簡易檢索 / 詳目顯示

研究生: 吳承樺
Cheng-Hua Wu
論文名稱: Study of the Electronic and Photonic Porperties for the Core-Shell Au-Ga2O3 Complex Nanostructures
金-氧化鎵核殼複合奈米結構的光電性質之研究
指導教授: 周立人
Li-Jen Chou
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 78
中文關鍵詞: 異質結構奈米線區域化表面電漿共振光電性質量測
外文關鍵詞: Heterostructure Nanowire, Localized Surface Plasmon Resonance, Optoelectronic Measurements
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Successful synthesis of different types of complex Au-Ga2O3 nanowires, including pure Ga2O3 nanowires, core-shell Au-Ga2O3 nanowires, and post-annealing Au-peapodded Ga2O3 nanowires, various single Au-Ga2O3 complex nanowire nanodevices could be fabricated by different conditions and the assistance of e-beam lithography technique. In the first part, by a simple annealing process at 600 oC with an ammonia gas, a thin GaN heteroepitaxy shell layer was formed surrounded the Ga2O3 nanowire. According to I-V measurements, the surrounded GaN heteroepitaxy shell layer exhibited a semiconductor n-type behavior.
    In the second part, the highly photosensitive complex Au-Ga2O3 nanowire nanodevices were further characterized by different laser intensities and wavelengths under room temperature and atmosphere condition. In addition, due to the highly photosensitive behavior of these nanodevices, photoresponse on-off switching measurements were conducted under various laser illuminations of different wavelengths. Owing to different Au nanostructures encapsulated inside Ga2O3 matrixes, the wavelength dependent photoresponse of these nanodevices were carried out according to the localized surface plasmon resonance effects. As a result, the wavelength-tunable photonic switch could be achieved via a suitable post annealing process of the core-shell Au-Ga2O3 nanowire and the integration of e-beam lithography technique.


    成功合成各式不同的金-氧化鎵複合奈米線,包含純氧化鎵奈米線、核殼金-氧化鎵奈米線、和退火豆莢金-氧化鎵奈米線後,藉由電子束微影技術的幫助,各式單根金-氧化鎵複合奈米線所構成的奈米元件能夠被製造。第一部份,將氧化鎵奈米線在600度C的氨氣氛下退火,一層很薄的氮化鎵會在氧化鎵的表面形成,其電阻率為5.557×103 Ω-cm,比薄膜氮化鎵的電阻率小四個數量級,推測是由於合成過程中所產生的氮缺陷或/和氧缺陷所致。根據電流電壓量測的結果,發現這層氮化鎵具有N型半導體的性質。第二部分,實驗發現由金-氧化鎵奈米線所構成的奈米元件具有高度的光感特性,因此這些元件被進一步在室溫、一大氣壓的條件下由不同強度和波長的雷射照射下進行量測。此外,由於這些奈米元件的高度光感特性,這些元件可以被拿來在不同的雷射波長下進行光開關的量測實驗。由於不同的金的奈米結構被包覆在氧化鎵中,所造成的區域性表面電漿共振效應,導致這些奈米元件對不同的光的波長有不同的吸收能力。核殼金-氧化鎵奈米線的強吸收波長位於長波長處,在本實驗中是780nm處,而退火豆莢金-氧化鎵奈米線的強吸收波長則是位於532nm附近。因此,藉由適當的退火過程和電子微影技術可以製造出波長可調性的光開關元件。

    Contents I Acknowledgement III Abstract IV 摘要 V List of Acronyms and Abbreviations VI Chapter 1 Introduction - 1 - 1.1 Science and Technology of Nanomaterials - 1 - 1.1.1 Vapor-Solid (V-S) Mothods - 5 - 1.1.2 Vapor-Liquid-Solid (V-L-S) Methods - 7 - 1.1.3 Solution-Liquid-Solid (S-L-S) Methods - 9 - 1.2 Gallium Oxide - 11 - 1.2.1 Properties of Gallium Oxide - 11 - 1.2.2 Gallium Oxide Nanowires - 12 - 1.3 Gallium Nitride - 13 - 1.3.1 Properties of Gallium Nitride - 13 - 1.3.2 Gallium Nitride Nanowires - 13 - 1.4 Electrical Property Measurements - 15 - 1.5 Metal-Semiconductor Junctions and Schottky Barriers - 16 - 1.6 Localized Surface Plasma Resonance Effect - 19 - 1.7 Motivation and Research Directions - 22 - Chapter 2 Experimental Procedures - 25 - 2.1 Synthesis of Complex Gallium-Based Nanowires - 25 - 2.2 Chip Cleaning and Sample Preparation - 27 - 2.3 Locating Positions of Nanowires - 30 - 2.4 Defining Contact Electrodes and Side-Gate Electrodes - 30 - 2.5 Photoresist Spin Coating and Soft Baking - 30 - 2.6 Electron Beam Lithography - 31 - 2.7 Development - 31 - 2.8 Thermal Evaporation - 32 - 2.9 Lift-Off Process - 32 - 2.10 Device Evaluation - 32 - 2.11 I-V Measurement and Field-Effect Characteristic Measurements - 33 - 2.12 Photoresponse Measurements - 34 - Chapter 3 Results and Discussion - 36 - 3.1 I-V Measurement of Various Single Ga-Based Nanowires - 36 - 3.1.1 I-V Measurement of Single Pure Ga2O3 nanowires - 37 - 3.1.2 I-V Measurement of Single Core-Shell Ga2O3/GaN Nanowires - 39 - 3.2 Photoresponse Measurements of Complex Au-Ga2O3 Nanowires - 44 - 3.2.1 Different Synthesis Conditions - 44 - 3.2.2 AC Photoresponse Measurements illuminated by 532 nm Laser - 49 - 3.2.3 Photoresponse On-Off Switching Behavior of Complex Au-Ga2O3 Nanowire Nanodevices - 57 - 3.2.4 Efficiency - 65 - Chapter 4 Summary and Conclusions - 68 - 4.1 I-V Measurements of Pure Ga2O3 and Core-Shell Ga2O3/GaN Nanowires - 68 - 4.2 Photoresponse Measurements of Complex Au-Ga2O3 Nanowires - 69 - References - 70 - Chapter 1 - 70 - Chapter 2 - 78 - Chapter 3 - 78 -

    Chapter 1
    [1.1] Z. L. Wang, “Nanowires and Nanobelts – Materials, Properties and Devices”, (2004)
    [1.2] Y. Huang, X. Duan, Y. Cui, and C. M. Lieber, “Gallium Nitride Nanowire Nanodevices”, Nano Lett., 2, (2002), pp101-104
    [1.3] K. L. Wang, S. Tong, and H. J. Kim, “Properties and applications of SiGe nanodots”, Mater. Sci. Semicond. Process, 8, (2005), pp389-399
    [1.4] T. I. Kamins, K. L. Wang, and G. E. Davis, “SiGe/Si Superlattices on Implanted Buried-oxide Stuctures”, J. Appl. Phys., 65, (1989), pp1505-1509
    [1.5] R. Q. Zhang, Y. Lifshitz, and S. T. Lee, “Oxide-Assisted Growth of Semiconducting Nanowires”, Adv. Mater., 15, (2003), pp635-640
    [1.6] E. Bengu, and L. D. Marks, “Single Walled BN Nanostructures”, Phys. Rev. Lett., Vol.86, (2001), pp2385-2387
    [1.7] H. J. Dai, E. W. Wong, Y. Z. Lu, S. S. Fan, and C. M. Lieber, “Synthesis and Characterization of Carbide Nanorods”, Nature, 375, (1995), pp769-772
    [1.8] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of Semiconducting Oxides”, Science, 291, (2001), pp1947-1949
    [1.9] P Buffat and J-P. Borel, “Size effect on the melting temperature of gold particles”, Phys. Rev. A, 13, (1976), pp2287-2298
    [1.10] X. Wang, J. Song, J. Liu and Z. L. Wang, “Direct-Current Nanogenerator Driven by Ultrasonic Waves”, Science, 316, (2007), pp102-105
    [1.11] R. K. Soong, G. D. Bachand, H. P. Neves, A. G. Olkhovets, H. G. Craighead, and C. D. Montemagno, “Powering an Inorganic Nanodevice with a Biomolecular Motor”, Science, 290, pp1555-1558
    [1.12] Y. Cui, and C. M. Lieber, “Functional Nanoscale Electronic Device Assembled Using Silicon Nanowire Building Blocks”, Science, 291, (2001), pp851-853
    [1.13] X. Duan, Y. Huang, Y. Cui, J. Wang, and C. M. Lieber, “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices”, Nature, 409, (2001), pp66-69
    [1.14] Y. Cui, X. Duan, J. Hu, and C. M. Lieber, “Doping and Electrical Transport in Silicon Nanowires”, J. Phys. Chem. B, 104, (2000), pp5213-5216
    [1.15] Y. Huang, X. Duan, Y. Cui, L. J. Lauhon, K. H. Kim, and C. M. Lieber, “Logic Gates and Computation from Assembled Nanowire Building Blocks”, Science, 294, (2001), pp1313-1317
    [1.16] M. Fleischer, J. Giber, and H. Meixner, “H2 induced changes in electrical conductance of β-Ga2O3 thin film system”, Appl. Phys. A, 54, (1992), pp560-566
    [1.17] Y. Chi, Q. Wei, H. Park, and C. M. Lieber, “Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species”, Science, 293, (2001), pp1289-1292
    [1.18] C. M. Lieber, “The Incredible Shrinking Circuit”. Sci. Am., September (2001), pp59-64
    [1.19] R. Dagani, “Building from the Bottom Up”, Chem. Eng. News, , October, (2000), pp27-39
    [1.20] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. William, “A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology”, Science, 280, (1998), pp1716 -1721
    [1.21] R. S. Wagner, and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett., 4, (1964), p89
    [1.22] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, and H. Yan, “One-Dimensional Nanostructres: Synthesis, Characterization, and Applications”, Adv. Mater., 15, (2003), pp353-389
    [1.23] Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J. Liu, J. Zhu, and X. Zhang, “A Simple Method to Synthesize Nanowires”, Chem. Mater., 14, (2002), pp3564-3568
    [1.24] W. S. Shi, Y. F. Zheng, N. Wang, N. G. Shang, Z. W. Pan, C. S. Lee, and S. T. Lee, “Synthesis of Large Areas of Highly Oriented Very Long Silicon Nanowires”, Adv. Mater., 12, (2000), pp1343-1345
    [1.25] Y. Wu, and P. Yang, “Germanium Nanowire Growth via Simple Vapor Transport”, Chem. Mater., 12, (2000), pp605-607
    [1.26] Y. J. Zhang, Q. Zhang, N. L. Wang, Y. J. Yan, H. H. Zhou, and J. Zhu, “Synthesis of Thin Si Whiskers (Nanowires) Using SiCl4”, J. Cryst. Growth, 226, (2001), pp185-191
    [1.27] J. Westewater, D. P. Gosain, S. Tomiya, and S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor-Liquid-Solid Reaction”, J. Vac. Sci. Technol. B, 15, (1997), pp554-557
    [1.28] C. C. Chen, C. C. Yeh, C. H. Chen, M. Y. Yu, H. L. Liu, J. J. Wu, K. H. Chen, L. C. Chen, J. Y. Peng, and Y. F. Chen, “Catalystic Growth and Characterization of Gallium Nitride Nanowires”, J. Am. Chem. Soc., 123, (2001), pp2791-2798
    [1.29] J. Zhang, X. S. Peng, X. F. Wang, Y. W. Wang, and L. D. Zhang, “Mirco-Raman Investigation of GaN Nanowires Prepared by Direct Reaction Ga with NH3”, Chem. Phys. Lett., 345, (2001), pp372-376
    [1.30] M. Q. He, P. Z. Zhou, S. N. Mohammad, G. L. Harris, J. B. Halpern, R. Jacobs, W. L. Sarney, and L. Salamanca-Riba, “Growth of GaN Nanowires by Direct Reaction of Ga with NH3”, J. Cryst. Growth, 231, (2001), pp357-365
    [1.31] C. C. Chen, and C. C. Yeh, “Large-Scale Catalystic Synthesis of Crystalline Gallium Nitride Nanowires”, Adv. Mater., 12, (2000), pp738-741
    [1.32] W. S. Shi, Y. F. Zheng, N. Wang, C. S. Lee, and S. T. Lee, “Synthesis and Microstructure of gallium Phosphide Nanowires”, J. Vac. Sci. Tech. B, 19, (2001), pp1115-1118
    [1.33] T. Shimada, K. Hiruma, M. Shirai, M. Yazawa, K. Haraguchi, T. Sato, M. Matsui, and T. Katsuyama, “Size, Position and Direction Control on GaAs and InAs Nanowhisker Growth”, Superlattices Microstruct., 24, (1998), pp453-458
    [1.34] K. Hiruma, M. Yazawa, T. Katsuyama, K. Ogawa, K. Haraguchi, M. Koguchi, and H. Kakibayashi, “Growth and Optical Properties of Nanometer-Scale GaAs and InAs Whiskers”, J. Appl. Phys., 77, (1995), pp447-462
    [1.35] M. Yazawa, M. Kohuchi, A. Muto, and K. Hiruma, “Semiconductor Nanowhiskers”, Adv. Mater., 5, (1993), p577
    [1.36] Y. W. Wang, L. D. Zhang, C. H. Liang, G. Z. Wang, X. S. Peng, “Catalytic Growth and Photoluminescence Properties of Semiconductor Single-Crystal ZnS Nanowires”, Chem. Phys. Lett., 357, (2002), pp314-318
    [1.37] Y. W. Wang, G. W. Meng, L. D. Zhang, C. H. Liang, J. Zhang, “Catalytic Growth of Large-Scale Single-Crystal CdS Nanowires by Physical Evaporation and Their Photoluminescence”, Chem. Mater., 14, (2002), pp1773-1777
    [1.38] X. Duan, C. M. Lieber, “General Synthesis of Compound Semiconductor Nanowires”, Adv. Mater., 12, (2000), pp298-302
    [1.39] M. Lopez-Lopez, A. Guillen-Cervantes, Z. Rivera-Alvarez, I. Hernandez-Calderon, “Hillocks Formation During the Molecular Beam Epitaxial Growth of ZnSe on GaAs Substrates”, J. Cryst. Growth, 193, (1998), pp528-534
    [1.40] Y. J. Chen, J. B. Li, Y. S. Han, X. Z. Yang, J. H. Dai, “The Effect of Mg Vapor Source on the Formation of MgO Whiskers and Sheets”, J. Cryst. Growth, 245, (2002), pp163-170
    [1.41] X. C. Wu, W. H. Song, K. Y. Wang, T. Hu, B. Zhao, Y. P. Sun, J. J. Du, “Preparation and Photoluminescence Properties of Amorphous Silica Nanowires”, Chem. Phys. Lett., 336, (2001), pp53-56
    [1.42] M. H. Huang, Y. Wu, H. Feick, E. Webber, P. Yang, “Catalytic Growth of Zinc Oxide Nanowires by Vapor Transport”, Adv. Mater., 13, (2000), pp113-116
    [1.43] T. J. Trentler, K. M. Hickman, S. C. Geol, A. M. Viano, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Crystalline III-V Semiconductors: An Analogy to Vapor-Liquid-Solid Growth”, Science, 270, (1995), pp1791-1794
    [1.44] P. D. Markowitz, M. P. Zach, P. C. Gibbons, R. M. Penner, and W. E. Buhro, “Phase Separation in AlxGa1-xAs Nanowhiskers Grown by the Solution-Liquid-Solid Mechanism”, J. Am. Chem. Soc., 123, (2001), pp4502- 4511
    [1.45] O. R. Lourie, C. R. Jones, B. M. Bartlett, P. C. Gibbons, R. S. Ruoff, and W. E. Buhro, “CVD Growth of Boron Nitride Nanotubes”, Chem. Mater., 12, (2000), pp1808-1810
    [1.46] T. J. Trentler, S. C. Goel, K. M. Hickman, A. M. Viano, M. Y. Chiang, A. M. Beatty, P. C. Gibbons, and W. E. Buhro, “Solution-Liquid-Solid Growth of Indium Phosphide Fibers form Organometallic Precursors: Elucidation of Molecular and Nonmolecular Components of the Pathway”, J. Am. Chem. Soc., 119, (1997), pp2172-2181
    [1.47] L. Binet, D. Gourier, “Origin of the Blue Luminescence of β-Ga2O3”, J. Phys. Chem. Solids, 59, (1998), pp1241-1249
    [1.48] C. T. Lee, H. W. Chen, and H. Y. Lee, “Metal-Oxide-Semiconductor Devices Using Ga2O3 Dielectrics on N-Type GaN”, Appl. Phys. Lett., 82, (2003), pp4304-4306
    [1.49] Y. Nakano, T. Kachi, and T. Jimbo, “Characterization of SiO2/N-GaN Interfaces with β-Ga2O3 Interlays”, Appl. Phys. Lett., 83, (2003), pp4336-4338
    [1.50] Z. W. Pan, Z. R. Dai, and Z. L. Wang, “Nanobelts of semiconducting oxides”, Science, 291, (2001), pp1947-1949
    [1.51] JCPDS card : 41-1103
    [1.52] M. Zinkevich, and F. Aldinger, “Thermodynamic Assessment of the Gallium-Oxygen System”, J. Am. Ceram. Soc., 87, (2004), pp683-691
    [1.53] D. P. Yu, J. L. Bubendorff, J. F. Zhou, Y. Leperince-Wang, and M. Tronyon, “Localized Cathodulminescence Investigation on Single Ga2O3 Nanoribbon/Nanowire”, Solid State Commun., 124, (2002), pp417-421
    [1.54] M. S. Hu, H. L. Chen, C. H. Shen, L. S. Hong, B. R. Huang, K. H. Chen, and L. C. Chen, “Photosensitive gold-nanoparticle-embedded dielectric nanowires”, Nat. Mater., 5, (2006), pp102-106
    [1.55] JCPDS card : 02-1078
    [1.56] F. Qian, Y. Li, S. Gradecak, D. Wang, C. J. Barrelt, and C. M. Lieber, “Gallium Nitride-Based Nanowire Radial Heterostructure for Nanophotonics”, Nano Lett., 4, (2004), pp1975-1979
    [1.57] F. Qian, S. Gradecak, Y. Li, C. Y. Wen, and C. M. Lieber, “Core/Multishell Nanowire Heterostructures as Multicolor, High-Efficiency Light-Emitting Diodes”, Nano Lett., 5, (2005), pp2287-2291
    [1.58] A. Aviram and M. A. Ratner, “Molecular Rectifiers”, Chem. Phys. Lett., 29, (1974), pp277-283
    [1.59] C. Joachim, J. K. Gimzewski , R. R. Schittler and C. Chavy, “Electronic Transparence of A Single C60 Molecule”, Phys. Rev. Lett., 74, (1995), pp2102-2105
    [1.60] S. J. Tans, M. H. Devoret, H. Dai, A. Thess, R. E. Smalley, L. J. Geerligs, and C. Dekker, “Individual Single-Wall Carbon Nanotubes as Quantum Wires”, Nature, 386, (1997), pp474-477
    [1.61] S. F. Hu, W. Z. Wong, S. S. Liu, Y. C. Wu, C. L. Sung , T. Y. Huang, T. J. Yang, “A Silicon Nanowire With a Coulomb Blockade Effect at Room Temperature”, Adv. Mater., 14, (2002), pp736-739
    [1.62] R. Calarco, M. Marso, T. Richter, A. I. Aykanat, R. Meijers, A. v.d. Hart, T. Stoica, and H. Luth, “Size-Dependent Photoconductivity in MBE-Grown GaN Nanowires”, Nano letters, 5 (2005), pp981-984
    [1.63] L. Solymar, and D. Walsh, “Electrical Properties of Materials”, Phys. Rev. Lett., 74, (2004), pp2102-2105
    [1.64] K. A. Willets and R. P. Van Duyane, “Localized Surface Plasmon Resonance Spectroscopy and Sensing”, Annu. Rev. Phys. Chem., 58, (2007), pp267-297
    [1.65] S. Link, and M. A. El-Sayed, “Shape and Size Dependence of Radiative, Non-radiative and Photothermal Properties of Gold Nanocrystals”, Int. Rev. Phys. Chem., 19, (2000), pp409-453
    [1.66] J. Yguerabide, E. E. Yguerabide, G. Bee, K. Yamout, L. Korb, J. Beck, and T. Peterson, “Resonance Light-Scattering Particles for Ultra-Sensitive Detection of Nucleic Acids on Microarrays”, Anal. Biochem., 262, (1997), pp137-156 & pp157-176
    [1.67] A. I. Hochbaum, R. Fan, R. He, and P. Yang, “Controlled Growth of Si Nanowire Arrays for Device Integration”, Nano Lett., 5, (2005), pp457-460
    [1.68] J. Goldberger, R. He, Y. Zhang, S. Lee, H. Yan, H. J. Chol, and P. Yang, “Single-crystal gallium nitride nanotubes”, Nature, 422, (2003), pp599-602

    Chapter 2
    [2.1] H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Q. L. Zhang, and S. Q. Feng, “Ga2O3 Nanowires prepared by physical evaporation”, Solid State Commun., 109, (1999), pp677-682
    [2.2] J. Li, L. An, C. Lu, and J. Liu, “Conversion between Hexagonal GaN and β-Ga2O3 Nanowires and Their Electrical Transport Properties”, Nano Lett., 6, (2006), pp148-152

    Chapter 3
    [3.1] M. Passlack, N. E. Hunt, E. F. Schubert, G. J. Zydizk, M. Hong, J. P. Mannaerts, R. L. Opila, and R. J. Fischer, “Dielectric Properties of Electron-Beam Deposited Ga2O3 Films”, Appl. Phys. Lett., 64, (1994), pp2715-2717
    [3.2] A. Y. Polyakov, N. B. Smirnov, and A.V. Govorkov, “Electrical Properties and Defect States in Undoped High-Resistivity GaN Films Used in High-Power Rectifiers”, J. Vac. Sci. Technol. B, 18, (2000), pp1237-1243
    [3.3] Y. Qin, S-M Lee, A. Pan, U. Gosele, and Mato Knez, “Rayleigh-Instability-Induced Metal Nanoparticle Chains Encapsulated in Nanotubes Produced by Atomic Layer Deposition”, Nano Lett., 8, (2008), pp114-118
    [3.4] C-H Hsieh, L-J Chou, G-R Lin, Y. Bando, and D. Golberg, “Nanophotonic Switch: Gold-in Ga2O3 Peapod Nanowires”, Nano Lett., 8, (2008)
    [3.5] K. K. NG, “Tunneling Hot-Electron-Transfer Amplifer”, Complete Guide to Semiconductor Devices, Ch35, (2002), pp282-287
    [3.6] M. Heiblum, S. Wang, J. R. Whinnery, and T. K. Gustafson, “Characteristics of Integrated MOM Junctions at dc and at Optical Frequency”, IEEE J. Quantum Elect., 14, (1978), pp159-169
    [3.7] C. J. Orendorff, T. K. Sau, and C. J. Murphy, “Shape-Dependent Plasmon-Resonant Gold Nanopartilces”, Small, 5, (2006), pp636-639
    [3.8] K. L. Kelly E. Coronado, L. L. Zhao, and G. C. Schatz, “The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape and Dielectric Environment”, J. Phys. Chem. B, 107, (2003), pp668-677

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE