研究生: |
林合耕 |
---|---|
論文名稱: |
含螢光基團之 多胜肽 PBLG 聚合物的合成與自組裝 性質研究 Synthesis and Self-assembly Properties of Polymers of Polypeptide PBLG Containing Rhodamine B Fluorophore |
指導教授: | 劉英麟 |
口試委員: |
蘇文炯
駱俊良 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2013 |
畢業學年度: | 101 |
語文別: | 中文 |
論文頁數: | 97 |
中文關鍵詞: | 多胜肽 、自組裝 、螢光 |
外文關鍵詞: | PBLG, RhB, sel-assembly |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本研究中,以Polyhedral oligomeric silsesquioxane (POSS) 及胜肽benzyl-L-glutamte (BLG),經由α-amino acid N-carboxyanhydrides (NCA)開環聚合法製備嵌段共聚物,並接著將此嵌段共聚物之末端氨基接枝上Rhodamine B (RhB),製備出含有螢光性質的高分子POSS-PBLG-RhB。由於POSS-PBLG在toluene中會自組裝成奈米緞帶(naroribbon),在接上RhB染色後,於Acetone、Chloroform與Toluene三種溶液中觀察其自組裝的行為。
此研究以傅立葉轉換紅外線光譜分析儀(FTIR)、氫核磁共振光譜(H1NMR)鑑定高分子的化學結構。由於PBLG會在四氫呋喃(THF)相中的凝膠滲透儀(GPC)產生聚集,導致分子量不正確。所以我們也利用氫核磁共振光譜(H1NMR)來計算嵌段共聚物中PBLG段的分子量。並由穿透式電子顯微鏡(TEM)觀察高分子在不同溶液下自組裝的行為,POSS-PBLG-RhB嵌段共聚物於Actone中會自組裝成蠕蟲狀,於Chloroform中會自組裝行成環狀,於Toluene中會自組裝形成球狀與橢圓狀微胞,以及橢圓囊狀。附有多胜肽PBLG的嵌段共聚物可以擁有良好的生物可分解性以及生物相容性,適合應用於生醫材料。
The secondary structure of poly(γ-benzyl L-glutamate) (PBLG) with degrees of polymerization over 18 is dominated by α-helical conformation. POSS-end-capped PBLG polymer has been reported to exhibit nanoribbon self-assembly structure. In this work, we introduce Rhodamine B (RhB) fluorophore to the end of POSS-PBLG-RhB to form a doubly end-capped POSS-PBLG-RhB polymer. The effect of the hydrophilic RhB fluorophore at the chain end to the intramolecular hydrogen bonds of α-helical PBLG block are observed by self-assembling POSS-PBLG-RhB in three chosen solvents including acetone, chloroform and toluene. α-Helical structure of PBLG block can be maintained in chloroform and toluene, but is transformed into mixtures ofα-helical and β-sheet conformations in acetone, which are verified with the measurements of Fourier Transform Infrared spectroscopy (FT-IR). Under the excitation at 365 nm and 532 nm, POSS-PBLG-RhB nanoparticles exhibits two-band emission in three solutions, but the emission from aggregation of POSS-PBLG blocks are not strong enough to decrease the yellow light from RhB. The self-assembly structures of of POSS-PBLG-RhB in the three solvents in different time are also observed by Transmission Electron Microscopy (TEM). The relationship between the solvents properties and the observed self-assembly structures are discussed.
1. Muthukumar, M.; Ober, C. K.; Thomas, E. L. Competing Interactions and Levels of Ordering in Self-Organizing Polymeric Materials. Science 1997, 277, 1225-1232.
2. Stupp, S. I.; Braun, P. V. Molecular Manipulation of Microstructures: Biomaterials, Ceramics, and Semiconductors. Science 1997, 277, 1242-1248.
3. Hamley, I. W. The Physics of Block Copolymers;Oxford University Press: Oxford, England, 1998.
4. Booth, C.; Price, C. Comprehensive Polymer Science;Pergamon Press: Oxford, England, 1989.
5. Tuzar, Z.; Kratochvil, P. In Surface and Colloid Science; Matijevic, E., Ed.; Plenum: New York, 1993, Vol. 15
6. Mountrichas, G.; Pispas, S. Novel Double Hydrophilic Block Copolymers Based on Poly(p-hydroxystyrene) Derivatives and Poly(ethylene oxide). J. Polym. Sci.: Polym. Chem. 2007, 45, 5790–5799.
7. Lee, H. F.; Sheu, H. S.; Jeng, U. S.; Huang, C. F.; Chang, F. C. Preparation and Supramolecular Self-Assembly of a Polypeptide-block-polypseudorotaxane. Macromolecules 2005, 38, 6551-6558.
8. 石健忠、戴子安,團聯型高分子自組裝—剛強和柔軟的結合,科學發展,2012,8月,476期
9. McMillan, A.; Lee, T. A. T.; Conticello, V. P. Rapid Assembly of Synthetic Genes Encoding Protein Polymers. Macromolecules 1999, 32, 3643-3648.
10. Halstenberg, S.; Panitch, A.; Rizzi, S.; Hall, H.; Hubbell, J. A.Biologically Engineered Protein-graft-Poly(ethylene glycol) Hydrogels: A Cell Adhesive and Plasmin-Degradable Biosynthetic Material for Tissue Repair. Biomacromolecules 2002, 3, 710-723.
11. Gehrke, S. H. Synthesis, Equilibrium Swelling, Kinetics, Permeability and Applications of Environmentally Responsive Gels. Adv. Polym. Sci. 1993,110, 81-144.
12. Lee, K. Y.; Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 2001, 101, 1869-1879.
13. Kaplan, D. L. Fibrous Proteins‐silk as A Model System. Polym. Degrad. Stab. 1998, 59, 25-32.
14. Branden, C.; Tooze, J. Introduction to protein structure, 1st ed. Garland Publishing, Inc., New York. 1991
15. Block, H. In Poly (γ-benzyl-ι-glutamate) and Other Glutamic Acid Containing Polymers; Gordon and Breach Science Publishers: New York, 1983.
16. Papadopoulos, P.; Floudas, G.; Klok, H.-A.; Schnell, I.; Pakula, T. Self-Assembly and Dynamics of Poly (γ-benzyl-ι-glutamate) Peptides. Biomacromolecules 2004, 5, 81-91.
17. Cassim, J. Y.; Taylor, E. W. Intrinsic Birefringence of Poly(γ-benzyl-ι-glutamate), A Helical Polypeptide, And The Theory of Birefringence. BIoPHysIcAL J. 1965, 5, 531-552.
18. Ayres, L.; Hans, P.; Adams, J.; Lowik, D. W. P. M.; van Hest, J. C. M. Peptide–polymer Vesicles Prepared by Atom Transfer Radical Polymerization. J. Polym. Sci.: Polym. Chem. 2005, 43, 6355–6366.
19. Adams, D. J.; Young, I. Oligopeptide-based amide functional initiators for ATRP. J. Polym. Sci.: Polym. Chem. 2008, 46, 6082–6090.
20. Becker, M. L.; Liu, J.; Wooley, K. L. Functionalized Micellar Assemblies Prepared via Block Copolymers Synthesized by Living Free Radical Polymerization upon Peptide-loaded Resins. Biomacromolecules, 2005, 6(1), 220-228.
21. Rettig, H.; Krause, E.; Borner, H. G. Atom Transfer Radical Polymerization with Polypeptide Initiators: A General Approach to Block Copolymers of Sequence-Defined Polypeptides and Synthetic Polymers. Macromol. Rapid Commun. 2004, 25, 1251–1256.
22. Kricheldorf, H. R. Polypeptides and 100 Years of Chemistry of a-Amino Acid N-Carboxyanhydrides. Angew. Chem. Int. Ed. 2006, 45, 5752–5784.
23. Mark, H. F. Encyclopedia of Polymer Science and Technology, 3rd Ed., John Wiley & Sons, Inc. 2005
24. Dimitrov, I.; Schlaad, H. Synthesis of Nearly Monodisperse Polystyrene–polypeptide Block Copolymers via Polymerisation of N-carboxyanhydrides. Chem. Commun. 2003, 23, 2944–2945.
25. Aliferis, T.; Iatrou, H.; Hadjichristidis, N. Living Polypeptides. Biomacromolecules 2004, 5, 1653–1656.
26. Vayaboury, W.; Giani, O.; Cottet, H.; Deratani, A.; Schue, F. Living Polymerization of α-Amino Acid N-Carboxyanhydrides (NCA) upon Decreasing the Reaction Temperature. Macromol. Rapid Commun. 2004, 13, 1221–1224.
27. Lu, H.; Cheng, J. Hexamethyldisilazane-Mediated Controlled Polymerization of α-Amino Acid N-Carboxyanhydrides. J. Am. Chem. Soc. 2007, 129, 14114-14116.
28. Boerner, H. G.; Schlaad, H., Bioinspired Functional Block Copolymers. Soft Matter 2007, 3, 394–408.
29. Lee, M. H.; Wu, J. S.; Lee, J. W.; Jung, J. H.; Kim, J. S., Highly sensitive and selective chemosensor for Hg2+ based on the Rhodamine fluorophore. Org. Lett. 2007, 9, 2501-2504.
30. Kim, Y. R.; Kim, H. J.; Kim, J. S.; Kim, H., Rhodamine-based 'turn-on' fluorescent chemodosimeter for Cu(II) on ultrathin platinum films as molecular switches. Adv. Mater. 2008, 20, 4428-4432.
31. Beija, M.; Afonso, C. A. M.; Martinho, J. M. G., Synthesis and applications of Rhodamine derivatives as fluorescent probes. Chem. Soc. Rev. 2009, 38, 2410-2433.
32. Arbeloa, F. L.; Ojeda, P. R.; Arbeloa, I. L., On the aggregation of Rhodamine B in ethanol. Chem Phys Lett. 1988, 148, 253-257.
33. Negishi, N.; Fujino, M.; Yamashita, H.; Fox, M. A.; Anpo, M., Photophysical properties and photochemical stability of Rhodamine B encapsulated in SiO2 and Si-Ti binary oxide matrices by the sol-gel method. Langmuir 1994, 10, 1772-1776.
34. Cruz, J. L. D.; Blanchard, G. J., The influence of chromophore strucure on intermolecular interactions. A study of selected Rhodamines in polar protic and aprotic solvents. J. Phys. Chem. 2002, 106, 10718-10724.
35. El-Rayyes, A. A.; Al-Betar, A.; Htun, T.; Klein, U. K. A., Fluorescence emission from Rhodamine-B lactone adsorbed at solid catalysis. Chem Phys Lett. 2005, 414, 287-291.
36. Hsu, C. Y.; Liu, Y. L., UV-induced Rhodamine B aggregation into nanoparticles exhibiting reversible changes of yellow- and white-light photoluminescent emissions. Chem. Eur. J. 2011, 17, 5522-5525.
37. Habraken, G. J. M.; Koning, C. E.; Heise, A. Peptide Block Copolymers by N-Carboxyanhydride Ring-Opening Polymerization and Atom Transfer Radical Polymerization: The Effect of Amide Macroinitiators. J. Polym. Sci.: Polym. Chem. 2009, 47, 6883–6893.
38. Ding, J.; Xiao, C.; Tang, Z.; Zhuang, X.; Chen, X. Highly Efficient Grafting From an α-Helical Polypeptide Backbone by Atom Transfer Radical Polymerization. Macromol. Biosci. 2011, 11, 192–198
39. Habraken, G. J. M.; Peeters, M.; Dietz, C. H. J. T.; Koning, C. E.; Heise, A. How Controlled and Versatile Is N-carboxy anhydride (NCA) Polymerization at 0 C? Effect of Temperature on Homo-, Block- and Graft (co)Polymerization. Polym. Chem. 2010, 1, 514–524
40. Liu, D.; Li, Y.; Deng, J.; Yang, W. Synthesis and Characterization of Magnetic Fe3O4-silica-poly(γ-benzyl-ι-glutamate) Composite Microspheres. Reactive & Functional Polymers 2011, 71, 1040–1044
41. Agut, W.; Taton, D.; Lecommandoux, S. A Versatile Synthetic Approach to Polypeptide Based Rod-Coil Block Copolymers by Click Chemistry. Macromolecules 2007, 40, 5653-5661
42. Agut, W.; Brulet, A.; Schatz, C.; Taton, D.; Lecommandoux, S. pH and Temperature Responsive Polymeric Micelles and Polymersomes by Self-Assembly of Poly[2-(dimethylamino)ethyl methacrylate]-b-Poly(glutamic acid) Double Hydrophilic Block Copolymers. Langmuir 2010, 26(13), 10546–10554
43. Lee, H. F.; Sheu, H. S.; Jeng, U. S.; Huang, C. F.; Chang, F. C. Preparation and Supramolecular Self-Assembly of a Polypeptide-block-polypseudorotaxane. Macromolecules 2005, 38, 6551-6558
44. Thambi, T.; Deepagan, V. G.; Yoo, C. K.; Park, J. H. Synthesis and Physicochemical Characterization of Amphiphilic Block Copolymers Bearing Acid-sensitive Orthoester Linkage as The Drug Carrier. Polymer 2011, 52, 4753-4759
45. Wu, Q. H.; Liang, F.; Wei, T. Z.; Song, X. M.; Liu, D. L.; Zhang, G. L. Synthesis and Micellization of An Amphiphilic Biodegradable β-cyclodextrin/poly(γ-benzyl L-glutamate) Copolymer. J. Polym. Res. 2010, 17, 183–190
46. He, C.; Zhao, C.; Guo, X.; Guo, Z.; Chen, X.; Zhuang, X.; Liu, S.; Jing, X. Novel Temperature- and pH-Responsive Graft Copolymers Composed of Poly(ι-glutamic acid) and Poly(Nisopropylacrylamide). J. Polym. Sci.: Polym. Chem. 2008, 46, 4140–4150
47. Kuo, S. W.; Lee, H. F.; Huang, W. J.;Jeong, K. U.; Chang, F. C. Solid State and Solution Self-Assembly of Helical Polypeptides Tethered to Polyhedral Oligomeric Silsesquioxanes. Macromolecules 2009, 42, 1619-1626
48. Tsyalkovsky, V.; Klep, V.; Ramaratnam, K.; Lupitskyy, R.; Minko, S.; Luzinov, I., Fluorescent reactive core–shell composite nanoparticles with a high surface concentration of epoxy functionalities. Chem. Mat. 2008, 20, 317-325.
49. Liu, Y. L.; Wu, Y. H.; Hsu, C. Y., Direct white light photoluminescent nanoparticles with one fluorophore. Nanotechnology 2009, 20, 235704-235710.
50. Liu, Y. L.; Hsu, C. Y., Rhodamine B-anchored silica nanoparticles displaying white-light photoluminescence and their uses in preparations of photoluminescent polymeric films and nanofibers. J. Colloid Interface Sci. 2010, 350, 75-82.
51. Klok, H. A.; Lecommandoux, S. Supramolecular Materials via Block Copolymer Self-Assembly. Adv. Mater. 2001, 13, 1217-1229.
52. Tamm L.K.; Tatulian S.A. Infrared spectroscopy of proteins and peptides in lipid bilayers. Quart. Rev.Biophy. 1997, 30, 365-429.
53. Hickey, R. J.; Haynes, A. S.; Kikkawa, J. M.; Park, S. J. Controlling the Self-Assembly Structure of Magnetic Nanoparticles and Amphiphilic Block-Copolymers: From Micelles to Vesicles. J. Am. Chem. Soc. 2011, 133, 1517–1525.
54. Olsen, B. D.; Segalman, R. A. Self-assembly of rod–coil block copolymers. Mater. Sci. Eng., R. 2008, 62, 37-66.