研究生: |
劉俊男 Liu, Jun-Nan |
---|---|
論文名稱: |
以二維二硒化鎢中間層鈍化銅銦鎵硒薄膜太陽能電池之背接觸介面 Back Contact Passivation in Cu(In,Ga)Se2 Thin Film Solar Cell by Inserting 2D-WSe2 |
指導教授: |
賴志煌
Lai, Chih-Huang |
口試委員: |
林姿瑩
Lin, Tzu-Ying 沈昌宏 Shen, Chang-Hong |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2022 |
畢業學年度: | 110 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 銅銦鎵硒太陽能電池 、背電極 、二維材料 、二硒化鎢 、鎵梯度 |
外文關鍵詞: | Cu(In,Ga)Se2 Thin Film Solar Cell, back contact, two dimensional material, WSe2, gallium gradient |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來隨著替代能源的迫切需求與太空工業的蓬勃發展,太陽光電的前景備受注目,銅銦鎵硒(CIGS)薄膜太陽能電池具有輕薄、可商業化製程和高效率等優勢,因此本研究從CIGS太陽能電池之背接觸介面切入,成功以電漿輔助硒化製備出具有c軸水平於表面之優選晶向的WSe2中間層,藉著WSe2這種二維材料所具備的膜層內高導電度的特性改善背接觸介面的載子傳輸行為,此外WSe2亦擁有較高導帶的能帶結構,促使流向背電極端的電子被反彈以減少載子複合。另一方面,這種特殊的優選晶向在材料微結構上扮演重要腳色,促使鎵原子嵌入WSe2中間層之間,並引起WSe2電子結構改變,從而優化背接觸介面能帶結構與調控吸收層鎵梯度,綜合以上效應可以將Jsc提升至38 mA/cm2,效率上也從12.5%增進到14.3%。
Recently, with the increasing demands of green energy and space industry, solar energy attracted much attention. Copper indium gallium selenide (CIGS) thin film solar cells have the advantages, such as commercial process, lower material usage and higher conversion efficiency with tunable band structure. Thus, in the prospective of back contact in CIGS solar cells, we successfully prepared WSe2 interfacial layer with specific orientation of c-axis parallel to the surface through plasma-enhanced selenization process. WSe2, a kind of two dimensional materials, has better conductivity in in-plane direction. We expected the special characteristic may improve the carrier transportation at back contact. In addition, with higher conduction band minimum in band structure of WSe2, the electrons flowed toward back contact may be blocked, so recombination rate will be reduced. On the other hands, the special preferred orientation play a important role on tuning the gallium gradient in absorber layer. Combining above effect, Jsc value is significantly improved to 38 mA/cm2, and the efficiency is increased from 12.5% to 14.3%.
1. Sah, C.-T., R.N. Noyce, and W. Shockley, Carrier generation and recombination in pn junctions and pn junction characteristics. Proceedings of the IRE, 1957. 45(9): p. 1228-1243.
2. ; Available from: https://www.pveducation.org/pvcdrom/solar-cell-operation/iv-curve.
3. Chirilă, A., et al., Potassium-induced surface modification of Cu (In, Ga) Se2 thin films for high-efficiency solar cells. Nature materials, 2013. 12(12): p. 1107-1111.
4. Salomé, P., et al., Mo bilayer for thin film photovoltaics revisited. Journal of Physics D: Applied Physics, 2010. 43(34): p. 345501.
5. Contreras, M.A., et al., ACCELERATED PUBLICATION: Diode characteristics in state‐of‐the‐art ZnO/CdS/Cu (In1− xGax) Se2 solar cells. Progress in photovoltaics: Research and Applications, 2005. 13(3): p. 209-216.
6. Lundberg, O., M. Edoff, and L. Stolt, The effect of Ga-grading in CIGS thin film solar cells. Thin Solid Films, 2005. 480: p. 520-525.
7. Lavrenko, T., T. Ott, and T. Walter, Impact of sulfur and gallium gradients on the performance of thin film Cu (In, Ga)(Se, S) 2 solar cells. Thin Solid Films, 2015. 582: p. 51-55.
8. Kato, T., Cu (In, Ga)(Se, S) 2 solar cell research in Solar Frontier: Progress and current status. Japanese Journal of Applied Physics, 2017. 56(4S): p. 04CA02.
9. Shay, J., S. Wagner, and H. Kasper, Efficient CuInSe2/CdS solar cells. Applied Physics Letters, 1975. 27(2): p. 89-90.
10. Gabor, A.M., et al., High‐efficiency CuIn x Ga1− x Se2 solar cells made from (In x, Ga1− x) 2Se3 precursor films. Applied physics letters, 1994. 65(2): p. 198-200.
11. Kamada, R., et al. New world record Cu (In, Ga)(Se, S) 2 thin film solar cell efficiency beyond 22%. in 2016 IEEE 43rd Photovoltaic Specialists Conference (PVSC). 2016. IEEE.
12. Jackson, P., et al., Effects of heavy alkali elements in Cu (In, Ga) Se2 solar cells with efficiencies up to 22.6%. physica status solidi (RRL)–Rapid Research Letters, 2016. 10(8): p. 583-586.
13. Repins, I., et al., 19· 9%‐efficient ZnO/CdS/CuInGaSe2 solar cell with 81· 2% fill factor. Progress in Photovoltaics: Research and applications, 2008. 16(3): p. 235-239.
14. Romeo, A., et al., Development of thin‐film Cu (In, Ga) Se2 and CdTe solar cells. Progress in Photovoltaics: Research and Applications, 2004. 12(2‐3): p. 93-111.
15. Kapur, V., U. Choudary, and A.K. Chu, Process of forming a compound semiconductive material. 1986.
16. Witte, W., et al., Gallium gradients in Cu (In, Ga) Se2 thin‐film solar cells. Progress in Photovoltaics: Research and Applications, 2015. 23(6): p. 717-733.
17. Wang, Y.-H., et al., Surface Sulfurization of Cu (In, Ga) Se2 Solar Cells by Cosputtering In2S3 in the One-Step Sputtering Process. ACS Applied Energy Materials, 2021. 4(10): p. 11555-11563.
18. Li, W., et al., Numerical analysis of the back interface for high efficiency wide band gap chalcopyrite solar cells. Solar Energy, 2019. 180: p. 207-215.
19. Kohara, N., et al., Electrical properties of the cu (in, ga) se2/MoSe2/mo structure. Solar Energy Materials and Solar Cells, 2001. 67(1-4): p. 209-215.
20. Ong, K.H., et al., Review on substrate and molybdenum back contact in CIGS thin film solar cell. International Journal of Photoenergy, 2018. 2018.
21. Hsiao, K.-J., et al., Electrical impact of MoSe 2 on CIGS thin-film solar cells. Physical Chemistry Chemical Physics, 2013. 15(41): p. 18174-18178.
22. Karade, V., et al., Insights into kesterite's back contact interface: A status review. Solar Energy Materials and Solar Cells, 2019. 200: p. 109911.
23. Zhu, X., et al., Determining factor of MoSe2 formation in Cu (In, Ga) Se2 solar cells. Solar Energy Materials and Solar Cells, 2012. 101: p. 57-61.
24. He, Z., et al., Energy band alignment in molybdenum Oxide/Cu (In, Ga) Se2 interface for high-efficiency ultrathin Cu (In, Ga) Se2 solar cells from low-temperature growth. ACS Applied Energy Materials, 2020. 3(4): p. 3408-3414.
25. Zeng, L., et al., Significant Passivation Effect of Cu (In, Ga) Se2 Solar Cells via Back Contact Surface Modification Using Oxygen Plasma. Solar RRL, 2021. 5(3): p. 2000572.
26. Greiner, M.T., et al., Transition metal oxide work functions: the influence of cation oxidation state and oxygen vacancies. Advanced Functional Materials, 2012. 22(21): p. 4557-4568.
27. López-Marino, S., et al., The importance of back contact modification in Cu2ZnSnSe4 solar cells: the role of a thin MoO2 layer. Nano Energy, 2016. 26: p. 708-721.
28. Lin, S., et al., Adjustment of alkali element incorporations in Cu (In, Ga) Se2 thin films with wet chemistry Mo oxide as a hosting reservoir. Solar Energy Materials and Solar Cells, 2018. 174: p. 16-24.
29. Kotipalli, R., et al., Addressing the impact of rear surface passivation mechanisms on ultra-thin Cu (In, Ga) Se2 solar cell performances using SCAPS 1-D model. Solar Energy, 2017. 157: p. 603-613.
30. Salome, P.M., et al., Passivation of interfaces in thin film solar cells: Understanding the effects of a nanostructured rear point contact layer. Advanced Materials Interfaces, 2018. 5(2): p. 1701101.
31. Hanket, G., et al., Incongruent reaction of Cu–(InGa) intermetallic precursors in H 2 Se and H 2 S. Journal of Applied Physics, 2007. 102(7): p. 074922.
32. Han, A., et al., Improvement of Ga distribution in Cu (In, Ga)(S, Se) 2 film by pretreated Mo back contact. Solar energy, 2018. 162: p. 109-116.
33. Abou-Ras, D., et al., Formation and characterisation of MoSe2 for Cu (In, Ga) Se2 based solar cells. Thin Solid Films, 2005. 480: p. 433-438.
34. Li, H., et al., Texture control and growth mechanism of WSe2 film prepared by rapid selenization of W film. Applied Surface Science, 2017. 394: p. 142-148.
35. Mao, X., et al., Growth controlling behavior of vertically aligned MoSe2 film. Applied Surface Science, 2019. 487: p. 719-725.
36. Shin, B., N.A. Bojarczuk, and S. Guha, On the kinetics of MoSe2 interfacial layer formation in chalcogen-based thin film solar cells with a molybdenum back contact. Applied Physics Letters, 2013. 102(9): p. 091907.
37. Liu, Y.-J., C.-Y. Ou, and C.-H. Lu, Effects of Mo films prepared via different sputtering conditions on the formation of MoSe2 during selenization. Journal of Alloys and Compounds, 2018. 747: p. 621-628.
38. Yoon, J.H., et al., Electrical properties of CIGS/Mo junctions as a function of MoSe2 orientation and Na doping. Progress in Photovoltaics: Research and Applications, 2014. 22(1): p. 90-96.
39. Gao, S., et al., Tailoring Mo (S, Se) 2 structure for high efficient Cu2ZnSn (S, Se) 4 solar cells. Solar Energy Materials and Solar Cells, 2018. 176: p. 302-309.
40. Li, W., et al., Effect of sodium diffusion on the properties of CIGS solar absorbers prepared using elemental Se in a two-step process. Scientific reports, 2019. 9(1): p. 1-11.
41. Mirhosseini, H., et al., Reducing the Schottky barrier height at the MoSe2/Mo (110) interface in thin-film solar cells: Insights from first-principles calculations. Thin Solid Films, 2016. 606: p. 143-147.
42. Zhang, A., et al., Engineering the band offsets at the back contact interface for efficient kesterite CZTSSe solar cells. ACS Applied Energy Materials, 2020. 3(11): p. 10976-10982.
43. Zhang, X., et al., Influence of WSe2 buffer layer at back electrode on performance of Cu2ZnSn (S, Se) 4 solar cells. Solar Energy, 2020. 199: p. 128-135.
44. Liu, H., et al., A vertical WSe 2–MoSe 2 p–n heterostructure with tunable gate rectification. RSC advances, 2018. 8(45): p. 25514-25518.
45. Kim, H.J., et al., Tuning of Thermoelectric Properties of MoSe2 Thin Films Under Helium Ion Irradiation. Nanoscale Research Letters, 2022. 17(1): p. 1-8.
46. Yu, Z.G., B.I. Yakobson, and Y.-W. Zhang, Realizing indirect-to-direct band gap transition in few-layer two-dimensional MX2 (M= Mo, W; X= S, Se). ACS Applied Energy Materials, 2018. 1(8): p. 4115-4121.
47. Bouttemy, M., et al., Thinning of CIGS solar cells: Part I: Chemical processing in acidic bromine solutions. Thin Solid Films, 2011. 519(21): p. 7207-7211.