研究生: |
葉倫文 Yeh, Lun-Wen |
---|---|
論文名稱: |
有一個額外行星的海王星遷徙模型 Neptune migration model with one extra planet |
指導教授: |
張祥光
Chang, Hsiang-Kuang |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 95 |
中文關鍵詞: | 古柏帶 、共振 、海王星 |
外文關鍵詞: | Kuiper belt, resonance, Neptune |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
我們研究在傳統的海王星遷徙模型(Neptune migration model)裡多加一個0.1到2.0M♁的額外行星。在行星遷徙的時期裡,這個額外行星處於海王星的3:2平均運動共振(mean motion resonance),接著在類木行星(Jovian planet)遷徙到接近現在軌道時,它會脫離古柏帶(Kuiper belt)。在傳統的海王星遷徙模型裡多加這個額外行星,且假設原始盤面只延伸到45 AU,可以解釋一些傳統的海王星遷徙模型不能解釋的觀測現象。(1)可以產生大傾角的類冥小天體(Plutino),i ≈15-350。(2)讓傳統古柏帶天體 (Classical Kuiper belt object)有比較大的離心率和傾角。(3)讓海王星的3:2和2:1共振天體的個數比例變大,且讓海王星的3:2共振天體和傳統古柏帶天體的個數比例變小,可較符合觀測。(4)最後,可以產生海王星5:2共振天體。然而從數值模型的結果顯示,這個模型是一個發生機率低的事件。另外,有兩項模擬的結果可能和觀測不符合。第一項是在傳統古柏帶裡小傾角天體的數量不足,第二項是在a ≈50-52 AU處,有小傾角且接近圓軌道的天體產生。根據我們目前的研究,在傳統的海王星遷徙模型裡照我們的方式多加一個額外的行星可能不太合適,因為以上兩個原因和發生的機率可能很低。機率低和小傾角天體的不足這兩個問題,可以考慮用更實際的模型去研究。
Abstract
We explore conventional Neptune migration model with one additional planet of mass at 0.1-2.0 M♁ (Yeh and Chang, 2009). This planet inhabited in the 3:2 mean motion resonance with Neptune during planet migration epoch, and then escaped from the Kuiper belt when Jovian planets parked near the present orbits. Adding this extra planet and assuming the primordial disk truncated at about 45 AU in the conventional Neptune migration model, it is able to explain the complex structure of the observed Kuiper belt better than the usual Neptune migration model did in several respects, which are the following. (1) High-inclination Plutinos with i ≃ 15°-35° are produced. (2)generating the excitation of the classical Kuiper belt objects, which have moderate eccentricities and inclinations. (3) Producing the larger ratio of Neptune's 3:2 to 2:1 resonant particles, and the lower ratio of particles in the 3:2 resonance to those in the classical belt, which may be more consistent with observations. (4)Finally, several Neptune’s 5:2 resonant particles are obtained. However, numerical experiments imply that this model is a low-probability event. In addition to the low probability, two features produced by this model may be inconsistent with the observations. They are small number of low-inclination particles in the classical belt, and the production of a remnant population with near-circular and low-inclination orbit within a ≃ 50-52 AU. According to our present study, including one extra planet in the conventional Neptune migration model as the scenario we explored here may be unsuitable because of the low probability, and the two drawbacks mentioned above, although this model can explain better several features which are hard to produce by the conventional Neptune migration model. The issues of low-probability event and the lack of low-inclination Kuiper belt objects in the classical belt are interesting and may be studied further under a more realistic consideration.
Bernstein G. M., Trilling D. E., Allen R. L., Brown M. E., Holman M., Malhotra R., 2004,
AJ, 128, 1364
Brown M. E., 2001, AJ, 121, 2804
Chambers J. E., 1999, MNRAS, 304, 793
Chandrasekhar S., 1949, Principles of Stellar Dynamics. Dover Publications
Chiang E., Lithwick Y., Murray-Clay R., Buie M., Grundy W., Holman M., 2007, in Reipurth
B., Jewitt D., Keil K., eds, Protostars and Planets V, A brief history of transneptunian
space. pp 895–911
Chiang E. I., Jordan A. B., 2002, AJ, 124, 3430
Chiang E. I., Jordan A. B., Millis R. L., Buie M. W., Wasserman L. H., Elliot J. L., Kern
S. D., Trilling D. E., Meech K. J., Wagner R. M., 2003, AJ, 126, 430
de El´ıa G. C., Brunini A., di Sisto R. P., 2008, A&A, 490, 835
de La Fuente Marcos R., de La Fuente Marcos C., 2008, MNRAS, 388, 293
Del Popolo A., Spedicato E., Gambera M., 1999, A&A, 350, 685
Fernandez J. A., Ip W.-H., 1984, Icarus, 58, 109
Fern´andez J. A., Ip W.-H., 1996, Planet. Space Sci., 44, 431
Ford E. B., Chiang E. I., 2007, ApJ, 661, 602
Gladman B., Chan C., 2006, ApJL, 643, L135
Gladman B., Holman M., Grav T., Kavelaars J., Nicholson P., Aksnes K., Petit J.-M., 2002,
Icarus, 157, 269
Gladman B., Kavelaars J. J., Nicholson P. D., Loredo T. J., Burns J. A., 1998, AJ, 116, 2042
Gladman B., Kavelaars J. J., Petit J.-M., Morbidelli A., Holman M. J., Loredo T., 2001,
AJ, 122, 1051
Gomes R. D. S., 2009, Celest. Mech. Dyn. Astron., doi: 10.1007/s10569-009-9186-5
Gomes R. S., 2000, AJ, 120, 2695
Gomes R. S., 2003, Icarus, 161, 404
Gomes R. S., Morbidelli A., Levison H. F., 2004, Icarus, 170, 492
Griv E., Jiang I.-G., 2009, MNRAS, pp 611–616
Hahn J. M., Malhotra R., 1999, AJ, 117, 3041
Hahn J. M., Malhotra R., 2005, AJ, 130, 2392
Holman M. J., Wisdom J., 1993, AJ, 105, 1987
Ida S., 1990, Icarus, 88, 129
Ida S., Bryden G., Lin D. N. C., Tanaka H., 2000, ApJ, 534, 428
Ida S., Larwood J., Burkert A., 2000, ApJ, 528, 351
Ida S., Makino J., 1992, Icarus, 98, 28
Jewitt D., Luu J., 1993, Nature, 362, 730
Jewitt D., Luu J., Trujillo C., 1998, AJ, 115, 2125
Jiang I.-G., Yeh L.-C., 2004, MNRAS, 355, L29
Kenyon S. J., 2002, PASP, 114, 265
Kenyon S. J., Bromley B. C., 2004, Nature, 432, 598
Kenyon S. J., Bromley B. C., O’Brien D. P., Davis D. R., 2008, The Solar System Beyond
Neptune. University of Arizona, pp 293–313
Kenyon S. J., Luu J. X., 1999, AJ, 118, 1101
Kirsh D. R., Duncan M., Brasser R., Levison H. F., 2009, Icarus, 199, 197
Kobayashi H., Ida S., 2001, Icarus, 153, 416
Kobayashi H., Ida S., Tanaka H., 2005, Icarus, 177, 246
Kokubo E., 2005, in Kneˇzevi´c Z., Milani A., eds, IAU Colloq. 197: Dynamics of Populations
of Planetary Systems, Dynamics of planetesimals: the role of two-body relaxation. pp
41–46
Kotoulas T. A., Voyatzis G., 2005, A&A, 441, 807
Lepage I., Duncan M. J., 2004, AJ, 127, 1755
Levison H. F., Duncan M. J., 1993, ApJL, 406, L35
Levison H. F., Morbidelli A., 2003, Nature, 426, 419
Levison H. F., Stern S. A., 1995, Icarus, 116, 315
Lykawka P. S., Mukai T., 2007a, Icarus, 189, 213
Lykawka P. S., Mukai T., 2007b, Icarus, 186, 331
Lykawka P. S., Mukai T., 2007c, Icarus, 192, 238
Lykawka P. S., Mukai T., 2008, AJ, 135, 1161
Malhotra R., 1993, Nature, 365, 819
Malhotra R., 1995, AJ, 110, 420
Malhotra R., 1996, AJ, 111, 504
Moore A. J., Quillen A. C., Edgar R. G., 2008, ArXiv e-prints: 0809.2855
Morbidelli A., Brown M. E., 2004, Comets II. University of Arizona, pp 175–191
Morbidelli A., Levison H. F., 2004, AJ, 128, 2564
Murray C. D., Dermott S. F., 1999, Solar System Dynamics. Cambridge University press
Murray N., Holman M., Potter M., 1998, AJ, 116, 2583
Murray-Clay R. A., Chiang E. I., 2006, ApJ, 651, 1194
Nesvorn´y D., Morbidelli A., 1998a, Celest. Mech. Dyn. Astron., 71, 243
Nesvorn´y D., Morbidelli A., 1998b, AJ, 116, 3029
Nesvorn´y D., Roig F., 2000, Icarus, 148, 282
Nesvorn´y D., Roig F., 2001, Icarus, 150, 104
Noll K. S., Grundy W. M., Stephens D. C., Levison H. F., Kern S. D., 2008, Icarus, 194, 758
Petit J.-M., Morbidelli A., Valsecchi G. B., 1999, Icarus, 141, 367
Quillen A. C., 2006, MNRAS, 365, 1367
Sheppard S. S., 2006, in Kannappan S. J., Redfield S., Kessler-Silacci J. E., Landriau M.,
Drory N., eds, New Horizons in Astronomy: Frank N. Bash Symposium Vol. 352 of Astro-
nomical Society of the Pacific Conference Series, Small bodies in the outer Solar System.
pp 3–14
Stern S. A., 1991, Icarus, 90, 271
Tiscareno M. S., Malhotra R., 2008, ArXiv e-prints: 0807.2835
Trujillo C. A., Brown M. E., 2001, ApJL, 554, L95
Trujillo C. A., Brown M. E., 2002, ApJL, 566, L125
Trujillo C. A., Jewitt D. C., Luu J. X., 2001, AJ, 122, 457
Wiegert P., Innanen K., Huang T.-Y., Mikkola S., 2003, AJ, 126, 1575
Yeh L.-W., Chang H.-K., 2009, ICARUS, doi: 10.1016/j.icarus.2009.06.008, in press
Yu Q., Tremaine S., 1999, AJ, 118, 1873
Zhou L.-Y., Sun Y.-S., Zhou J.-L., Zheng J.-Q., Valtonen M., 2002, MNRAS, 336, 520