohydrate interactions during fertilization, Acta Anat (Basel) 161, 196-205.
28. Solter, D., and Knowles, B. B. (1978) Monoclonal antibody defining a stage-specific mouse embryonic antigen (SSEA-1), Proc Natl Acad Sci U S A 75, 5565-5569.
29. Hiraishi, K., Suzuki, K., Hakomori, S.-i., and Adachi, M. (1993) Ley antigen expression is correlated with apoptosis (programmed cell death), Glycobiology 3, 381-390.
30. Muramatsu, T. (1993) Carbohydrate signals in metastasis and prognosis of human carcinomas, Glycobiology 3, 291-296.
31. Wiese, T. J., Dunlap, J. A., and Yorek, M. A. (1997) Effect of L-fucose and D-glucose concentration on L-fucoprotein metabolism in human Hep G2 cells and changes in fucosyltransferase and alpha-L-fucosidase activity in liver of diabetic rats, Biochim Biophys Acta 1335, 61-72.
32. Willems, P. J., Gatti, R., Darby, J. K., Romeo, G., Durand, P., Dumon, J. E., and O'Brien, J. S. (1991) Fucosidosis revisited: a review of 77 patients, Am J Med Genet 38, 111-131.
33. Hutchinson, W. L., Johnson, P. J., Du, M. Q., and Williams, R. (1991) Serum and tissue alpha-L-fucosidase activity in the pre-clinical and clinical stages of hepatocellular carcinoma, Clin Sci (Lond) 81, 177-182.
34. Cash, H. L., Whitham, C. V., Behrendt, C. L., and Hooper, L. V. (2006) Symbiotic Bacteria Direct Expression of an Intestinal Bactericidal Lectin, Science 313, 1126-1130.
35. Lowe, J. B. (2003) Glycan-dependent leukocyte adhesion and recruitment in inflammation, Current Opinion in Cell Biology 15, 531-538.
36. Hooper, L. V., and Gordon, J. I. (2001) Commensal Host-Bacterial Relationships in the Gut, Science 292, 1115-1118.
37. Finne, J., Breimer, M. E., Hansson, G. C., Karlsson, K. A., Leffler, H., Vliegenthart, J. F., and van Halbeek, H. (1989) Novel polyfucosylated N-linked glycopeptides with blood group A, H, X, and Y determinants from human small intestinal epithelial cells, J Biol Chem 264, 5720-5735.
38. Bry, L., Falk, P. G., Midtvedt, T., and Gordon, J. I. (1996) A model of host-microbial interactions in an open mammalian ecosystem, Science 273, 1380-1383.
39. Hooper, L. V., Xu, J., Falk, P. G., Midtvedt, T., and Gordon, J. I. (1999) A molecular sensor that allows a gut commensal to control its nutrient foundation in a competitive ecosystem, Proc Natl Acad Sci U S A 96, 9833-9838.
40. Sulzenbacher, G., Bignon, C., Nishimura, T., Tarling, C. A., Withers, S. G., Henrissat, B., and Bourne, Y. (2004) Crystal structure of Thermotoga maritima alpha-L-fucosidase. Insights into the catalytic mechanism and the molecular basis for fucosidosis, J. Biol. Chem. 279, 13119-13128.
41. Varrot, A., Schulein, M., and Davies, G. J. (1999) Structural Changes of the Active Site Tunnel of Humicola insolens Cellobiohydrolase, Cel6A, upon Oligosaccharide Binding†,‡, Biochemistry 38, 8884-8891.
42. Varrot, A., Sch¸lein, M., and Davies, G. J. (2000) Insights into ligand-induced conformational change in Cel5A from Bacillus agaradhaerens revealed by a catalytically active crystal form, Journal of Molecular Biology 297, 819-828.
43. Tarling, C. A., He, S., Sulzenbacher, G., Bignon, C., Bourne, Y., Henrissat, B., and Withers, S. G. (2003) Identification of the catalytic nucleophile of the family 29 alpha-L-fucosidase from Thermotoga maritima through trapping of a covalent glycosyl-enzyme intermediate and mutagenesis, J Biol Chem 278, 47394-47399.
44. Sulzenbacher, G., Bignon, C., Nishimura, T., Tarling, C. A., Withers, S. G., Henrissat, B., and Bourne, Y. (2004) Crystal structure of Thermotoga maritima alpha-L-fucosidase. Insights into the catalytic mechanism and the molecular basis for fucosidosis, J Biol Chem 279, 13119-13128.
45. Watanabe, K. (1936) BIOCHEMICAL STUDIES ON CARBOHYDRATES: XXII. On Animal ß-N-Monoacetylglucosaminidase. Preliminary Report, J. Biochem. 24, 297-303.
46. Winchester, B. G. (1996) Lysosomal metabolism of glycoconjugates, Subcell. Biochem. 27, 191-238.
47. Hou, Y., Tse, R., and Mahuran, D. J. (1996) Direct determination of the substrate specificity of the alpha-active site in heterodimeric beta-hexosaminidase A, Biochemistry 35, 3963-3969.
48. Mahuran, D., and Lowden, J. A. (1980) The subunit and polypeptide structure of hexosaminidases from human placenta, Can. J. Biochem. 58, 287-294.
49. Meier, E. M., Schwarzmann, G., Furst, W., and Sandhoff, K. (1991) The human GM2 activator protein. A substrate specific cofactor of beta-hexosaminidase A, J. Biol. Chem. 266, 1879-1887.
50. Mahuran, D. J. (1999) Biochemical consequences of mutations causing the GM2 gangliosidoses, Biochim. Biophys. Acta. 1455, 105-138.
51. Tay, W. (1881) Symmetrical changes in the region of the yellow spot in each eye of an infant, Transactions of the Ophthalmological Society 1, 55–57.
52. Gravel, R. A., Clarke, J. T. R., Kaback, M. M., Mahuran, D., Sandoff, K. & Suzuki, K. (1995) In The Metabolic and Molecular Basis of Inherited Diseases, in The GM2 gangliosidoses, pp 2839-2879, New York, McGraw-Hill.
53. Inerot, S., Heinegard, D., Audell, L., and Olsson, S. E. (1978) Articular-cartilage proteoglycans in aging and osteoarthritis, Biochem J 169, 143-156.
54. Mankin, H. J., and Lippiello, L. (1970) Biochemical and metabolic abnormalities in articular cartilage from osteo-arthritic human hips, J Bone Joint Surg Am 52, 424-434.
55. Mark, B. L., Mahuran, D. J., Cherney, M. M., Zhao, D., Knapp, S., and James, M. N. (2003) Crystal structure of human beta-hexosaminidase B: understanding the molecular basis of Sandhoff and Tay-Sachs disease, J. Mol. Biol. 327, 1093-1109.
56. Lemieux, M. J., Mark, B. L., Cherney, M. M., Withers, S. G., Mahuran, D. J., and James, M. N. (2006) Crystallographic structure of human beta-hexosaminidase A: interpretation of Tay-Sachs mutations and loss of GM2 ganglioside hydrolysis, J Mol Biol 359, 913-929.
57. Tropak, M. B., Reid, S. P., Guiral, M., Withers, S. G., and Mahuran, D. (2004) Pharmacological enhancement of beta-hexosaminidase activity in fibroblasts from adult Tay-Sachs and Sandhoff Patients, J. Biol. Chem. 279, 13478-13487.
58. Mark, B. L., Wasney, G. A., Salo, T. J., Khan, A. R., Cao, Z., Robbins, P. W., James, M. N., and Triggs-Raine, B. L. (1998) Structural and functional characterization of Streptomyces plicatus beta-N-acetylhexosaminidase by comparative molecular modeling and site-directed mutagenesis, J. Biol. Chem. 273, 19618-19624.
59. Tews, I., Perrakis, A., Oppenheim, A., Dauter, Z., Wilson, K. S., and Vorgias, C. E. (1996) Bacterial chitobiase structure provides insight into catalytic mechanism and the basis of Tay-Sachs disease, Nat Struct Biol 3, 638-648.
60. Williams, S. J., Mark, B. L., Vocadlo, D. J., James, M. N. G., and Withers, S. G. (2002) Aspartate 313 in the Streptomyces plicatus Hexosaminidase Plays a Critical Role in Substrate-assisted Catalysis by Orienting the 2-Acetamido Group and Stabilizing the Transition State, J. Biol. Chem. 277, 40055-40065.
61. Torres, C. R., and Hart, G. W. (1984) Topography and polypeptide distribution of terminal N-acetylglucosamine residues on the surfaces of intact lymphocytes. Evidence for O-linked GlcNAc, J. Biol. Chem. 259, 3308-3317.
62. Wells, L., Vosseller, K., and Hart, G. W. (2001) Glycosylation of Nucleocytoplasmic Proteins: Signal Transduction and O-GlcNAc, Science 291, 2376-2378.
63. Hanover, J. A. (2001) Glycan-dependent signaling: O-linked N-acetylglucosamine, FASEB J. 15, 1865-1876.
64. Bullen, C., Rubenstein, L., Saravia, M. E., and Mourino, A. P. (1988) Improving children's oral hygiene through parental involvement, ASDC J Dent Child 55, 125-128.
65. Kelly, W. G., Dahmus, M. E., and Hart, G. W. (1993) RNA polymerase II is a glycoprotein. Modification of the COOH-terminal domain by O-GlcNAc, J. Biol. Chem. 268, 10416-10424.
66. Roos, M. D., Su, K., Baker, J. R., and Kudlow, J. E. (1997) O glycosylation of an Sp1-derived peptide blocks known Sp1 protein interactions, Mol. Cell. Biol. 17, 6472-6480.
67. Lamarre-Vincent, N., and Hsieh-Wilson, L. C. (2003) Dynamic Glycosylation of the Transcription Factor CREB: A Potential Role in Gene Regulation, Journal of the American Chemical Society 125, 6612-6613.
68. Zhang, F., Su, K., Yang, X., Bowe, D. B., Paterson, A. J., and Kudlow, J. E. (2003) O-GlcNAc Modification Is an Endogenous Inhibitor of the Proteasome, 115, 715-725.
69. Vosseller, K., Wells, L., Lane, M. D., and Hart, G. W. (2002) Elevated nucleocytoplasmic glycosylation by O-GlcNAc results in insulin resistance associated with defects in Akt activation in 3T3-L1 adipocytes, Proc Natl Acad Sci U S A 99, 5313-5318.
70. McClain, D. A., Lubas, W. A., Cooksey, R. C., Hazel, M., Parker, G. J., Love, D. C., and Hanover, J. A. (2002) Altered glycan-dependent signaling induces insulin resistance and hyperleptinemia, Proc Natl Acad Sci U S A 99, 10695-10699.
71. Griffith, L. S., and Schmitz, B. (1995) O-Linked N-Acetylglucosamine Is Upregulated in Alzheimer Brains, Biochemical and Biophysical Research Communications 213, 424-431.
72. Yao, P. J., and Coleman, P. D. (1998) Reduction of O-Linked N-Acetylglucosamine-Modified Assembly Protein-3 in Alzheimer's Disease, J. Neurosci. 18, 2399-2411.
73. Liu, F., Iqbal, K., Grundke-Iqbal, I., Hart, G. W., and Gong, C. X. (2004) O-GlcNAcylation regulates phosphorylation of tau: a mechanism involved in Alzheimer's disease, Proc Natl Acad Sci U S A 101, 10804-10809.
74. Chou, T. Y., and Hart, G. W. (2001) O-linked N-acetylglucosamine and cancer: messages from the glycosylation of c-Myc, Adv Exp Med Biol 491, 413-418.
75. Suzuki, Y., Ichinomiya, S., Kurosawa, M., Ohkubo, M., Watanabe, H., Iwasaki, H., Matsuda, J., Noguchi, Y., Takimoto, K., Itoh, M., Tabe, M., Iida, M., Kubo, T., Ogawa, S., Nanba, E., Higaki, K., Ohno, K., and Brady, R. O. (2007) Chemical chaperone therapy: clinical effect in murine G(M1)-gangliosidosis, Ann Neurol 62, 671-675.
76. Sawkar, A. R., Cheng, W. C., Beutler, E., Wong, C. H., Balch, W. E., and Kelly, J. W. (2002) Chemical chaperones increase the cellular activity of N370S beta -glucosidase: a therapeutic strategy for Gaucher disease, Proc Natl Acad Sci U S A 99, 15428-15433.
77. Yam, G. H., Bosshard, N., Zuber, C., Steinmann, B., and Roth, J. (2006) Pharmacological chaperone corrects lysosomal storage in Fabry disease caused by trafficking-incompetent variants, Am J Physiol Cell Physiol 290, C1076-1082.
78. Krentz, A. J., and Bailey, C. J. (2005) Oral antidiabetic agents: current role in type 2 diabetes mellitus, Drugs 65, 385-411.
79. Goke, B., and Herrmann-Rinke, C. (1998) The evolving role of alpha-glucosidase inhibitors, Diabetes Metab Rev 14 Suppl 1, S31-38.
80. Mehta, A., Zitzmann, N., Rudd, P. M., Block, T. M., and Dwek, R. A. (1998) Alpha-glucosidase inhibitors as potential broad based anti-viral agents, FEBS Lett 430, 17-22.
81. Zhang, J., and Xu, W. (2006) Recent advances in anti-influenza agents with neuraminidase as target, Mini Rev Med Chem 6, 429-448.
82. Papandreou, M. J., Barbouche, R., Guieu, R., Kieny, M. P., and Fenouillet, E. (2002) The alpha-glucosidase inhibitor 1-deoxynojirimycin blocks human immunodeficiency virus envelope glycoprotein-mediated membrane fusion at the CXCR4 binding step, Mol Pharmacol 61, 186-193.
83. Block, T. M., Lu, X., Platt, F. M., Foster, G. R., Gerlich, W. H., Blumberg, B. S., and Dwek, R. A. (1994) Secretion of human hepatitis B virus is inhibited by the imino sugar N-butyldeoxynojirimycin, Proc Natl Acad Sci U S A 91, 2235-2239.
84. Mehta, A., Carrouee, S., Conyers, B., Jordan, R., Butters, T., Dwek, R. A., and Block, T. M. (2001) Inhibition of hepatitis B virus DNA replication by imino sugars without the inhibition of the DNA polymerase: therapeutic implications, Hepatology 33, 1488-1495.
85. Durantel, D., Branza-Nichita, N., Carrouee-Durantel, S., Butters, T. D., Dwek, R. A., and Zitzmann, N. (2001) Study of the mechanism of antiviral action of iminosugar derivatives against bovine viral diarrhea virus, J Virol 75, 8987-8998.
86. Cox, T., Lachmann, R., Hollak, C., Aerts, J., van Weely, S., Hrebicek, M., Platt, F., Butters, T., Dwek, R., Moyses, C., Gow, I., Elstein, D., and Zimran, A. (2000) Novel oral treatment of Gaucher's disease with N-butyldeoxynojirimycin (OGT 918) to decrease substrate biosynthesis, Lancet 355, 1481-1485.
87. Dwek, R. A., Butters, T. D., Platt, F. M., and Zitzmann, N. (2002) Targeting glycosylation as a therapeutic approach, Nat Rev Drug Discov 1, 65-75.
88. Katsilambros, N., Philippides, P., Toskas, A., Protopapas, J., Frangaki, D., Marangos, M., Siskoudis, P., Anastasopoulou, K., Xefteri, H., and Hillebrand, I. (1986) A double-blind study on the efficacy and tolerance of a new alpha-glucosidase inhibitor in type-2 diabetics, Arzneimittelforschung 36, 1136-1138.
89. Mitrakou, A., Tountas, N., Raptis, A. E., Bauer, R. J., Schulz, H., and Raptis, S. A. (1998) Long-term effectiveness of a new alpha-glucosidase inhibitor (BAY m1099-miglitol) in insulin-treated type 2 diabetes mellitus, Diabet Med 15, 657-660.
90. van Giersbergen, P. L. M., and Dingemanse, J. (2007) Influence of Food Intake on the Pharmacokinetics of Miglustat, an Inhibitor of Glucosylceramide Synthase, J Clin Pharmacol 47, 1277-1282.
91. Hayden, F. G., Treanor, J. J., Betts, R. F., Lobo, M., Esinhart, J. D., and Hussey, E. K. (1996) Safety and efficacy of the neuraminidase inhibitor GG167 in experimental human influenza, JAMA 275, 295-299.
92. Kim, C. U., Lew, W., Williams, M. A., Liu, H., Zhang, L., Swaminathan, S., Bischofberger, N., Chen, M. S., Mendel, D. B., Tai, C. Y., Laver, W. G., and Stevens, R. C. (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity, J Am Chem Soc 119, 681-690.
93. Hayden, F. G., Atmar, R. L., Schilling, M., Johnson, C., Poretz, D., Paar, D., Huson, L., Ward, P., and Mills, R. G. (1999) Use of the selective oral neuraminidase inhibitor oseltamivir to prevent influenza, N Engl J Med 341, 1336-1343.
94. Lew, W., Chen, X., and Kim, C. U. (2000) Discovery and development of GS 4104 (oseltamivir): an orally active influenza neuraminidase inhibitor, Curr Med Chem 7, 663-672.
95. Pandey, G., Kapur, M., Khan, M. I., and Gaikwad, S. M. (2003) A new access to polyhydroxy piperidines of the azasugar class: synthesis and glycosidase inhibition studies, Org Biomol Chem 1, 3321-3326.
96. Stutz, A. E. (1999) Iminosugars as Glycosidase Inhibitors-Nojirimycin and Beyond, Wiley-VCH, Weinheim.
97. Ishida, N., Kumagai, K., Niida, T., Hamamoto, K., and Shomura, T. (1967) Nojirimycin, a new antibiotic. I. Taxonomy and fermentation, J Antibiot (Tokyo) 20, 62-65.
98. Ishida, N., Kumagai, K., Niida, T., Tsuruoka, T., and Yumoto, H. (1967) Nojirimycin, a new antibiotic. II. Isolation, characterization and biological activity, J Antibiot (Tokyo) 20, 66-71.
99. Inouye, S., Tsuruoka, T., Ito, T., and Niida, T. (1968) Structure and synthesis of nojirimycin, Tetrahedron 24, 2125-2144.
100. Varrot, A., Tarling, C. A., Macdonald, J. M., Stick, R. V., Zechel, D. L., Withers, S. G., and Davies, G. J. (2003) Direct Observation of the Protonation State of an Imino Sugar Glycosidase Inhibitor upon Binding, Journal of the American Chemical Society 125, 7496-7497.
101. Zechel, D. L., Boraston, A. B., Gloster, T., Boraston, C. M., Macdonald, J. M., Tilbrook, D. M. G., Stick, R. V., and Davies, G. J. (2003) Iminosugar Glycosidase Inhibitors: Structural and Thermodynamic Dissection of the Binding of Isofagomine and 1-Deoxynojirimycin to β-Glucosidases, Journal of the American Chemical Society 125, 14313-14323.
102. Gloster, T. M., Williams, S. J., Roberts, S., Tarling, C. A., Wicki, J., Withers, S. G., and Davies, G. J. (2004) Atomic resolution analyses of the binding of xylobiose-derived deoxynojirimycin and isofagomine to xylanase Xyn10A, Chemical Communications, 1794-1795.
103. Winchester, B. (1984) Role of alpha-D-mannosidases in the biosynthesis and catabolism of glycoproteins, Biochem Soc Trans 12, 522-524.
104. Bischoff, J., and Kornfeld, R. (1984) The effect of 1-deoxymannojirimycin on rat liver alpha-mannosidases, Biochem Biophys Res Commun 125, 324-331.
105. Winchester, B., Barker, C., Baines, S., Jacob, G. S., Namgoong, S. K., and Fleet, G. (1990) Inhibition of alpha-L-fucosidase by derivatives of deoxyfuconojirimycin and deoxymannojirimycin, Biochem J 265, 277-282.
106. Dubernet, M., Defoin, A., and Tarnus, C. (2006) Asymmetric synthesis of the l-fuco-nojirimycin, a nanomolar [alpha]-l-fucosidase inhibitor, Bioorganic & Medicinal Chemistry Letters 16, 1172-1174.
107. Athanassios, G. (1994) The Sialyl Lewis<SUP><FONT SIZE='-1'>x</FONT></SUP> Group and its Analogues as Ligands for Selectins: Chemoenzymatic Syntheses and Biological Functions, Angewandte Chemie International Edition in English 33, 178-180.
108. Fleet, G. W. J., Shaw, A.N., Evans, S.V., Fellows, L.E. . (1985) Synthesis from d-glucose of 1,5-dideoxy-1,5-imino- l-fucitol, a potent α- l-fucosidase inhibitor, . Chem. Soc. Chem. Commun., 841-842.
109. Hans, P., Michael, M., Bruno, O., Rolf, N., and Werner, R. (1990) Monosaccharide mit Stickstoff im Ring, XXXIX. Synthese von modifizierten alpha-<FONT SIZE='-2'>L</FONT>-Fucosidase-Inhibitoren, die 1,5-Didesoxy-1,5-imino-<FONT SIZE='-2'>L</FONT>-fucit als Basisstruktur enthalten, Liebigs Annalen der Chemie 1990, 953-963.
110. Takayama, S., Martin, R., Wu, J., Laslo, K., Siuzdak, G., and Wong, C.-H. (1997) Chemoenzymatic Preparation of Novel Cyclic Imine Sugars and Rapid Biological Activity Evaluation Using Electrospray Mass Spectrometry and Kinetic Analysis, Journal of the American Chemical Society 119, 8146-8151.
111. M. Joubert, A. D., C. Tarnus and J. Streith, . (2000) Synthesis of potent α-D-mannosidase and α-L-fucosidase inhibitors: 4-Amino-4-deoxy-D-erythrose and 4-amino-4,5-dideoxy-L-lyxose, Synlett 1366.
112. Wong, C.-H., Provencher, L., Porco, J. A., Jung, S.-H., Wang, Y.-F., Chen, L., Wang, R., and Steensma, D. H. (2002) Synthesis and Evaluation of Homoaza Sugars as Glycosidase Inhibitors, The Journal of Organic Chemistry 60, 1492-1501.
113. Chevrier, C., LeNouen, D., Neuburger, M., Defoin, A., and Tarnus, C. (2004) Nitrone in l-lyxose series: cycloaddition way for the synthesis of new C-[alpha]-fucosides, Tetrahedron Letters 45, 5363-5366.
114. Macauley, M. S., Whitworth, G. E., Debowski, A. W., Chin, D., and Vocadlo, D. J. (2005) O-GlcNAcase uses substrate-assisted catalysis: kinetic analysis and development of highly selective mechanism-inspired inhibitors, J. Biol. Chem. 280, 25313-25322.
115. Junod, A., Lambert, A. E., Orci, L., Pictet, R., Gonet, A. E., and Renold, A. E. (1967) Studies of the diabetogenic action of streptozotocin, Proc Soc Exp Biol Med 126, 201-205.
116. Bennett, R. A., and Pegg, A. E. (1981) Alkylation of DNA in Rat Tissues following Administration of Streptozotocin, Cancer Res 41, 2786-2790.
117. Kroncke, K. D., Fehsel, K., Sommer, A., Rodriguez, M. L., and Kolb-Bachofen, V. (1995) Nitric oxide generation during cellular metabolization of the diabetogenic N-methyl-N-nitroso-urea streptozotozin contributes to islet cell DNA damage, Biol Chem Hoppe Seyler 376, 179-185.
118. Dong, D. L., and Hart, G. W. (1994) Purification and characterization of an O-GlcNAc selective N-acetyl- beta-D-glucosaminidase from rat spleen cytosol, J. Biol. Chem. 269, 19321-19330.
119. Haltiwanger, R. S., Grove, K., and Philipsberg, G. A. (1998) Modulation of O-Linked N-Acetylglucosamine Levels on Nuclear and Cytoplasmic Proteins in Vivo Using the Peptide O-GlcNAc-beta -N-acetylglucosaminidase Inhibitor O-(2-Acetamido-2-deoxy-Dglucopyranosylidene)amino-N-phenylcarbamate, J. Biol. Chem. 273, 3611-3617.
120. Dorfmueller, H. C., Borodkin, V. S., Schimpl, M., Shepherd, S. M., Shpiro, N. A., and van Aalten, D. M. (2006) GlcNAcstatin: a picomolar, selective O-GlcNAcase inhibitor that modulates intracellular O-glcNAcylation levels, J. Am. Chem. Soc. 128, 16484-16485.
121. Shanmugasundaram, B., Debowski, A. W., Dennis, R. J., Davies, G. J., Vocadlo, D. J., and Vasella, A. (2006) Inhibition of O-GlcNAcase by a gluco-configured nagstatin and a PUGNAc-imidazole hybrid inhibitor, Chem. Commun. (Camb), 4372-4374.
122. Stubbs, K. A., Zhang, N., and Vocadlo, D. J. (2006) A divergent synthesis of 2-acyl derivatives of PUGNAc yields selective inhibitors of O-GlcNAcase, Org Biomol Chem 4, 839-845.
123. Stubbs, K. A., Macauley, M. S., Vocadlo, D.J. (2009) A selective inhibitor Gal-PUGNAc of human lysosomal beta-Hexosaminidases modulates levels of the ganglioside GM2 in neuroblastoma cells, Angew. Chem. Int. Ed. 48, 1300-1303.
124. Rountree, J. S., Butters, T. D., Wormald, M. R., Boomkamp, S. D., Dwek, R. A., Asano, N, Ikeda, K., Evinson, E. L., Nash, R. J., Fleet, G. W. (2009) Design, synthesis, and biological evaluation of enantiomeric beta-N-Acetylhexosaminidase inhibitors LABNAc and DABNAc as potential agents against Tay-Sachs and Sandhoff disease, ChemMedChem 4, 378-392.
125. Liu, J., Shikhman, A. R., Lotz, M. K., and Wong, C. H. (2001) Hexosaminidase inhibitors as new drug candidates for the therapy of osteoarthritis, Chem. Biol. 8, 701-711.
126. Usuki, H., Toyo-oka, M., Kanzaki, H., Okuda, T., and Nitoda, T. (2009) Pochonicine, a polyhydroxylated pyrrolizidine alkaloid from fungus Pochonia suchlasporia var. suchlasporia TAMA 87 as a potent [beta]-N-acetylglucosaminidase inhibitor, Bioorganic & Medicinal Chemistry 17, 7248-7253.
127. Dorfmueller, H. C., Borodkin, V. S., Schimpl, M., and van Aalten, D. M. F. (2009) GlcNAcstatins are nanomolar inhibitors of human O-GlcNAcase inducing cellular hyper-O-GlcNAcylation, Biochem. J. 420, 221-227.
128. Steiner, A. J., Schitter, G., St¸tz, A. E., Wrodnigg, T. M., Tarling, C. A., Withers, S. G., Mahuran, D. J., and Tropak, M. B. (2009) 2-Acetamino-1,2-dideoxynojirimycin--lysine hybrids as hexosaminidase inhibitors, Tetrahedron: Asymmetry 20, 832-835.
129. Celia, C. K., Hilal Maradit, K., David, J. V., O'Fallon, W. M., Rosa, L. C., and Sherine, E. G. (2003) The Cost-Effectiveness of Acetaminophen, NSAIDs, and Selective COX-2 Inhibitors in the Treatment of Symptomatic Knee Osteoarthritis, Value in Health 6, 144-157.
130. Collins, P. J., Haire, L. F., Lin, Y. P., Liu, J., Russell, R. J., Walker, P. A., Skehel, J. J., Martin, S. R., Hay, A. J., and Gamblin, S. J. (2008) Crystal structures of oseltamivir-resistant influenza virus neuraminidase mutants, Nature 453, 1258-1261.
131. Russell, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., Hay, A. J., Gamblin, S. J., and Skehel, J. J. (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design, Nature 443, 45-49.
132. Dennis, R. J., Taylor, E. J., Macauley, M. S., Stubbs, K. A., Turkenburg, J. P., Hart, S. J., Black, G. N., Vocadlo, D. J., and Davies, G. J. (2006) Structure and mechanism of a bacterial beta-glucosaminidase having O-GlcNAcase activity, Nat. Struct. Mol. Biol. 13, 365-371.