研究生: |
尤聖文 Sheng-Wen You |
---|---|
論文名稱: |
金屬(Al)/ 鋁酸鑭(LaAlO3)/矽(Si)薄膜電容器與場效電晶體之製作與電性分析 The Fabrication and Characterization of Metal (Al)-Oxide-Si Capacitors and Field-effect Transistors Using LaAlO3 Gate dielectric |
指導教授: |
李雅明
Ya-Min Lee |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 中文 |
論文頁數: | 74 |
中文關鍵詞: | 鋁酸鑭 、移動率衰退 |
外文關鍵詞: | Lanthanum aluminate, mobility degradation |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Lanthanum aluminate (LaAlO3) is considered as a potential candidate for high-K dielectric applications. LaAlO3 has high dielectric constant (13-27), large energy band gap (over 5eV), high thermal stability (up to 850°C), low leakage current density, large electron band offset. The structure of Al/LaAlO3/Si capacitors and transistors were fabricated successfully. The oxide films were deposited by rf-sputtering. The leakage current density was 4.36×10-3A/cm2 when the applied voltage was -1V. The measured dielectric constant was 13.4. The dominant electrical conduction mechanism of LaAlO3 thin film was Schottky emission mechanism at 450K. The electron barrier-height between Al/LaAlO3 interface and electron effective mass in the LaAlO3 film were about 0.94 eV and 0.07 m0, respectively. Secondary ion mass spectrometry (SIMS) and X-ray diffraction (XRD) were also used to examine the material properties of LaAlO3.
The electrical characteristics of N-channel metal-oxide-semiconductor field effect transistors were also measured. The interface trapped charge density, effective electron mobility and sub-threshold swing were 2.27x1012cm-2-eV, 210cm2/V-s and 82.8 mV/dec., respectively. The degradation mechanisms of effective electron channel mobility and the threshold voltage shift in LaAlO3-gated n-MOSFETs were studied by analyzing experimental data at various temperatures from 11 K to 450 K. The mechanisms that influence the electron mobility include coulomb scattering, phonon scattering, surface roughness scattering.
[1] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, “1.5 nm direct-tunneling gate oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1233-1241, 1996.
[2] Y. H. Wu, A. Chin, “Electrical Characteristics of High Quality La2O3 Gate Dielectric with Equivalent Oxide Thickness of 5 Ả,” IEEE Electron Device Lett., vol. 21, no. 7, pp.341-343, 2000.
[3] M. J. Kelly, D. B. Terry, “Properties of La-silicate high-K dielectric films formed by oxidation of La on silicon,” J. Appl. Phys., vol. 93, pp. 1691-1696, 2003.
[4] W. K. Chim, T. H. Ng, B. H. Koh, W. K. Choi, J. X. Zheng, C. H. Tung, and A. Y. Du, “Interfacial and bulk properties of zirconium oxide as a gate dielectric in metal-insulator-semiconductor structures and current transport mechanisms,” J. Appl. Phys., vol. 93, no. 8, pp. 4788-4793, 2003
[5] M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo, and A. Nishiyama, “Thermally stable ultra-thin nitrogen incorporated Gate Dielectric Prepared by Low Temperature Oxidation of ZrN,” in IEDM Tech. Dig., pp. 459-462, 2001
[6] R. E. Nieh, C. S. Kang, H. J. Cho, K. Onishi, R. Choi, S. Krishnan, J. H. Han, Y. H. Kim, M. S. Akbar, and J. C. Lee, “Electrical Characterization and Material Evaluation of Zirconium Oxynitride Gate Dielectric in TaN-gated NMOSFETs With High-Temperature Forming Gas Annealing,” IEEE Trans. Electron Devices, vol. 50, no. 2, pp. 333-340, 2003
[7] J. L. Autran, R. Devine, C. Chaneliere, and B. Balland, “Fabrication and characterization of Si-MOSFET’s with PECVD amorphous Ta2O5 gate insulator,” IEEE Electron Device Lett., vol. 18, pp. 447-449, 1997.
[8] C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from Ta(OC2H5)5 precursor,” J. Appl. Phys., vol. 83, no. 9, pp. 4823-4829, 1998.
[9] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, T. J. King, and C. Hu, “Leakage Current Comparison Between Ultra-Thin Ta2O5 Films and Conventional Gate Dielectrics,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 341-342, 1998.
[10] D. Park, Y. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, “Transistor Characterization with Ta2O5 Gate Dielectric,” IEEE Electron Device Lett., vol. 19, no. 11, pp. 441-443, 1998.
[11] B. C. Lai, N. Kung, and J. Y. Lee, “A study on the capacitance-voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications,” J. Appl. Phys., vol. 85, no. 8, pp. 4087-4090, 1999.
[12] J. C. Yu, B. C. Lai, and J. Y. Lee, “Fabrication and Characterization of Metal-Oxide-Semiconductor Field-Effect Transistors and Gated Diodes Using Ta2O5 Gate Oxide,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 537-539, 2000.
[13] B. C. Lai, J. C. Yu, and J. Y. Lee, “Ta2O5/Silicon Barrier Height Measured from MOSFETs Fabrication with Ta2O5 Gated Dielectric,” IEEE Electron Device Lett., vol. 22, no. 5, pp. 221-223, 2001.
[14] B. S. Lim, A. Rahtu, P. de Rouffignac, R. G. Gordon, “Atomic layer deposition of lanthanum aluminum oxide nano-laminates for electrical applications,” Appl. Phys. Lett., Vol. 84, no. 20, pp. 3957-3959, 2004.
[15] L. Miotti, K. P. Bastos, C. Driemeier, V. Edon, M. C. Hugon, B. Agius, I. J. R. Baumvol, “Effect of post-deposition annealing in O2 on the electrical characteristics of LaAlO3 films on Si,” Appl. Phys. Lett., Vol. 87, p. 022901, 2005.
[16] B. E. Park, H. Ishiwara, “Electrical properties of LaAlO3/Si and Sr0.8Bi2.2Ta2O9/LaAlO3/Sit structures,” Appl. Phys. Lett., Vol. 79, p. 806, 2001.
[17] B. E. Park, H. Ishiwara, “Formation of LaAlO3 on Si(100) substrate using molecular beam deposition,” Appl. Phys. Lett., Vol. 82, p. 1197, 2003.
[18] A. D. Li, Q. Y. Shao, H. Q. Ling, J. B. Cheng, D. Wu, Z. G. Liu, N. B. Ming, C. Wang, H. W. Zhou, B. T. Nguyen, ” Characteristics of LaAlO3 gate dielectrics on Si grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 83, pp. 3540-3542, 2003.
[19] X. B. Lu, Z. G. Liu, Y. P. Wang, Y. Yang, X. P. Wang, H. W. Zhou, B. Y. Nguyen, “ Structure and dielectric properties of amorphous LaAlO3 and LaAlOxNy films as alternative gate dielectric materials,” J. Appl. Phys., vol. 94, p. 1229, 2003.
[20] L. F. Edge, D. G. Schlom, R. T. Brewer, Y. J. Chabal, J. R. Williams, S. A. Chambers, C. Hinkle, G. Lucovsky, Y. Yang, S. Stemmer, M. Copel, B. Hollander, J. Schubert, “ Suppression of subcutaneous oxidation during the deposition of amorphous lanthanum aluminate on silicon,” Appl. Phys. Lett., Vol. 84, p. 4629, 2004.
[21] P. Sivasubramani, M. J. Kim, B. E. Gnade, R. M. Wallace, L. F. Edge, D. G. Schlom, H. S. Craft, J. P. Maria, “ Outdiffusion of La and Al from amorphous LaAlO3 in direct contact with Si (001),” Appl. Phys. Lett., Vol. 86, p. 201901, 2005.
[22] L. F. Edge, D. G. Schlom, P. Sivasubramani, R. M. Wallace, B. Hollander, J. Schubert, “ Electrical characterization of amorphous lanthanum aluminate thin films grown by molecular-beam deposition on silicon.
[23] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Rep. Prog. Phys., Vol. 69, pp. 327-396, 2006.
[24] Iwai, H. Ohmi, S. Akama, S. Ohshima, C. Kikuchi, A. Kashiwagi, I. Taguchi, J. Yamamoto, H. Tonotani, J. Kim, Y. Ueda, I. Kuriyama, and A. Yoshihara, “Advanced gate dielectric materials for sub-100 nm CMOS,” in IEDM Tech. Dig., pp.625-628, 2002.
[25] K. J. Hubbar, and D.G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mat. Res., vol. 11, no. 11, pp. 2757-2776, 1996.
[26] D. A. Neumayer, E. Cartier,” Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys., vol. 90, pp. 1801-1808, 2001
[27] H. Kim, P. C. Mclntyre, K. C. Saraswat,” Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Appl. Phys. Lett., Vol. 82, pp. 106-108, 2003.
我是尤聖文
[28] S. M. Sze, “Physics of Semiconductor Device,” 2nd edition, New York: Wiley press, 1981.
[29] D. K. Schroder, “Semiconductor Material and Device Characteristics,” Arizona: Wiley press, 1998.
[30] G. R. Fox, and S.B. Krupanidhi, “Nonlinear Electrical Properties of Lead-Lanthanum-Titanate Thin Films Deposited by Multi-Ion-Beam Reactive Sputtering,” J. Appl. Phys., vol. 74, no. 3, p. 1949, 1993.
[31] D.A. Neamen, “Semiconductor Physics & Devices,” 2nd Ed., Mc Graw-Hill, Inc., 1998.
[32] Fritz H. Gaensslen, V. Leo Rideout, E. J. Walker, and John J. Walker,”Very small MOSFET’s for low temperature operation,” IEEE Trans. Electron Devices, vol. 24, no. 3, pp.218-229, 1997.
[33] D. K. Schroder, “Semiconductor Material and Device Characteristics,” Wiley, Arizona, 1998.
[34] S. G. Sun and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxided silicon surfaces,” IEEE Trans. Electron Devices, 27, p. 1497, 1980.
[35] C. G. Sodini, T. W. Ekstedt, and J. L. Moll, “Charge accumulation and mobility in thin dielctric MOS transistors,” Solid State Electron., 25, no. 9, p. 833, 1982.
[36] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration”, IEEE Trans. Electron Devices, vol. 41, no. 12, p. 2357, 1994.
[37] W. Zhu, J. P. Han, and T. P. Ma, “Mobility measurement and degradation mechanisms of MOSFETs made with ultrathin high-k dielectrics,” IEEE Trans. on Electron Device, vol. 51, no. 1, pp. 98-105, 2004.
[38] W. J. Zhu and T. P. Ma, “Temperature dependence of channel mobility in HfO2-gated NMOSFETs,” IEEE Trans. on Electron Device, vol. 25, no. 2, pp. 89-91, 2004
[39] Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI Devices,” Cambridge, 1998.
[40] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, J. Appl. Phys. 90, p.4587 (2001).