研究生: |
劉睿雯 Liu, Rui-Wen |
---|---|
論文名稱: |
輻射作業對懷孕女性工作人員子宮及胎兒之劑量評估與驗證研究 A Study on the Dose Evaluation and Verification of Pregnant Woman’s Uterus and Fetus during the Radiation Practice |
指導教授: |
許靖涵
Hsu, Ching-Han 許芳裕 Hsu, Fang-Yuh |
口試委員: |
陳拓榮
CHEN, TUO-RONG 游澄清 YOU, CHENG-CING |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 中文 |
論文頁數: | 155 |
中文關鍵詞: | 懷孕之女性輻射工作人員 、子宮劑量 、實體假體 、數學假體 、劑量轉換係數 、蒙地卡羅計算 、胎兒劑量評估 |
外文關鍵詞: | pregnant workers, uterus dose, physical phantom, mathematical phantom, dose conversion coefficient, monte carlo simulation, fetal dose evaluation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
國際放射防護委員會(International Commission on Radiological Protection﹐ICRP)於2007年提出胚胎及胎兒的劑量建議值為1mSv,而我國現行游離輻射防護安全標準規定,對告知已懷孕之女性輻射工作人員,其腹部表面所接收到的等價劑量須小於2 mSv,且攝入身體內核種的有效劑量須小於1 mSv。 因此,如何評估與監測胎兒劑量,為近年國內急需研議之重要課題。
本研究目的為求得可將「孕婦皮膚表面劑量轉換成子宮劑量」的劑量轉換係數,使用實體假體與數學假體進行評估。藉由實驗照射與蒙地卡羅計算程式模擬,驗證模擬結果的正確性,並討論國外孕婦數學假體以及實體假體之數學假體之轉換係數可否代表台灣孕婦進行胎兒劑量評估。
本研究建議使用實體假體之數學假體進行胎兒劑量評估而非使用國外孕婦數學假體。經由模擬結果亦發現劑量轉換係數會受到子宮體積大小、子宮位置、射源距離、射源能量、射源形狀大小等因素影響。本研究結果提供多種曝露情形下之子宮(胎兒)劑量轉換係數,作為胎兒劑量評估之具體可行方法,可供未來主管機關修法並進行有效輻防管制之參考。
The International Commission on Radiological Protection recommended that the dose limit to embryo/fetus is 1 mSv (ICRP, 2007), and Taiwan’s current laws stipulate to pregnant workers who has informed the employer that the equivalent dose limit is 2 mSv to abdomen surface and effective dose limit is 1 mSv from intake of radionuclide. Therefore, how to evaluate and monitor fetal dose has become an important topic that needs to discuss in Taiwan recently.
The main objective of this research is to obtain the dose conversion coefficient (DCC) in order to calculate uterus dose by surface skin dose, and evaluating DCC by physical phantom and mathematical phantom. The results of monte carlo simulation were verified by experiments in this research. Besides, the applicability of phantom models that suitable for Taiwanese pregnant women was also discussed.
In conclusions, the recommendation that the fetal dose evaluation should use mathematical phantom of physical phantom rather than foreign pregnant woman mathematical phantom was proposed. The reslts of this study provide uterine (fetal) dose conversion coefficients under various exposure situations, as a practical method for fetal dose assessment, and can provide reference for future regulatory amendments and effective radiation control.
1. ICRP,2007. The 2007 Recommendations of International Commission on Radiological Protection. ICRP Publication 103. Ann. ICRP 37(2-4).
2. Brent RL, Beckman DA, Jensh RP. Relative radiosensitivity of fetal tissues. In: Altman KI, Lett JT, editors. Relative Radiation Sensitivities of Human Organ Systems. Vol 12. San Diego: Academic Press; 1987.
3. National Research Council Committee on the Biological Effects of Ionizing Radiation. 1980. The Effects on Populations of Exposure to Low Levels of Ionizing Radiation (BEIR Ⅲ). Washington, D.C.: National Academy of Sciences.
4. Yoshimoto, Y., H. Kato, and W.J.Schull. 1988. Risk of Cancer among in Utero Children Exposed to A-Bomb Radiation: 1950-84. RERF Technical Report 4-88. Hiroshima: Radiation Effects Research Foundation.
5. ICRP, 1987. Protection of the Patient in Nuclear Medicine (and Statement from the 1987 Como Meeting of ICRP). ICRP Publication 52. Ann. ICRP17(4).
6. National Research Council 1990.Health Effects of Exposure to Low Levels of Ionizing Radiation: BEIR Ⅴ. Washington DC: The National Academies Press. https://doi.org/10.17226/1224.
7. ICRP, 2000. Pregnancy and Medical Radiation. ICRP Publication 84. Ann. ICRP30(1).
8. Wagner LK, Lester RG, Saldana LR. Exposure of pregnant patient to diagnostic radiations: a guide to medical management. Madison, Wis: Medical Physics Publishing, 1997.
9. 行政院原子委員會,游離輻射防護法規彙編.2012, 新北市: 行政院原子能委員會。
10. Osei, E.K., FAULKNER,K. Fetal position and size data for dose estimation. Br J Dadiol, v.72, p. 363-370,1999.
11. Osei, E.K., KOTRE, C.J. Equivalent dose to the fetus from occupational exposure of pregnant staff in diagnostic radiology. Br J Radiol, v.74, p.629-637,2001.
12. 詹益宏、賴沂青、口水(民99)。從懷孕到分娩:一本最完整的準媽媽必備書。台灣: 台視文化事業股份有限公司。
13. 羅巧珍(2004)。懷孕到產後飲食營養與體重變化之前瞻性研究。國立臺灣師範大學人類發展與家庭研究所論文,台北市。取自https://ndltd.ncl.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dnclcdr&s=id=%22092NTNU0261017%22.&searchmode=basic
14. 周汎澔、洪麗專、林麗華等(民103)。產科護理學。台灣: 永大書局有限公司。
15. 媽媽寶寶編輯部(民107)。孕肚大小因人而異。媽媽寶寶,10月號第380期。
16. Los Alamos Scientific Laboratory. Group X-6. MCNP : a General Monte Carlo Code for Neutron and Photon Transport. Los Alamos, N.M. : [Springfield, Va.] :Dept. of Energy, Los Alamos Scientific Laboratory ; [for sale by the National Technical Information Service], 1979.
17. Chen, Jing MATHEMATICAL MODELS OF THE EMBRYO AND FETUS FOR USE IN RADIOLOGICAL PROTECTION, Health Physics: March 2004 - Volume 86 - Issue 3 - p 285-295
18. Krstic, D., Nikezic, D. External doses in humans from 137Cs in soil. Health Physics 91 (3): 249-257; 2006.
19. Krstic, D., Nikezic, D. Input files with ORNL-mathematical phantoms of the human body for MCNP-4B, Computer Physics communications (176) 33-37; 2007.
20. Krstic, D., Nikezic, D. Conversion coefficients for age dependent ORNL phantoms from 137Cs in soil as a source of external exposure.Nuclear Instruments and Methods A 580 (1) 540-543; 2007.
21. Lu SC, Chang CH, Yu CH, Kang L, Tsai PY, Chang FM. Reappraisal of fetal abdominal circumference in an Asian population: analysis of 50,131 records. Taiwan J Obstet Gynecol. 2008 Mar;47(1):49-56. doi: 10.1016/S1028-4559(08)60054-6. PMID: 18400582.
22. 「胎兒體重計算器-算算您的寶寶有多大多重?」檢自https://www.money511.com/baby/baby_cal.php (May. 03, 2021)
23. 「肚子裡的寶寶體重標準嗎?」賴宗炫醫師 個人網站 檢自http://www.joseph-lai.idv.tw/CONTENTS/main3_6_b1.html
24. Dai L, Deng C, Li Y, Zhu J, Mu Y, Deng Y, Mao M, Wang Y, Li Q, Ma S, Ma X, Zhang Y. Birth weight reference percentiles for Chinese. PLoS One. 2014 Aug 15;9(8):e104779. doi: 10.1371/journal.pone.0104779. PMID: 25127131; PMCID: PMC4134219.
25. 行政院原子能委員會,2018,游離輻射防護安全標準。網址:http://erss.aec.gov.tw/law/LawContent.aspx?id=FL011947
26. ICRP, 1991. 1990 Recommendations of the International Commission on Radiological Protection. ICRP Publication 60. Ann. ICRP 21 (1-3).
27. ICRP, 1996. Conversion Coefficients for use in Radiological Protection against External Radiation. ICRP Publication 74. Ann. ICRP 26 (3-4).
28. Zankl, M., Drexler, G., Petoussi-Henss, N., & Saito, K. (1997). The calculation of dose from external photon exposures using reference human phantoms and Monte Carlo methods Pt 7 Organ doses due to parallel and environmental exposure geometries (GSF--8/97). Germany
29. X-5 Monte Carlo Team, "MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, Vol. I: Overview and Theory", LA-UR-03-1987, Los Alamos National Laboratory (2003).
30. X-5 Monte Carlo Team, "MCNP-A General Monte Carlo N-Particle Transport Code, Version 5, Vol. I I: User’s Guide", LA-UR-03-0245, Los Alamos National Laboratory (2003).
31. McCONN JR., RJ, Gesh, C.J., Pagh, R.T., Rucker, R.A., Williams, R.G., Compendium of Material Composition Data for Radiation Transport Modeling, Radiation portal monitor project, Pacific Northwest, National Laboratory. PIET-43741-TM-963 PNNL-15870 Rev. 1, 2011.
32. ICRP, 2010. Conversion Coefficients for Radiological Protection Quantities for External Radiation Exposures. ICRP Publication 116, Ann. ICRP 40(2-5).
33. Khailov AM, Ivannikov AI, Skvortsov VG, Stepanenko VF, Orlenko SP, Flood AB, Williams BB, Swartz HM. Calculation of dose conversion factors for doses in the fingernails to organ doses at external gamma irradiation in air. Radiat Meas. 2015 Nov 1;82:1-7. doi: 10.1016/j.radmeas.2015.07.004. PMID: 26347593; PMCID: PMC4559862.
34. Poludniowski, G.G. and Evans, P.M. (2007), Calculation of x‐ray spectra emerging from an x‐ray tube. Part I. Electron penetration characteristics in x‐ray targets. Med. Phys., 34: 2164-2174. https://doi.org/10.1118/1.2734725
35. Xu XG. An exponential growth of computational phantom research in radiation protection, imaging, and radiotherapy: a review of the fifty-year history. Phys Med Biol. 2014 Sep 21;59(18):R233-302. doi: 10.1088/0031-9155/59/18/R233. Epub 2014 Aug 21. PMID: 25144730; PMCID: PMC4169876.
36. Poludniowski, G.G. (2007), Calculation of x‐ray spectra emerging from an x‐ray tube. Part II. X‐ray production and filtration in x‐ray targets. Med. Phys., 34: 2175-2186. https://doi.org/10.1118/1.2734726
37. G Poludniowski et al 2009 Phys. Med. Biol. 54 N433