簡易檢索 / 詳目顯示

研究生: 葉倫文
Yeh, Lun-Wen
論文名稱: 有一個額外行星的海王星遷徙模型
Neptune migration model with one extra planet
指導教授: 張祥光
Chang, Hsiang-Kuang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 95
中文關鍵詞: 古柏帶共振海王星
外文關鍵詞: Kuiper belt, resonance, Neptune
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •                摘要
    我們研究在傳統的海王星遷徙模型(Neptune migration model)裡多加一個0.1到2.0M♁的額外行星。在行星遷徙的時期裡,這個額外行星處於海王星的3:2平均運動共振(mean motion resonance),接著在類木行星(Jovian planet)遷徙到接近現在軌道時,它會脫離古柏帶(Kuiper belt)。在傳統的海王星遷徙模型裡多加這個額外行星,且假設原始盤面只延伸到45 AU,可以解釋一些傳統的海王星遷徙模型不能解釋的觀測現象。(1)可以產生大傾角的類冥小天體(Plutino),i ≈15-350。(2)讓傳統古柏帶天體 (Classical Kuiper belt object)有比較大的離心率和傾角。(3)讓海王星的3:2和2:1共振天體的個數比例變大,且讓海王星的3:2共振天體和傳統古柏帶天體的個數比例變小,可較符合觀測。(4)最後,可以產生海王星5:2共振天體。然而從數值模型的結果顯示,這個模型是一個發生機率低的事件。另外,有兩項模擬的結果可能和觀測不符合。第一項是在傳統古柏帶裡小傾角天體的數量不足,第二項是在a ≈50-52 AU處,有小傾角且接近圓軌道的天體產生。根據我們目前的研究,在傳統的海王星遷徙模型裡照我們的方式多加一個額外的行星可能不太合適,因為以上兩個原因和發生的機率可能很低。機率低和小傾角天體的不足這兩個問題,可以考慮用更實際的模型去研究。


    Abstract
    We explore conventional Neptune migration model with one additional planet of mass at 0.1-2.0 M♁ (Yeh and Chang, 2009). This planet inhabited in the 3:2 mean motion resonance with Neptune during planet migration epoch, and then escaped from the Kuiper belt when Jovian planets parked near the present orbits. Adding this extra planet and assuming the primordial disk truncated at about 45 AU in the conventional Neptune migration model, it is able to explain the complex structure of the observed Kuiper belt better than the usual Neptune migration model did in several respects, which are the following. (1) High-inclination Plutinos with i ≃ 15°-35° are produced. (2)generating the excitation of the classical Kuiper belt objects, which have moderate eccentricities and inclinations. (3) Producing the larger ratio of Neptune's 3:2 to 2:1 resonant particles, and the lower ratio of particles in the 3:2 resonance to those in the classical belt, which may be more consistent with observations. (4)Finally, several Neptune’s 5:2 resonant particles are obtained. However, numerical experiments imply that this model is a low-probability event. In addition to the low probability, two features produced by this model may be inconsistent with the observations. They are small number of low-inclination particles in the classical belt, and the production of a remnant population with near-circular and low-inclination orbit within a ≃ 50-52 AU. According to our present study, including one extra planet in the conventional Neptune migration model as the scenario we explored here may be unsuitable because of the low probability, and the two drawbacks mentioned above, although this model can explain better several features which are hard to produce by the conventional Neptune migration model. The issues of low-probability event and the lack of low-inclination Kuiper belt objects in the classical belt are interesting and may be studied further under a more realistic consideration.

    Contents 1 Introduction and motivation 1 1.1 Trans-Neptunian objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Neptune migration model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Motivation and extra-planet model . . . . . . . . . . . . . . . . . . . . . . . 4 2 Numerical methods 9 3 MMR and conventional Neptune migration model 11 3.1 Mean motion resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 The stability of Neptune’s 3:2 resonant bodies . . . . . . . . . . . . . . . . . 13 3.3 Conventional Neptune migration model . . . . . . . . . . . . . . . . . . . . . 18 4 Numerical examination for the resonances overlap 27 5 Planet migration with one additional planet 31 5.1 Short-term (82.5 Myr) simulations . . . . . . . . . . . . . . . . . . . . . . . . 31 5.2 Long-term (495 Myr) simulations . . . . . . . . . . . . . . . . . . . . . . . . 33 6 The results of the long-term integration 39 6.1 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.2 Truncated disk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 6.3 Comparison with observed KBOs . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3.1 a-e and a-i distributions . . . . . . . . . . . . . . . . . . . . . . . . . 42 6.3.2 Plutinos and other resonant KBOs . . . . . . . . . . . . . . . . . . . 51 i 6.3.3 Extended scattering KBOs . . . . . . . . . . . . . . . . . . . . . . . . 52 6.3.4 The outer edge of Kuiper belt . . . . . . . . . . . . . . . . . . . . . . 55 7 Discussion 59 7.1 The assumption of truncation disk . . . . . . . . . . . . . . . . . . . . . . . 59 7.2 The removal of the extra planet . . . . . . . . . . . . . . . . . . . . . . . . . 59 7.3 The issue of low-inclination classical KBOs . . . . . . . . . . . . . . . . . . . 65 7.4 Remnant population near a ≃ 50-52 AU . . . . . . . . . . . . . . . . . . . . 67 8 Conclusions and future works 69 A Formula for the artificial force of planet migration 71 B Planar, circular, restricted three-body model 73 C a-e relation for a resonant object during planet migration 77 D The Tisserand relation 81 E The inclination distribution of KBOs 85 F The cooling timescale of dynamical friction 89

    Bernstein G. M., Trilling D. E., Allen R. L., Brown M. E., Holman M., Malhotra R., 2004,
    AJ, 128, 1364
    Brown M. E., 2001, AJ, 121, 2804
    Chambers J. E., 1999, MNRAS, 304, 793
    Chandrasekhar S., 1949, Principles of Stellar Dynamics. Dover Publications
    Chiang E., Lithwick Y., Murray-Clay R., Buie M., Grundy W., Holman M., 2007, in Reipurth
    B., Jewitt D., Keil K., eds, Protostars and Planets V, A brief history of transneptunian
    space. pp 895–911
    Chiang E. I., Jordan A. B., 2002, AJ, 124, 3430
    Chiang E. I., Jordan A. B., Millis R. L., Buie M. W., Wasserman L. H., Elliot J. L., Kern
    S. D., Trilling D. E., Meech K. J., Wagner R. M., 2003, AJ, 126, 430
    de El´ıa G. C., Brunini A., di Sisto R. P., 2008, A&A, 490, 835
    de La Fuente Marcos R., de La Fuente Marcos C., 2008, MNRAS, 388, 293
    Del Popolo A., Spedicato E., Gambera M., 1999, A&A, 350, 685
    Fernandez J. A., Ip W.-H., 1984, Icarus, 58, 109
    Fern´andez J. A., Ip W.-H., 1996, Planet. Space Sci., 44, 431
    Ford E. B., Chiang E. I., 2007, ApJ, 661, 602
    Gladman B., Chan C., 2006, ApJL, 643, L135
    Gladman B., Holman M., Grav T., Kavelaars J., Nicholson P., Aksnes K., Petit J.-M., 2002,
    Icarus, 157, 269
    Gladman B., Kavelaars J. J., Nicholson P. D., Loredo T. J., Burns J. A., 1998, AJ, 116, 2042
    Gladman B., Kavelaars J. J., Petit J.-M., Morbidelli A., Holman M. J., Loredo T., 2001,
    AJ, 122, 1051
    Gomes R. D. S., 2009, Celest. Mech. Dyn. Astron., doi: 10.1007/s10569-009-9186-5
    Gomes R. S., 2000, AJ, 120, 2695
    Gomes R. S., 2003, Icarus, 161, 404
    Gomes R. S., Morbidelli A., Levison H. F., 2004, Icarus, 170, 492
    Griv E., Jiang I.-G., 2009, MNRAS, pp 611–616
    Hahn J. M., Malhotra R., 1999, AJ, 117, 3041
    Hahn J. M., Malhotra R., 2005, AJ, 130, 2392
    Holman M. J., Wisdom J., 1993, AJ, 105, 1987
    Ida S., 1990, Icarus, 88, 129
    Ida S., Bryden G., Lin D. N. C., Tanaka H., 2000, ApJ, 534, 428
    Ida S., Larwood J., Burkert A., 2000, ApJ, 528, 351
    Ida S., Makino J., 1992, Icarus, 98, 28
    Jewitt D., Luu J., 1993, Nature, 362, 730
    Jewitt D., Luu J., Trujillo C., 1998, AJ, 115, 2125
    Jiang I.-G., Yeh L.-C., 2004, MNRAS, 355, L29
    Kenyon S. J., 2002, PASP, 114, 265
    Kenyon S. J., Bromley B. C., 2004, Nature, 432, 598
    Kenyon S. J., Bromley B. C., O’Brien D. P., Davis D. R., 2008, The Solar System Beyond
    Neptune. University of Arizona, pp 293–313
    Kenyon S. J., Luu J. X., 1999, AJ, 118, 1101
    Kirsh D. R., Duncan M., Brasser R., Levison H. F., 2009, Icarus, 199, 197
    Kobayashi H., Ida S., 2001, Icarus, 153, 416
    Kobayashi H., Ida S., Tanaka H., 2005, Icarus, 177, 246
    Kokubo E., 2005, in Kneˇzevi´c Z., Milani A., eds, IAU Colloq. 197: Dynamics of Populations
    of Planetary Systems, Dynamics of planetesimals: the role of two-body relaxation. pp
    41–46
    Kotoulas T. A., Voyatzis G., 2005, A&A, 441, 807
    Lepage I., Duncan M. J., 2004, AJ, 127, 1755
    Levison H. F., Duncan M. J., 1993, ApJL, 406, L35
    Levison H. F., Morbidelli A., 2003, Nature, 426, 419
    Levison H. F., Stern S. A., 1995, Icarus, 116, 315
    Lykawka P. S., Mukai T., 2007a, Icarus, 189, 213
    Lykawka P. S., Mukai T., 2007b, Icarus, 186, 331
    Lykawka P. S., Mukai T., 2007c, Icarus, 192, 238
    Lykawka P. S., Mukai T., 2008, AJ, 135, 1161
    Malhotra R., 1993, Nature, 365, 819
    Malhotra R., 1995, AJ, 110, 420
    Malhotra R., 1996, AJ, 111, 504
    Moore A. J., Quillen A. C., Edgar R. G., 2008, ArXiv e-prints: 0809.2855
    Morbidelli A., Brown M. E., 2004, Comets II. University of Arizona, pp 175–191
    Morbidelli A., Levison H. F., 2004, AJ, 128, 2564
    Murray C. D., Dermott S. F., 1999, Solar System Dynamics. Cambridge University press
    Murray N., Holman M., Potter M., 1998, AJ, 116, 2583
    Murray-Clay R. A., Chiang E. I., 2006, ApJ, 651, 1194
    Nesvorn´y D., Morbidelli A., 1998a, Celest. Mech. Dyn. Astron., 71, 243
    Nesvorn´y D., Morbidelli A., 1998b, AJ, 116, 3029
    Nesvorn´y D., Roig F., 2000, Icarus, 148, 282
    Nesvorn´y D., Roig F., 2001, Icarus, 150, 104
    Noll K. S., Grundy W. M., Stephens D. C., Levison H. F., Kern S. D., 2008, Icarus, 194, 758
    Petit J.-M., Morbidelli A., Valsecchi G. B., 1999, Icarus, 141, 367
    Quillen A. C., 2006, MNRAS, 365, 1367
    Sheppard S. S., 2006, in Kannappan S. J., Redfield S., Kessler-Silacci J. E., Landriau M.,
    Drory N., eds, New Horizons in Astronomy: Frank N. Bash Symposium Vol. 352 of Astro-
    nomical Society of the Pacific Conference Series, Small bodies in the outer Solar System.
    pp 3–14
    Stern S. A., 1991, Icarus, 90, 271
    Tiscareno M. S., Malhotra R., 2008, ArXiv e-prints: 0807.2835
    Trujillo C. A., Brown M. E., 2001, ApJL, 554, L95
    Trujillo C. A., Brown M. E., 2002, ApJL, 566, L125
    Trujillo C. A., Jewitt D. C., Luu J. X., 2001, AJ, 122, 457
    Wiegert P., Innanen K., Huang T.-Y., Mikkola S., 2003, AJ, 126, 1575
    Yeh L.-W., Chang H.-K., 2009, ICARUS, doi: 10.1016/j.icarus.2009.06.008, in press
    Yu Q., Tremaine S., 1999, AJ, 118, 1873
    Zhou L.-Y., Sun Y.-S., Zhou J.-L., Zheng J.-Q., Valtonen M., 2002, MNRAS, 336, 520

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE