簡易檢索 / 詳目顯示

研究生: 吳怡儒
Wu, Yi-Ju
論文名稱: 探討14-3-3ε調控第一型金屬硫蛋白Metallothionein-1 在肝癌腫瘤進展中所扮演之角色
The Roles of 14-3-3ε-regulated Metallothionein-1 in Tumor Progression of Hepatocellular Carcinoma
指導教授: 劉俊揚
Liou, Jun-Yang
陳令儀
Chen, Linyi
口試委員: 王慧菁
Wang, Hui-Ching
陳盛良
Chen, Shen-Liang
郭呈欽
Kuo, Cheng-Chin
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 118
中文關鍵詞: 肝細胞癌第一型金屬硫蛋白醛酮還原酶家族吡咯烷二硫代氨基甲表觀遺傳
外文關鍵詞: 14-3-3ε, AKR1B10, Metallothionein-1, PDTC, ZNF479, DNMT1, ASH2L
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 肝細胞癌 (Hepatocellular carcinoma, HCC) 為肝癌中最常見之種類,多發於亞洲及非洲肝癌患者,常與病患是否感染B型肝炎病毒 (HBV) 或 C型肝炎病毒 (HCV) 有高度關聯。近年來由於醫學的進步,許多肝癌腫瘤雖可經由手術切除及化療獲得控制,但是仍有部分患者於術後或治療後復發並轉移,因此研發診斷腫瘤的生物標記對於患者預後的治療策略有相當重要的益處。
    14-3-3ε屬於14-3-3家族之一,功能上作為螯合蛋白與目標蛋白結合,進而改變目標蛋白磷酸化及結構,調控細胞代謝、訊息傳遞及細胞週期。從過去的研究顯示,在肝細胞癌腫瘤中偵測到過度表現14-3-3ε的病患,具有較低存活率及較高轉移風險。為了更進一步了解14-3-3ε如何誘導肝癌腫瘤惡化的發生,並探討下游潛在的調控分子,我們透過DNA微陣列分析研究基因表現圖譜;我們發現第一型金屬硫蛋白 (Metallothionein-1, MT-1) 及醛酮還原酶家族 (aldo-keto reductase family 1 member B10, AKR1B10) 受到14-3-3ε所調控。在本研究中,我們證明第一型金屬硫蛋白可受到14-3-3ε的調控,並且大量表現第一型金屬硫蛋白可抑制被14-3-3ε所誘導的細胞及腫瘤生長。14-3-3ε透過MEK-ERK、mTOR及PI3K/AKT訊息傳遞途徑抑制第一型金屬硫蛋白的表現;在肝細胞癌中表現第一型金屬硫蛋白顯著抑制由14-3-3ε所調控的細胞及腫瘤生長。此外,吡咯烷二硫代氨基甲 (pyrrolidine dithiocarbamate, PDTC) 可經由非NFκB途徑顯著地提高第一型金屬硫蛋白表現量,並減少由14-3-3ε所誘導的腫瘤生長。
    除此之外,我們發現在14-3-3ε調控第一型金屬硫蛋白的途徑間存在一個具有調控表觀遺傳 (epigenetic regulatory) 潛力的轉錄因子ZNF479。ZNF479結構中帶有KRAB結構域 (Krüppel associated box, KRAB),我們證明ZNF479對細胞生長、轉移和腫瘤生長具有顯著影響。ZNF479經由誘導DNA甲基化蛋白 (DNMT1和UHRF1) 與MLL融合蛋白 (ASH2L和Menin),調控組蛋白H3在離胺酸的甲基化(H3K4)。透過抑制DNMT1與ASH2L的表現,皆可以回復由ZNF479所抑制的第一型金屬硫蛋白表現量。
    除此之外,我們證明了14-3-3ε可經由活化β-catenin調控AKR1B10之表現,進而誘導細胞生長及轉移。由於AKR1B10具有抗氧化能力,並於臨床上觀察到在肝細胞癌腫瘤中表現量顯著提高;經由實驗結果顯示,抑制AKR1B10的表現能夠阻斷14-3-3ε促進細胞及腫瘤的生長能力。我們也發現AKR1B10透過提高Vimentin與Snail的表現量來調節細胞轉移的能力。
    本研究數據顯示,透過研究14-3-3ε對肝癌的調控機制,β-catenin/AKR1B10與ZNF479/MT-1對表觀遺傳因子的調控方式可能是治療該細胞癌的潛在策略。


    Liver cancer is one of the major prevalent malignancies in the areas of Africa and Southeast Asia. Hepatocellular carcinoma (HCC) is the most common type of liver cancer and the occurrence of HCC is highly correlated with the incidence of hepatitis B or C virus infection. Some HCC patients with operable tumors receive high risk of recurrence and metastasis although the overall survival and clinical outcome are significantly improved by progressively therapeutic treatment. Thus, to identify the prognostic biomarkers will be of great benefit for developing therapeutic strategy to improve the outcomes of HCC patients. We have previously reported that 14-3-3ε is overexpressed in HCC and its expression is associated with poor survival outcome and higher metastasis risk. Moreover, we have found that 14-3-3ε overexpression promotes in vitro cell proliferation, migration, epithelial-mesenchymal transition (EMT) and in vivo tumor growth of HCC. To investigate the potential downstream effectors of 14-3-3ε in regulating HCC progression, we have examined the gene expression profile by microarray analysis.
    We have identified that aldo-keto reductase family 1 member B10 (AKR1B10) and metallothionein-1 (MT-1) are potentially regulated by 14-3-3ε in HCC. Here, we have demonstrated that MT-1 expression is downregulated by 14-3-3ε, and overexpression of MT-1 abrogated 14-3-3ε-induced cell proliferation and tumor growth. Results from treatment with pharmacological inhibitors reveal that 14-3-3ε-suppressed MT-1 expression is mediated by activation of MEK-ERK, mTOR and PI3K/AKT signaling. Intriguingly, treatment with pyrrolidine dithiocarbamate (PDTC) abundantly stimulated MT-1 by an NFκB independent mechanism and significantly reduced 14-3-3ε-induced tumor growth.
    Furthermore, we have identified ZNF479, a potential transcription regulator with Krüppel associated box (KRAB) domain is involved in the regulation of 14-3-3ε-suppressed MT-1. ZNF479 induced the expression of DNA methyltransferase 1 (DNMT1), ubiquitin-like with PHD and ring finger domains 1 (UHRF1), mixed-lineage leukemia (MLL) complex proteins ASH2 like histone lysine methyltransferase complex subunit (ASH2L) and Menin, as well as tri-methylation of histone H3 at lysine 4 (H3K4me3), but suppressed di-methylation of H3K4 (H3K4me2). The ZNF479-suppressed MT-1 expression was restored by siRNA silencing of ASH2L and DNMT1. Thus, our study defines ZNF479 as a potential epigenetic regulator of MT-1 expression by regulating MLL complex components, DNMT1 and UHRF1 in HCC.
    Moreover, we demonstrated that AKR1B10 is upregulated by 14-3-3ε and β-catenin signaling. AKR1B10 possesses the antioxidant activity and is considered to be upregulated in the early progression of HCC. Our results indicated that depletion of AKR1B10 abolished 14-3-3ε-induced cell proliferation and tumor growth. We also found that AKR1B10 regulates EMT process through upregulating expression of vimentin and snail.
    Finally, we have confirmed that ZNF479 contributes to the regulation of HCC cell proliferation, migration and EMT as well as tumor growth. Taken together, our data show for the first time that 14-3-3ε downregulates MT-1 via inducing MT-1 upregulates expression via inducing ZNF479 expression and AKR1B10 expression is mediated by activating β-catenin signaling. Therefore, approaches targeting the machinery of 14-3-3ε, ZNF479/MT-1, β-catenin/AKR1B10or related factors of epigenetic regulation might be potential therapeutic strategies for HCC.

    LIST OF CONTENTS Publication List i ABSTRACT ii 中文摘要 iv 致謝 vi LIST OF CONTENTS 1 LIST OF TABLES 3 LIST OF FIGURES 4 ABBREVIATION 6 CHAPTER Ⅰ: Introduction 9 Hepatocellular carcinoma (HCC) 10 14-3-3 proteins 10 Metallothionein (MT) 12 The regulation of MT-1 13 Zinc finger protein, ZNF479 13 Aldo-keto-reductase family 1 member B10 (AKR1B10) 14 Figures and Tables 16 CHAPTER Ⅱ: Materials and Methods 25 Cell culture and reagents 26 Plasmid constructs, siRNAs and transfection 26 Western blot analysis 27 Quantitative real-time RT-PCR (qPCR) 27 Microarray analysis 28 Cell viability assay 28 Anchorage-independent growth assay 28 Tumor xenograft experiments 28 Small-hairpin RNA (shRNA) xenograft experiment 29 Migration and invasion assay 30 Immunofluorescence confocal microscopy 30 Statistical analysis for clinical pathology 30 Promoter methylation analysis 31 Public domain data 31 Statistical analysis 32 Tables 33 CHAPTER Ⅲ: ZNF479 contributes to 14-3-3ε-regulated metallothionein-1 through ASH2L and DNMT1 in hepatocellular carcinoma 41 Ⅲ-1. Rationale 42 Ⅲ-2. Result 43 Ⅲ-3. Discussion 48 Ⅲ-4. Figure 54 CHAPTER Ⅳ: 14-3-3ε regulates aldo-keto-reductase family 1 B10 and its impact on the prognostic of hepatocellular carcinoma 91 Ⅳ-1. Rationale 92 Ⅳ-2. Result 92 Ⅳ-3. Discussion 94 Ⅳ-4. Figure 97 CHAPTER Ⅴ: Conclusion 100 Appendix 103 Reference 105   LIST OF TABLES Table I- 1 Studies related to 14-3-3 proteins in HCC. 23 Table I- 2 The expression level of MT-1 and 2 in tumors (as compared with adjacent healthy tissue). 24 Table II- 1 The pharmacological inhibitors used in this study. 33 Table II- 2 Primer sequences for the constructs and oligonucleotides synthesis. 34 Table II- 3 Sequences of siRNA used in this study. 35 Table II- 4 Antibodies used in this study. 36 Table II- 5 Primer sequences for Q-PCR used in this study. 37 Table II- 6 Sequences of the shRNAs used in the study. 38 Table II- 7 Primer sequences for DNA methylation sequencing in this study. 39 Table II- 8 Primer sequences for MSP analysis in this study. 40 Table III- 1 Gene expression profile in microarray analysis. 89 Table III- 2 Expression levels of ZNF479, DNMT1, UHRF1, ASH2L, Menin, MT-1M, MT-1G and MT-1H in HCC by Oncomine database analysis 90   LIST OF FIGURES Figure I- 1 The incidence of liver cancer in the world. 16 Figure I- 2 The occurrence of cancer types in Asia. 17 Figure I- 3 The functions of 14-3-3 proteins in cells. 18 Figure I- 4 The regulation and function of MT gene. 19 Figure I- 5 The prediction of structural domains in ZNF479. 20 Figure I- 6 The epigenetic regulation compounds of the KRAB domain-containing zinc finger protein. 21 Figure I- 7 The catalytic reaction of AKR family in vitamin A metabolism. 22 Figure III- 1 The MT-1 expression level in 14-3-3ε-overexpressed HCC cells. 54 Figure III- 2 Silence of 14-3-3ε in the 14-3-3ε cells affected MT-1 expression. 55 Figure III- 3 The MT-1 expression in overexpression of difopein. 56 Figure III- 4 The cell proliferation effect of MT-1 in 14-3-3ε cells. 57 Figure III- 5 The xenograft mice model in overexpression of 14-3-3ε and MT-1M. 58 Figure III- 6 The expression of MT-1 in 14-3-3ε cells treated with pharmacological inhibitors. 59 Figure III- 7 The cell proliferation effect of U0126, rapamycin and wortmannin in 14-3-3ε cells. 60 Figure III- 8 The MT-1 expression in PDTC-treated 14-3-3ε cells. 61 Figure III- 9 The MT-1 expression in knockdown of p65 and PDTC treatment. 62 Figure III- 10 The tumor xenograft model of 14-3-3ε cells in PDTC treatment. 63 Figure III- 11 The expression of ZNF479 in human tissues. 64 Figure III- 12 The ZNF479 expression in the overexpression of 14-3-3ε and PDTC treatment. 65 Figure III- 13 The MT-1 expression in knockdown of ZNF479. 66 Figure III- 14 The cell proliferation effect of ZNF479. 67 Figure III- 15 The EMT markers and cell migration effect of ZNF479. 68 Figure III- 16 The EMT effect of MT-1. 69 Figure III- 17 The tumor xenograft model in silence of ZNF479 by siRNA. 70 Figure III- 18 The tumor xenograft model in silence of ZNF479 by shRNA. 71 Figure III- 19 Expression of markers of histone modification by 14-3-3ε and ZNF479. 72 Figure III- 20 The effect of ASH2L expression in ZNF479. 73 Figure III- 21 The effect of Menin expression in ZNF479. 74 Figure III- 22 The effect of DNMT1 expression in ZNF479. 75 Figure III- 23 The effect of UHRF1 expression in ZNF479. 76 Figure III- 24 Result of bisulfite DNA sequencing analysis of the MT-1M promoter. 77 Figure III- 25 Result of bisulfite DNA sequencing analysis of the MT-1H promoter. 78 Figure III- 26 The MSP analysis of MT-1 gene. 79 Figure III- 27 The gene expression profile of PDTC treatment in the xenograft mice model. 80 Figure III- 28 mRNA expression of ZNF479 and MT-1M in human tissue cDNA array. 81 Figure III- 29 The transcript levels of the gene in this study in HCC cohorts. 82 Figure III- 30 Protein expression in overexpression of ZNF479 siRNA in HepG2 cells. 86 Figure III- 31 Gene expression in HCC cell lines. 87 Figure III- 32 Model of ZNF479 involved in the 14-3-3ε-suppressed MT-1 expression by activating ASH2L/Menin and DNMT1/UHRF1 in HCC. 88 Figure IV- 1 14-3-3ε regulated AKR1B10 through activating β-catenin. 98 Figure IV- 2 The EMT markers and AKR1B10 expression in the highly invasive cells. 99 Figure V- 1 Model of factors involves in the 14-3-3ε-promoted HCC cell proliferation, migration and tumor growth. 102 Figure S- 1 14-3-3ε promotes tumor growth through β-catenin and AKR1B10. 103 Figure S- 2 Prognostic analysis of 14-3-3ε and AKR1B10 in HCC tumors. 104

    1. Contratto M, Wu J: Targeted therapy or immunotherapy? Optimal treatment in hepatocellular carcinoma. World J Gastrointest Oncol 2018, 10:108-114.
    2. Kane RC, Farrell AT, Madabushi R, Booth B, Chattopadhyay S, Sridhara R, Justice R, Pazdur R: Sorafenib for the treatment of unresectable hepatocellular carcinoma. Oncologist 2009, 14:95-100.
    3. Nishida N, Kitano M, Sakurai T, Kudo M: Molecular Mechanism and Prediction of Sorafenib Chemoresistance in Human Hepatocellular Carcinoma. Dig Dis 2015, 33:771-779.
    4. Boston P, Jackson P: Purification and properties of a brain-specific protein, human 14-3-3 protein. Biochem Soc Trans 1980, 8:617-618.
    5. Ichimura T, Isobe T, Okuyama T, Takahashi N, Araki K, Kuwano R, Takahashi Y: Molecular cloning of cDNA coding for brain-specific 14-3-3 protein, a protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Proc Natl Acad Sci U S A 1988, 85:7084-7088.
    6. Aitken A, Baxter H, Dubois T, Clokie S, Mackie S, Mitchell K, Peden A, Zemlickova E: Specificity of 14-3-3 isoform dimer interactions and phosphorylation. Biochem Soc Trans 2002, 30:351-360.
    7. Darling DL, Yingling J, Wynshaw-Boris A: Role of 14-3-3 proteins in eukaryotic signaling and development. Current Topics in Developmental Biology 2005, 68:281-315.
    8. Wu Y-J, Ko B-S, Liou J-Y: 14-3-3. In Encyclopedia of Signaling Molecules. Edited by Choi S. New York, NY: Springer New York; 2016: 1-11
    9. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC: The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 1997, 91:961-971.
    10. Aoki H, Hayashi J, Moriyama M, Arakawa Y, Hino O: Hepatitis C virus core protein interacts with 14-3-3 protein and activates the kinase Raf-1. J Virol 2000, 74:1736-1741.
    11. Nakamura H, Aoki H, Hino O, Moriyama M: HCV core protein promotes heparin binding EGF-like growth factor expression and activates Akt. Hepatol Res 2011, 41:455-462.
    12. DeYoung MP, Horak P, Sofer A, Sgroi D, Ellisen LW: Hypoxia regulates TSC1/2-mTOR signaling and tumor suppression through REDD1-mediated 14-3-3 shuttling. Genes Dev 2008, 22:239-251.
    13. Lopez-Girona A, Furnari B, Mondesert O, Russell P: Nuclear localization of Cdc25 is regulated by DNA damage and a 14-3-3 protein. Nature 1999, 397:172-175.
    14. Steelman LS, Pohnert SC, Shelton JG, Franklin RA, Bertrand FE, McCubrey JA: JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 2004, 18:189-218.
    15. Liu CC, Jan YJ, Ko BS, Wu YM, Liang SM, Chen SC, Lee YM, Liu TA, Chang TC, Wang J, et al: 14-3-3sigma induces heat shock protein 70 expression in hepatocellular carcinoma. BMC Cancer 2014, 14:425.
    16. Ko BS, Chang TC, Hsu C, Chen YC, Shen TL, Chen SC, Wang J, Wu KK, Jan YJ, Liou JY: Overexpression of 14-3-3epsilon predicts tumour metastasis and poor survival in hepatocellular carcinoma. Histopathology 2011, 58:705-711.
    17. Liu TA, Jan YJ, Ko BS, Chen SC, Liang SM, Hung YL, Hsu C, Shen TL, Lee YM, Chen PF, et al: Increased expression of 14-3-3beta promotes tumor progression and predicts extrahepatic metastasis and worse survival in hepatocellular carcinoma. Am J Pathol 2011, 179:2698-2708.
    18. Ko BS, Lai IR, Chang TC, Liu TA, Chen SC, Wang J, Jan YJ, Liou JY: Involvement of 14-3-3gamma overexpression in extrahepatic metastasis of hepatocellular carcinoma. Hum Pathol 2011, 42:129-135.
    19. Choi JE, Hur W, Jung CK, Piao LS, Lyoo K, Hong SW, Kim SW, Yoon HY, Yoon SK: Silencing of 14-3-3zeta over-expression in hepatocellular carcinoma inhibits tumor growth and enhances chemosensitivity to cis-diammined dichloridoplatium. Cancer Lett 2011, 303:99-107.
    20. Liu TA, Jan YJ, Ko BS, Liang SM, Chen SC, Wang J, Hsu C, Wu YM, Liou JY: 14-3-3epsilon overexpression contributes to epithelial-mesenchymal transition of hepatocellular carcinoma. PLoS One 2013, 8:e57968.
    21. Huang XY, Ke AW, Shi GM, Zhang X, Zhang C, Shi YH, Wang XY, Ding ZB, Xiao YS, Yan J, et al: alphaB-crystallin complexes with 14-3-3zeta to induce epithelial-mesenchymal transition and resistance to sorafenib in hepatocellular carcinoma. Hepatology 2013, 57:2235-2247.
    22. Ko BS, Jan YJ, Chang TC, Liang SM, Chen SC, Liu TA, Wu YM, Wang J, Liou JY: Upregulation of focal adhesion kinase by 14-3-3epsilon via NFkappaB activation in hepatocellular carcinoma. Anticancer Agents Med Chem 2013, 13:555-562.
    23. Wang C, Yan R, Luo D, Watabe K, Liao DF, Cao D: Aldo-keto reductase family 1 member B10 promotes cell survival by regulating lipid synthesis and eliminating carbonyls. J Biol Chem 2009, 284:26742-26748.
    24. Liu CC, Chang TC, Lin YT, Yu YL, Ko BS, Sung LY, Liou JY: Paracrine regulation of matrix metalloproteinases contributes to cancer cell invasion by hepatocellular carcinoma-secreted 14-3-3sigma. Oncotarget 2016, 7:36988-36999.
    25. Liu TA, Jan YJ, Ko BS, Wu YJ, Lu YJ, Liang SM, Liu CC, Chen SC, Wang J, Shyue SK, Liou JY: Regulation of aldo-keto-reductase family 1 B10 by 14-3-3epsilon and their prognostic impact of hepatocellular carcinoma. Oncotarget 2015, 6:38967-38982.
    26. West AK, Stallings R, Hildebrand CE, Chiu R, Karin M, Richards RI: Human metallothionein genes: structure of the functional locus at 16q13. Genomics 1990, 8:513-518.
    27. El Ghazi I, Martin BL, Armitage IM: New proteins found interacting with brain metallothionein-3 are linked to secretion. Int J Alzheimers Dis 2010, 27:208634.
    28. Quaife CJ, Findley SD, Erickson JC, Froelick GJ, Kelly EJ, Zambrowicz BP, Palmiter RD: Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry 1994, 33:7250-7259.
    29. Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T: Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem 2011, 16:1123-1134.
    30. Meplan C, Richard MJ, Hainaut P: Metalloregulation of the tumor suppressor protein p53: zinc mediates the renaturation of p53 after exposure to metal chelators in vitro and in intact cells. Oncogene 2000, 19:5227-5236.
    31. Pedersen MO, Larsen A, Stoltenberg M, Penkowa M: The role of metallothionein in oncogenesis and cancer prognosis. Progress in Histochemistry and Cytochemistry 2009, 44:29-64.
    32. Popeda M, Pluciennik E, Bednarek AK: [Proteins in cancer multidrug resistance]. Postepy Hig Med Dosw (Online) 2014, 68:616-632.
    33. Bahnson RR, Basu A, Lazo JS: The role of metallothioneins in anticancer drug resistance. Cancer Treat Res 1991, 57:251-260.
    34. Gosland M, Lum B, Schimmelpfennig J, Baker J, Doukas M: Insights into mechanisms of cisplatin resistance and potential for its clinical reversal. Pharmacotherapy 1996, 16:16-39.
    35. Ozer H, Yenicesu G, Arici S, Cetin M, Tuncer E, Cetin A: Immunohistochemistry with apoptotic-antiapoptotic proteins (p53, p21, bax, bcl-2), c-kit, telomerase, and metallothionein as a diagnostic aid in benign, borderline, and malignant serous and mucinous ovarian tumors. Diagn Pathol 2012, 7:1746-1596.
    36. Huang GW, Yang LY: Metallothionein expression in hepatocellular carcinoma. World J Gastroenterol 2002, 8:650-653.
    37. Cherian MG, Jayasurya A, Bay BH: Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res 2003, 533:201-209.
    38. Yan DW, Fan JW, Yu ZH, Li MX, Wen YG, Li DW, Zhou CZ, Wang XL, Wang Q, Tang HM, Peng ZH: Downregulation of metallothionein 1F, a putative oncosuppressor, by loss of heterozygosity in colon cancer tissue. Biochim Biophys Acta 2012, 1822:918-926.
    39. Ji XF, Fan YC, Gao S, Yang Y, Zhang JJ, Wang K: MT1M and MT1G promoter methylation as biomarkers for hepatocellular carcinoma. World J Gastroenterol 2014, 20:4723-4729.
    40. Mao J, Yu H, Wang C, Sun L, Jiang W, Zhang P, Xiao Q, Han D, Saiyin H, Zhu J, et al: Metallothionein MT1M is a tumor suppressor of human hepatocellular carcinomas. Carcinogenesis 2012, 33:2568-2577.
    41. Lu DD, Chen YC, Zhang XR, Cao XR, Jiang HY, Yao L: The relationship between metallothionein-1F (MT1F) gene and hepatocellular carcinoma. Yale J Biol Med 2003, 76:55-62.
    42. Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R: The role of metallothionein in oxidative stress. Int J Mol Sci 2013, 14:6044-6066.
    43. Kanda M, Nomoto S, Okamura Y, Nishikawa Y, Sugimoto H, Kanazumi N, Takeda S, Nakao A: Detection of metallothionein 1G as a methylated tumor suppressor gene in human hepatocellular carcinoma using a novel method of double combination array analysis. Int J Oncol 2009, 35:477-483.
    44. Suzuki S, Nakano H, Takahashi S: Epigenetic regulation of the metallothionein-1A promoter by PU.1 during differentiation of THP-1 cells. Biochem Biophys Res Commun 2013, 433:349-353.
    45. Back CM, Stohr S, Schafer EA, Biebermann H, Boekhoff I, Breit A, Gudermann T, Buch TR: TSH induces metallothionein 1 in thyrocytes via Gq/11- and PKC-dependent signaling. J Mol Endocrinol 2013, 51:79-90.
    46. Ohtsuji M, Katsuoka F, Kobayashi A, Aburatani H, Hayes JD, Yamamoto M: Nrf1 and Nrf2 play distinct roles in activation of antioxidant response element-dependent genes. J Biol Chem 2008, 283:33554-33562.
    47. Song MO, Mattie MD, Lee CH, Freedman JH: The role of Nrf1 and Nrf2 in the regulation of copper-responsive transcription. Exp Cell Res 2014, 322:39-50.
    48. Datta J, Majumder S, Kutay H, Motiwala T, Frankel W, Costa R, Cha HC, MacDougald OA, Jacob ST, Ghoshal K: Metallothionein expression is suppressed in primary human hepatocellular carcinomas and is mediated through inactivation of CCAAT/enhancer binding protein alpha by phosphatidylinositol 3-kinase signaling cascade. Cancer Res 2007, 67:2736-2746.
    49. Mark C, Looman C, Abrink M, Hellman L: Molecular cloning and preliminary functional analysis of two novel human KRAB zinc finger proteins, HKr18 and HKr19. DNA Cell Biol 2001, 20:275-286.
    50. Witzgall R, O'Leary E, Leaf A, Onaldi D, Bonventre JV: The Kruppel-associated box-A (KRAB-A) domain of zinc finger proteins mediates transcriptional repression. Proc Natl Acad Sci U S A 1994, 91:4514-4518.
    51. Feschotte C, Gilbert C: Endogenous viruses: insights into viral evolution and impact on host biology. Nat Rev Genet 2012, 13:283-296.
    52. Ecco G, Imbeault M, Trono D: KRAB zinc finger proteins. Development 2017, 144:2719-2729.
    53. Friedman JR, Fredericks WJ, Jensen DE, Speicher DW, Huang XP, Neilson EG, Rauscher FJ, 3rd: KAP-1, a novel corepressor for the highly conserved KRAB repression domain. Genes Dev 1996, 10:2067-2078.
    54. Urrutia R: KRAB-containing zinc-finger repressor proteins. Genome Biol 2003, 4:231.
    55. Quenneville S, Turelli P, Bojkowska K, Raclot C, Offner S, Kapopoulou A, Trono D: The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep 2012, 2:766-773.
    56. Ghoshal K, Datta J, Majumder S, Bai S, Dong X, Parthun M, Jacob ST: Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF-1 and forming an open chromatin structure. Mol Cell Biol 2002, 22:8302-8319.
    57. Majumder S, Kutay H, Datta J, Summers D, Jacob ST, Ghoshal K: Epigenetic regulation of metallothionein-i gene expression: differential regulation of methylated and unmethylated promoters by DNA methyltransferases and methyl CpG binding proteins. J Cell Biochem 2006, 97:1300-1316.
    58. Rowe HM, Friedli M, Offner S, Verp S, Mesnard D, Marquis J, Aktas T, Trono D: De novo DNA methylation of endogenous retroviruses is shaped by KRAB-ZFPs/KAP1 and ESET. Development 2013, 140:519-529.
    59. Saito Y, Kanai Y, Nakagawa T, Sakamoto M, Saito H, Ishii H, Hirohashi S: Increased protein expression of DNA methyltransferase (DNMT) 1 is significantly correlated with the malignant potential and poor prognosis of human hepatocellular carcinomas. Int J Cancer 2003, 105:527-532.
    60. Liu X, Ou H, Xiang L, Li X, Huang Y, Yang D: Elevated UHRF1 expression contributes to poor prognosis by promoting cell proliferation and metastasis in hepatocellular carcinoma. Oncotarget 2017, 8:10510-10522.
    61. Cao D, Fan ST, Chung SS: Identification and characterization of a novel human aldose reductase-like gene. J Biol Chem 1998, 273:11429-11435.
    62. Rizner TL: Enzymes of the AKR1B and AKR1C Subfamilies and Uterine Diseases. Front Pharmacol 2012, 3:34.
    63. Sato S, Genda T, Hirano K, Tsuzura H, Narita Y, Kanemitsu Y, Kikuchi T, Iijima K, Wada R, Ichida T: Up-regulated aldo-keto reductase family 1 member B10 in chronic hepatitis C: association with serum alpha-fetoprotein and hepatocellular carcinoma. Liver Int 2012, 32:1382-1390.
    64. Fukumoto S, Yamauchi N, Moriguchi H, Hippo Y, Watanabe A, Shibahara J, Taniguchi H, Ishikawa S, Ito H, Yamamoto S, et al: Overexpression of the aldo-keto reductase family protein AKR1B10 is highly correlated with smokers' non-small cell lung carcinomas. Clin Cancer Res 2005, 11:1776-1785.
    65. Kang MW, Lee ES, Yoon SY, Jo J, Lee J, Kim HK, Choi YS, Kim K, Shim YM, Kim J, Kim H: AKR1B10 is associated with smoking and smoking-related non-small-cell lung cancer. J Int Med Res 2011, 39:78-85.
    66. Li J, Guo Y, Duan L, Hu X, Zhang X, Hu J, Huang L, He R, Hu Z, Luo W, et al: AKR1B10 promotes breast cancer cell migration and invasion via activation of ERK signaling. Oncotarget 2017, 8:33694-33703.
    67. Chung YT, Matkowskyj KA, Li H, Bai H, Zhang W, Tsao MS, Liao J, Yang GY: Overexpression and oncogenic function of aldo-keto reductase family 1B10 (AKR1B10) in pancreatic carcinoma. Mod Pathol 2012, 25:758-766.
    68. Heringlake S, Hofdmann M, Fiebeler A, Manns MP, Schmiegel W, Tannapfel A: Identification and expression analysis of the aldo-ketoreductase1-B10 gene in primary malignant liver tumours. J Hepatol 2010, 52:220-227.
    69. Satow R, Shitashige M, Kanai Y, Takeshita F, Ojima H, Jigami T, Honda K, Kosuge T, Ochiya T, Hirohashi S, Yamada T: Combined functional genome survey of therapeutic targets for hepatocellular carcinoma. Clin Cancer Res 2010, 16:2518-2528.
    70. Wei W, Liang HJ, Cui JF, Guo K, Kang XN, Cao J, Su JJ, Li Y, Liu YK: [Effects of AKR1B10 gene silence on the growth and gene expression of HCC cell line MHCC97H]. Zhonghua Gan Zang Bing Za Zhi 2010, 18:666-671.
    71. Liu Z, Yan R, Al-Salman A, Shen Y, Bu Y, Ma J, Luo DX, Huang C, Jiang Y, Wilber A, et al: Epidermal growth factor induces tumour marker AKR1B10 expression through activator protein-1 signalling in hepatocellular carcinoma cells. Biochem J 2012, 442:273-282.
    72. Matsunaga T, Yamane Y, Iida K, Endo S, Banno Y, El-Kabbani O, Hara A: Involvement of the aldo-keto reductase, AKR1B10, in mitomycin-c resistance through reactive oxygen species-dependent mechanisms. Anticancer Drugs 2011, 22:402-408.
    73. Bacolod MD, Lin SM, Johnson SP, Bullock NS, Colvin M, Bigner DD, Friedman HS: The gene expression profiles of medulloblastoma cell lines resistant to preactivated cyclophosphamide. Curr Cancer Drug Targets 2008, 8:172-179.
    74. Heibein AD, Guo B, Sprowl JA, Maclean DA, Parissenti AM: Role of aldo-keto reductases and other doxorubicin pharmacokinetic genes in doxorubicin resistance, DNA binding, and subcellular localization. BMC Cancer 2012, 12:1471-2407.
    75. Gao AM, Ke ZP, Shi F, Sun GC, Chen H: Chrysin enhances sensitivity of BEL-7402/ADM cells to doxorubicin by suppressing PI3K/Akt/Nrf2 and ERK/Nrf2 pathway. Chem Biol Interact 2013, 206:100-108.
    76. Matsunaga T, Yamaji Y, Tomokuni T, Morita H, Morikawa Y, Suzuki A, Yonezawa A, Endo S, Ikari A, Iguchi K, et al: Nitric oxide confers cisplatin resistance in human lung cancer cells through upregulation of aldo-keto reductase 1B10 and proteasome. Free Radic Res 2014, 48:1371-1385.
    77. Matsunaga T, Suzuki A, Kezuka C, Okumura N, Iguchi K, Inoue I, Soda M, Endo S, El-Kabbani O, Hara A, Ikari A: Aldo-keto reductase 1B10 promotes development of cisplatin resistance in gastrointestinal cancer cells through down-regulating peroxisome proliferator-activated receptor-gamma-dependent mechanism. Chem Biol Interact 2016, 256:142-153.
    78. Cheng BY, Lau EY, Leung HW, Leung CO, Ho NP, Gurung S, Cheng LK, Lin CH, Lo RC, Ma S, et al: IRAK1 Augments Cancer Stemness and Drug Resistance via the AP-1/AKR1B10 Signaling Cascade in Hepatocellular Carcinoma. Cancer Res 2018, 78:2332-2342.
    79. Tzivion G, Gupta VS, Kaplun L, Balan V: 14-3-3 proteins as potential oncogenes. Semin Cancer Biol 2006, 16:203-213.
    80. Li K, Prow T, Lemon SM, Beard MR: Cellular response to conditional expression of hepatitis C virus core protein in Huh7 cultured human hepatoma cells. Hepatology 2002, 35:1237-1246.
    81. Kim TR, Moon JH, Lee HM, Cho EW, Paik SG, Kim IG: SM22alpha inhibits cell proliferation and protects against anticancer drugs and gamma-radiation in HepG2 cells: involvement of metallothioneins. FEBS Lett 2009, 583:3356-3362.
    82. Wu SM, Cheng WL, Liao CJ, Chi HC, Lin YH, Tseng YH, Tsai CY, Chen CY, Lin SL, Chen WJ, et al: Negative modulation of the epigenetic regulator, UHRF1, by thyroid hormone receptors suppresses liver cancer cell growth. Int J Cancer 2015, 137:37-49.
    83. Xu B, Li SH, Zheng R, Gao SB, Ding LH, Yin ZY, Lin X, Feng ZJ, Zhang S, Wang XM, Jin GH: Menin promotes hepatocellular carcinogenesis and epigenetically up-regulates Yap1 transcription. Proc Natl Acad Sci U S A 2013, 110:17480-17485.
    84. Liu LP, Liang HF, Chen XP, Zhang WG, Yang SL, Xu T, Ren L: The role of NF-kappaB in Hepatitis b virus X protein-mediated upregulation of VEGF and MMPs. Cancer Invest 2010, 28:443-451.
    85. Pons F, Varela M, Llovet JM: Staging systems in hepatocellular carcinoma. HPB (Oxford) 2005, 7:35-41.
    86. Li LC, Dahiya R: MethPrimer: designing primers for methylation PCRs. Bioinformatics 2002, 18:1427-1431.
    87. Ma Y, Chen B, Xu X, Lin G: Prospective nested case-control study of feature genes related to leukemic evolution of myelodysplastic syndrome. Mol Biol Rep 2013, 40:469-476.
    88. Chen X, Cheung ST, So S, Fan ST, Barry C, Higgins J, Lai KM, Ji J, Dudoit S, Ng IO, et al: Gene expression patterns in human liver cancers. Molecular Biology of the Cell 2002, 13:1929-1939.
    89. Liao YL, Sun YM, Chau GY, Chau YP, Lai TC, Wang JL, Horng JT, Hsiao M, Tsou AP: Identification of SOX4 target genes using phylogenetic footprinting-based prediction from expression microarrays suggests that overexpression of SOX4 potentiates metastasis in hepatocellular carcinoma. Oncogene 2008, 27:5578-5589.
    90. Mas VR, Maluf DG, Archer KJ, Yanek K, Kong X, Kulik L, Freise CE, Olthoff KM, Ghobrial RM, McIver P, Fisher R: Genes involved in viral carcinogenesis and tumor initiation in hepatitis C virus-induced hepatocellular carcinoma. Molecular Medicine 2009, 15:85-94.
    91. Roessler S, Jia HL, Budhu A, Forgues M, Ye QH, Lee JS, Thorgeirsson SS, Sun Z, Tang ZY, Qin LX, Wang XW: A unique metastasis gene signature enables prediction of tumor relapse in early-stage hepatocellular carcinoma patients. Cancer Research 2010, 70:10202-10212.
    92. Wurmbach E, Chen YB, Khitrov G, Zhang W, Roayaie S, Schwartz M, Fiel I, Thung S, Mazzaferro V, Bruix J, et al: Genome-wide molecular profiles of HCV-induced dysplasia and hepatocellular carcinoma. Hepatology 2007, 45:938-947.
    93. Yu K, Ganesan K, Tan LK, Laban M, Wu J, Zhao XD, Li H, Leung CH, Zhu Y, Wei CL, et al: A precisely regulated gene expression cassette potently modulates metastasis and survival in multiple solid cancers. PLoS Genet 2008, 4:e1000129.
    94. Chiang DY, Villanueva A, Hoshida Y, Peix J, Newell P, Minguez B, LeBlanc AC, Donovan DJ, Thung SN, Sole M, et al: Focal gains of VEGFA and molecular classification of hepatocellular carcinoma. Cancer Research 2008, 68:6779-6788.
    95. Xu Z, Gong Q, Xia B, Groves B, Zimmermann M, Mugler C, Mu D, Matsumoto B, Seaman M, Ma D: A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. Journal of Cell Biology 2009, 186:343-353.
    96. Kim TR, Moon JH, Lee HM, Cho EW, Paik SG, Kim IG: SM22alpha inhibits cell proliferation and protects against anticancer drugs and gamma-radiation in HepG2 cells: involvement of metallothioneins. FEBS Letters 2009, 583:3356-3362.
    97. Wu SM, Cheng WL, Liao CJ, Chi HC, Lin YH, Tseng YH, Tsai CY, Chen CY, Lin SL, Chen WJ, et al: Negative modulation of the epigenetic regulator, UHRF1, by thyroid hormone receptors suppresses liver cancer cell growth. International Journal of Cancer 2015, 137:37-49.
    98. Dameron CT, Harrison MD: Mechanisms for protection against copper toxicity. Am J Clin Nutr 1998, 67:1091S-1097S.
    99. Kligys K, Yao J, Yu D, Jones JC: 14-3-3zeta/tau heterodimers regulate Slingshot activity in migrating keratinocytes. Biochem Biophys Res Commun 2009, 383:450-454.
    100. Jones DH, Ley S, Aitken A: Isoforms of 14-3-3 protein can form homo- and heterodimers in vivo and in vitro: implications for function as adapter proteins. FEBS Lett 1995, 368:55-58.
    101. Wang B, Yang H, Liu YC, Jelinek T, Zhang L, Ruoslahti E, Fu H: Isolation of high-affinity peptide antagonists of 14-3-3 proteins by phage display. Biochemistry 1999, 38:12499-12504.
    102. Masters SC, Fu H: 14-3-3 proteins mediate an essential anti-apoptotic signal. J Biol Chem 2001, 276:45193-45200.
    103. Nagel WW, Vallee BL: Cell cycle regulation of metallothionein in human colonic cancer cells. Proc Natl Acad Sci U S A 1995, 92:579-583.
    104. Nemeth ZH, Deitch EA, Szabo C, Hasko G: Pyrrolidinedithiocarbamate inhibits NF-kappaB activation and IL-8 production in intestinal epithelial cells. Immunol Lett 2003, 85:41-46.
    105. Liu SF, Ye X, Malik AB: Inhibition of NF-kappaB activation by pyrrolidine dithiocarbamate prevents In vivo expression of proinflammatory genes. Circulation 1999, 100:1330-1337.
    106. Widera D, Mikenberg I, Elvers M, Kaltschmidt C, Kaltschmidt B: Tumor necrosis factor alpha triggers proliferation of adult neural stem cells via IKK/NF-kappaB signaling. BMC Neurosci 2006, 7:64.
    107. Majumder S, Roy S, Kaffenberger T, Wang B, Costinean S, Frankel W, Bratasz A, Kuppusamy P, Hai T, Ghoshal K, Jacob ST: Loss of metallothionein predisposes mice to diethylnitrosamine-induced hepatocarcinogenesis by activating NF-kappaB target genes. Cancer Res 2010, 70:10265-10276.
    108. Donadelli M, Dalla Pozza E, Costanzo C, Scupoli MT, Piacentini P, Scarpa A, Palmieri M: Increased stability of P21(WAF1/CIP1) mRNA is required for ROS/ERK-dependent pancreatic adenocarcinoma cell growth inhibition by pyrrolidine dithiocarbamate. Biochim Biophys Acta 2006, 9:917-926.
    109. Ming-Fen Lee C-TL, Ming-Dian Chen, An-Chin Cheng: Pyrrolidine Dithiocarbamate (PDTC) Attenuates Luteolin-Induced Apoptosis in Human Leukemia HL-60 Cells. Journal of Cancer Therapy 2012, Vol.3 No.6.
    110. Burdette D, Olivarez M, Waris G: Activation of transcription factor Nrf2 by hepatitis C virus induces the cell-survival pathway. J Gen Virol 2010, 91:681-690.
    111. Houessinon A, Francois C, Sauzay C, Louandre C, Mongelard G, Godin C, Bodeau S, Takahashi S, Saidak Z, Gutierrez L, et al: Metallothionein-1 as a biomarker of altered redox metabolism in hepatocellular carcinoma cells exposed to sorafenib. Mol Cancer 2016, 15:38.
    112. Xiao TZ, Bhatia N, Urrutia R, Lomberk GA, Simpson A, Longley BJ: MAGE I transcription factors regulate KAP1 and KRAB domain zinc finger transcription factor mediated gene repression. PLoS One 2011, 6:e23747.
    113. Steward MM, Lee JS, O'Donovan A, Wyatt M, Bernstein BE, Shilatifard A: Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol 2006, 13:852-854.
    114. Fossati A, Dolfini D, Donati G, Mantovani R: NF-Y recruits Ash2L to impart H3K4 trimethylation on CCAAT promoters. PLoS One 2011, 6:e17220.
    115. Wan M, Liang J, Xiong Y, Shi F, Zhang Y, Lu W, He Q, Yang D, Chen R, Liu D, et al: The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells. J Biol Chem 2013, 288:5039-5048.
    116. Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD, Roeder RG: Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 2006, 13:713-719.
    117. Xu Z, Gong Q, Xia B, Groves B, Zimmermann M, Mugler C, Mu D, Matsumoto B, Seaman M, Ma D: A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. J Cell Biol 2009, 186:343-353.
    118. Cao F, Chen Y, Cierpicki T, Liu Y, Basrur V, Lei M, Dou Y: An Ash2L/RbBP5 heterodimer stimulates the MLL1 methyltransferase activity through coordinated substrate interactions with the MLL1 SET domain. PLoS One 2010, 5:e14102.
    119. Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, Li J, Rao A, Shi Y: The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 2007, 447:601-605.
    120. Magerl C, Ellinger J, Braunschweig T, Kremmer E, Koch LK, Holler T, Buttner R, Luscher B, Gutgemann I: H3K4 dimethylation in hepatocellular carcinoma is rare compared with other hepatobiliary and gastrointestinal carcinomas and correlates with expression of the methylase Ash2 and the demethylase LSD1. Hum Pathol 2010, 41:181-189.
    121. Rothbart SB, Krajewski K, Nady N, Tempel W, Xue S, Badeaux AI, Barsyte-Lovejoy D, Martinez JY, Bedford MT, Fuchs SM, et al: Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 2012, 19:1155-1160.
    122. Morin PJ: beta-catenin signaling and cancer. Bioessays 1999, 21:1021-1030.
    123. de La Coste A, Romagnolo B, Billuart P, Renard CA, Buendia MA, Soubrane O, Fabre M, Chelly J, Beldjord C, Kahn A, Perret C: Somatic mutations of the beta-catenin gene are frequent in mouse and human hepatocellular carcinomas. Proc Natl Acad Sci U S A 1998, 95:8847-8851.
    124. Nhieu JT, Renard CA, Wei Y, Cherqui D, Zafrani ES, Buendia MA: Nuclear accumulation of mutated beta-catenin in hepatocellular carcinoma is associated with increased cell proliferation. Am J Pathol 1999, 155:703-710.
    125. Inagawa S, Itabashi M, Adachi S, Kawamoto T, Hori M, Shimazaki J, Yoshimi F, Fukao K: Expression and prognostic roles of beta-catenin in hepatocellular carcinoma: correlation with tumor progression and postoperative survival. Clin Cancer Res 2002, 8:450-456.
    126. Liu Z, Zhong L, Krishack PA, Robbins S, Cao JX, Zhao Y, Chung S, Cao D: Structure and promoter characterization of aldo-keto reductase family 1 B10 gene. Gene 2009, 437:39-44.
    127. Ha SY, Song DH, Lee JJ, Lee HW, Cho SY, Park CK: High expression of aldo-keto reductase 1B10 is an independent predictor of favorable prognosis in patients with hepatocellular carcinoma. Gut Liver 2014, 8:648-654.

    QR CODE