簡易檢索 / 詳目顯示

研究生: 尤聖文
Sheng-Wen You
論文名稱: 金屬(Al)/ 鋁酸鑭(LaAlO3)/矽(Si)薄膜電容器與場效電晶體之製作與電性分析
The Fabrication and Characterization of Metal (Al)-Oxide-Si Capacitors and Field-effect Transistors Using LaAlO3 Gate dielectric
指導教授: 李雅明
Ya-Min Lee
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 74
中文關鍵詞: 鋁酸鑭移動率衰退
外文關鍵詞: Lanthanum aluminate, mobility degradation
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Lanthanum aluminate (LaAlO3) is considered as a potential candidate for high-K dielectric applications. LaAlO3 has high dielectric constant (13-27), large energy band gap (over 5eV), high thermal stability (up to 850°C), low leakage current density, large electron band offset. The structure of Al/LaAlO3/Si capacitors and transistors were fabricated successfully. The oxide films were deposited by rf-sputtering. The leakage current density was 4.36×10-3A/cm2 when the applied voltage was -1V. The measured dielectric constant was 13.4. The dominant electrical conduction mechanism of LaAlO3 thin film was Schottky emission mechanism at 450K. The electron barrier-height between Al/LaAlO3 interface and electron effective mass in the LaAlO3 film were about 0.94 eV and 0.07 m0, respectively. Secondary ion mass spectrometry (SIMS) and X-ray diffraction (XRD) were also used to examine the material properties of LaAlO3.
    The electrical characteristics of N-channel metal-oxide-semiconductor field effect transistors were also measured. The interface trapped charge density, effective electron mobility and sub-threshold swing were 2.27x1012cm-2-eV, 210cm2/V-s and 82.8 mV/dec., respectively. The degradation mechanisms of effective electron channel mobility and the threshold voltage shift in LaAlO3-gated n-MOSFETs were studied by analyzing experimental data at various temperatures from 11 K to 450 K. The mechanisms that influence the electron mobility include coulomb scattering, phonon scattering, surface roughness scattering.


    第一章 緒論 1.1高介電常數(High-κ)薄膜於極大型積體電路(ULSI)的發展 ........1 1.2 High-K薄膜在動態存取記憶體(DRAM)上的應用 ………………...2 1.3 high-k薄膜於MOSFET閘極氧化層(Gate Oxide)的發展....................... 3 1.4 High-κ薄膜的製備方法 …………………………………………………3 1.5本論文的研究方向 ………………………………………………………4 第二章 鋁酸鑭(LaAlO3)的薄膜特性 2.1介電常數大小 ……………………………………………………………5 2.2熱穩定性(thermodynamic stability)與動態穩定度(kinetic stability) ……6 2.3導電帶和價電帶的偏移大小(conduction and valence band offset) ……..6 2.4 LaAlO3與其它High-k 材料之比較 ……………………………………7 第三章 LaAlO3(鋁酸鑭)薄膜元件的製備 3.1射頻磁控濺鍍法(RF Magnetron Sputtering)的簡介 ………………...8 3.2歐姆接面(Ohmic contact)的製備 …………………………………….8 3.3 LaAlO3薄膜的成長 ……………………………………………………...9 3.4 LaAlO33薄膜電容器的製備 ……………………………………………10 3.5 LaAlO3薄膜電晶體的製備 ………………………………….………....10 3.6量測儀器以及實驗儀器介紹 …………………………………………12 第四章 熱穩定性(Thermodynamic Stability)之探討 4.1 「熱穩定性」理論簡介 ……………………………………………….13 4.2 矽化物(Silicide)及矽酸鹽(Silicate)的產生 …………………….14 4.3 其他相關文獻 ……….........................................................................15 第五章 LaAlO3薄膜基本介紹及物性量測分析 5.1 X-Ray 繞射分析 .....................................................................................16 5.2 二次離子質譜儀(SIMS)縱深分佈之分析 …………………………17 第六章 Al/ LaAlO3/Silicon電容器基本電性及漏電流機制分析 6.1電容-電壓(C-V) 特性曲線量測 ……………………………………….18 6.2電流-電壓(I-V) 特性曲線量測 ………………………………………...18 6.3 漏電流傳導機制之簡介 ……………………………………………….19 6.3.1 蕭基發射(Schottky emission) …………………………………20 6.3.2 修正型的蕭基發射(Modified Schottky emission) ……………...21 6.3.3 普爾-法蘭克發射(Poole-Frenkel Emission) …………………21 6.3.4 傅勒-諾得翰穿隧(Fowler-Nordheim Tunneling) ………………...22 6.3.5 跳躍傳導(Ohmic Conduction,Hopping Conduction) ……..…….22 6.4 MIS結構電容器與溫度變化之漏電流傳導機制分析 ………………..23 6.5 絕緣層中電子有效質量(m*)與能障高度(ΦB) ……............................25 6.6 本章結論 ……………………………………………………………….26 第七章 Al/ LaAlO3/Silicon場效電晶體電性量測及載子遷移率衰退機制分析 7.1 IDS-VDS與IDS-VGS Curve的特性探討 …………………….……………28 7.2次臨界斜率(Subthreshold Swing)……………………………………28 7.3 臨界電壓(VT)的粹取 ……………………………………………….29 7.4 遷移率(Mobility)的探討 ……………………………………………29 7.4.1 Split-capacitance-voltage的量測 ……………………………….31 7.4.2 場效移動率( Field effect mobility) …….…………………32 7.5電晶體的溫度特性(Temperature dependent)與遷移率衰減機制(Mobility degradation)的討論 ………………………………………….33 第八章 結論 ……………………………………………………...36 參考文獻(Reference) ……………………………………………..38 實驗圖表(Experimental Diagrams and Tables) ………………..43

    [1] H. S. Momose, M. Ono, T. Yoshitomi, T. Ohguro, S. Makamura, M. Saito, and H. Iwai, “1.5 nm direct-tunneling gate oxide Si MOSFET’s,” IEEE Trans. Electron Devices, vol. 43, pp. 1233-1241, 1996.
    [2] Y. H. Wu, A. Chin, “Electrical Characteristics of High Quality La2O3 Gate Dielectric with Equivalent Oxide Thickness of 5 Ả,” IEEE Electron Device Lett., vol. 21, no. 7, pp.341-343, 2000.
    [3] M. J. Kelly, D. B. Terry, “Properties of La-silicate high-K dielectric films formed by oxidation of La on silicon,” J. Appl. Phys., vol. 93, pp. 1691-1696, 2003.
    [4] W. K. Chim, T. H. Ng, B. H. Koh, W. K. Choi, J. X. Zheng, C. H. Tung, and A. Y. Du, “Interfacial and bulk properties of zirconium oxide as a gate dielectric in metal-insulator-semiconductor structures and current transport mechanisms,” J. Appl. Phys., vol. 93, no. 8, pp. 4788-4793, 2003
    [5] M. Koyama, K. Suguro, M. Yoshiki, Y. Kamimuta, M. Koike, M. Ohse, C. Hongo, and A. Nishiyama, “Thermally stable ultra-thin nitrogen incorporated Gate Dielectric Prepared by Low Temperature Oxidation of ZrN,” in IEDM Tech. Dig., pp. 459-462, 2001
    [6] R. E. Nieh, C. S. Kang, H. J. Cho, K. Onishi, R. Choi, S. Krishnan, J. H. Han, Y. H. Kim, M. S. Akbar, and J. C. Lee, “Electrical Characterization and Material Evaluation of Zirconium Oxynitride Gate Dielectric in TaN-gated NMOSFETs With High-Temperature Forming Gas Annealing,” IEEE Trans. Electron Devices, vol. 50, no. 2, pp. 333-340, 2003
    [7] J. L. Autran, R. Devine, C. Chaneliere, and B. Balland, “Fabrication and characterization of Si-MOSFET’s with PECVD amorphous Ta2O5 gate insulator,” IEEE Electron Device Lett., vol. 18, pp. 447-449, 1997.
    [8] C. Chaneliere, S. Four, J. L. Autran, R. A. B. Devine, and N. P. Sandler, “Properties of amorphous and crystalline Ta2O5 thin films deposited on Si from Ta(OC2H5)5 precursor,” J. Appl. Phys., vol. 83, no. 9, pp. 4823-4829, 1998.
    [9] Q. Lu, D. Park, A. Kalnitsky, C. Chang, C. C. Cheng, S. P. Tay, T. J. King, and C. Hu, “Leakage Current Comparison Between Ultra-Thin Ta2O5 Films and Conventional Gate Dielectrics,” IEEE Electron Device Lett., vol. 19, no. 9, pp. 341-342, 1998.
    [10] D. Park, Y. King, Q. Lu, T. J. King, C. Hu, A. Kalnitsky, S. P. Tay, and C. C. Cheng, “Transistor Characterization with Ta2O5 Gate Dielectric,” IEEE Electron Device Lett., vol. 19, no. 11, pp. 441-443, 1998.
    [11] B. C. Lai, N. Kung, and J. Y. Lee, “A study on the capacitance-voltage characteristics of metal-Ta2O5-silicon capacitors for very large scale integration metal-oxide-semiconductor gate oxide applications,” J. Appl. Phys., vol. 85, no. 8, pp. 4087-4090, 1999.
    [12] J. C. Yu, B. C. Lai, and J. Y. Lee, “Fabrication and Characterization of Metal-Oxide-Semiconductor Field-Effect Transistors and Gated Diodes Using Ta2O5 Gate Oxide,” IEEE Electron Device Lett., vol. 21, no. 11, pp. 537-539, 2000.
    [13] B. C. Lai, J. C. Yu, and J. Y. Lee, “Ta2O5/Silicon Barrier Height Measured from MOSFETs Fabrication with Ta2O5 Gated Dielectric,” IEEE Electron Device Lett., vol. 22, no. 5, pp. 221-223, 2001.
    [14] B. S. Lim, A. Rahtu, P. de Rouffignac, R. G. Gordon, “Atomic layer deposition of lanthanum aluminum oxide nano-laminates for electrical applications,” Appl. Phys. Lett., Vol. 84, no. 20, pp. 3957-3959, 2004.
    [15] L. Miotti, K. P. Bastos, C. Driemeier, V. Edon, M. C. Hugon, B. Agius, I. J. R. Baumvol, “Effect of post-deposition annealing in O2 on the electrical characteristics of LaAlO3 films on Si,” Appl. Phys. Lett., Vol. 87, p. 022901, 2005.
    [16] B. E. Park, H. Ishiwara, “Electrical properties of LaAlO3/Si and Sr0.8Bi2.2Ta2O9/LaAlO3/Sit structures,” Appl. Phys. Lett., Vol. 79, p. 806, 2001.
    [17] B. E. Park, H. Ishiwara, “Formation of LaAlO3 on Si(100) substrate using molecular beam deposition,” Appl. Phys. Lett., Vol. 82, p. 1197, 2003.
    [18] A. D. Li, Q. Y. Shao, H. Q. Ling, J. B. Cheng, D. Wu, Z. G. Liu, N. B. Ming, C. Wang, H. W. Zhou, B. T. Nguyen, ” Characteristics of LaAlO3 gate dielectrics on Si grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., Vol. 83, pp. 3540-3542, 2003.
    [19] X. B. Lu, Z. G. Liu, Y. P. Wang, Y. Yang, X. P. Wang, H. W. Zhou, B. Y. Nguyen, “ Structure and dielectric properties of amorphous LaAlO3 and LaAlOxNy films as alternative gate dielectric materials,” J. Appl. Phys., vol. 94, p. 1229, 2003.
    [20] L. F. Edge, D. G. Schlom, R. T. Brewer, Y. J. Chabal, J. R. Williams, S. A. Chambers, C. Hinkle, G. Lucovsky, Y. Yang, S. Stemmer, M. Copel, B. Hollander, J. Schubert, “ Suppression of subcutaneous oxidation during the deposition of amorphous lanthanum aluminate on silicon,” Appl. Phys. Lett., Vol. 84, p. 4629, 2004.
    [21] P. Sivasubramani, M. J. Kim, B. E. Gnade, R. M. Wallace, L. F. Edge, D. G. Schlom, H. S. Craft, J. P. Maria, “ Outdiffusion of La and Al from amorphous LaAlO3 in direct contact with Si (001),” Appl. Phys. Lett., Vol. 86, p. 201901, 2005.
    [22] L. F. Edge, D. G. Schlom, P. Sivasubramani, R. M. Wallace, B. Hollander, J. Schubert, “ Electrical characterization of amorphous lanthanum aluminate thin films grown by molecular-beam deposition on silicon.

    [23] J. Robertson, “High dielectric constant gate oxides for metal oxide Si transistors,” Rep. Prog. Phys., Vol. 69, pp. 327-396, 2006.
    [24] Iwai, H. Ohmi, S. Akama, S. Ohshima, C. Kikuchi, A. Kashiwagi, I. Taguchi, J. Yamamoto, H. Tonotani, J. Kim, Y. Ueda, I. Kuriyama, and A. Yoshihara, “Advanced gate dielectric materials for sub-100 nm CMOS,” in IEDM Tech. Dig., pp.625-628, 2002.
    [25] K. J. Hubbar, and D.G. Schlom, “Thermodynamic stability of binary oxides in contact with silicon,” J. Mat. Res., vol. 11, no. 11, pp. 2757-2776, 1996.
    [26] D. A. Neumayer, E. Cartier,” Materials characterization of ZrO2-SiO2 and HfO2-SiO2 binary oxides deposited by chemical solution deposition,” J. Appl. Phys., vol. 90, pp. 1801-1808, 2001
    [27] H. Kim, P. C. Mclntyre, K. C. Saraswat,” Effects of crystallization on the electrical properties of ultrathin HfO2 dielectrics grown by atomic layer deposition,” Appl. Phys. Lett., Vol. 82, pp. 106-108, 2003.
    我是尤聖文
    [28] S. M. Sze, “Physics of Semiconductor Device,” 2nd edition, New York: Wiley press, 1981.
    [29] D. K. Schroder, “Semiconductor Material and Device Characteristics,” Arizona: Wiley press, 1998.
    [30] G. R. Fox, and S.B. Krupanidhi, “Nonlinear Electrical Properties of Lead-Lanthanum-Titanate Thin Films Deposited by Multi-Ion-Beam Reactive Sputtering,” J. Appl. Phys., vol. 74, no. 3, p. 1949, 1993.
    [31] D.A. Neamen, “Semiconductor Physics & Devices,” 2nd Ed., Mc Graw-Hill, Inc., 1998.
    [32] Fritz H. Gaensslen, V. Leo Rideout, E. J. Walker, and John J. Walker,”Very small MOSFET’s for low temperature operation,” IEEE Trans. Electron Devices, vol. 24, no. 3, pp.218-229, 1997.
    [33] D. K. Schroder, “Semiconductor Material and Device Characteristics,” Wiley, Arizona, 1998.
    [34] S. G. Sun and J. D. Plummer, “Electron mobility in inversion and accumulation layers on thermally oxided silicon surfaces,” IEEE Trans. Electron Devices, 27, p. 1497, 1980.
    [35] C. G. Sodini, T. W. Ekstedt, and J. L. Moll, “Charge accumulation and mobility in thin dielctric MOS transistors,” Solid State Electron., 25, no. 9, p. 833, 1982.
    [36] S. Takagi, A. Toriumi, M. Iwase, and H. Tango, “On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration”, IEEE Trans. Electron Devices, vol. 41, no. 12, p. 2357, 1994.
    [37] W. Zhu, J. P. Han, and T. P. Ma, “Mobility measurement and degradation mechanisms of MOSFETs made with ultrathin high-k dielectrics,” IEEE Trans. on Electron Device, vol. 51, no. 1, pp. 98-105, 2004.
    [38] W. J. Zhu and T. P. Ma, “Temperature dependence of channel mobility in HfO2-gated NMOSFETs,” IEEE Trans. on Electron Device, vol. 25, no. 2, pp. 89-91, 2004
    [39] Y. Taur and T. H. Ning, “Fundamentals of Modern VLSI Devices,” Cambridge, 1998.
    [40] M. V. Fischetti, D. A. Neumayer, and E. A. Cartier, J. Appl. Phys. 90, p.4587 (2001).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE