研究生: |
楊家豪 Yang, Jia-Hao |
---|---|
論文名稱: |
結合活性自由基聚合與開環聚合機制一鍋化合成聚苯乙烯和聚己內酯嵌段共聚物 One-Pot Synthesis of Polystyrene-block-Polycaprolactone via the Hybridization of Living Radical Polymerization and Ring Opening Polymerization |
指導教授: |
彭之皓
Peng, Chi-How |
口試委員: |
陳俊太
Chen, Jiun-Tai 王潔 Wang, Jane |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 開環聚合反應 、己內酯 、活性自由基聚合反應 、苯乙烯 、二氯二茂鈦 、一鍋化 |
外文關鍵詞: | ring opening polymerization, living radical polymerization, ε-caprolactone, styrene, titanocene dichloride, one pot synthesis |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要是將兩種不同的聚合反應機構結合在一起,第一種為活性自由基聚合反應 (Living radical polymerization),所選擇的單體為苯乙烯 (Styrene),第二種為開環聚合反應 (Ring opening polymerization),使用的單體為己內酯(ε-Caprolactone)。文章一開始以探討不同起始劑為主,並發現不管何種起始劑,雖然有其反應性和副反應的不同,但皆能連接兩種不同的聚合反應產生嵌段共聚物,而能否成功連結的重點在於二氯二茂鈦與鋅金屬調控系統中的比例,在過量的三價氯二茂鈦大於過量鋅金屬始能夠結合兩種不同聚合機制,並在最後以一鍋化和優化的條件後也成功合成出 PS-b-PCL 嵌段共聚物,由 DSC 和 TGA 的分析證實與文獻所做的嵌段共聚物有類似的特性。
We have successfully combined two different polymerization mechanisms together via Ti-complex system. One of them is the living radical polymerization of styrene, and the other one is the ring opening polymerization of ε-caprolactone. In the beginning of the research, we investigated different kinds of initiators and found that no matter using aldehyde or epoxide as initiators could also generate one active radical for inducing styrene living radical polymerization, and formed titanium alkoxide which is an active center forε-caprolactone ring opening polymerization. The key for hybridizing two systems is the Ti-complex / Zn ratio, and only when the excess Ti-complex are larger than Zn nanoparticles the hybridization will success. We further used these acknowledgements to synthesize PS-b-PCL block copolymer via one-pot reaction, and using DSC and TGA to test the physical properties and thermal stability of the materials.
1. Stevens, M. P., Polym. Chem., oxford university press New York: 1990.
2. Szwarc, M., /`Living/' Polymers. Nature 1956, 178, 1168.
3. Hadjichristidis, N.; Pitsikalis, M.; Pispas, S.; Iatrou, H., Polymers with Complex Architecture by Living Anionic Polymerization. Chem. Rev. 2001, 101, 3747-3792.
4. Hong, K.; Uhrig, D.; Mays, J. W., Living anionic polymerization. Curr. Opin. Solid State Mater. Sci. 1999, 4, 531-538.
5. Aoshima, S.; Higashimura, T., Living cationic polymerization of vinyl monomers by organoaluminum halides. 3. Living polymerization of isobutyl vinyl ether by ethyldichloroaluminum in the presence of ester additives. Macromolecules 1989, 22, 1009-1013.
6. Jordan, R. U., A., Surface initiated living cationic polymerization of 2-oxazolines. J. Am. Chem. Soc. 1998, 120, 243-247.
7. Debuigne, A.; Caille, J. R.; Detrembleur, C.; Jérôme, R., Effective cobalt mediation of the radical polymerization of vinyl acetate in suspension. Angew. Chem.-Int. Edit. 2005, 44, 3439-3442.
8. Jakubowski, W.; Matyjaszewski, K., Activator generated by electron transfer for atom transfer radical polymerization. Macromolecules 2005, 38, 4139-4146.
9. Wang, J.-S.; Matyjaszewski, K., Controlled/"living" radical polymerization. atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995, 117, 5614-5615.
10. Wayland, B. B.; Peng, C.-H.; Fu, X.; Lu, Z.; Fryd, M., Degenerative transfer and reversible termination mechanisms for living radical polymerizations mediated by cobalt porphyrins. Macromolecules 2006, 39, 8219-8222.
11. Kamber, N. E.; Jeong, W.; Waymouth, R. M.; Pratt, R. C.; Lohmeijer, B. G.; Hedrick, J. L., Organocatalytic ring-opening polymerization. Chem. Rev. 2007, 107, 5813-5840.
12. Kato, M.; Kamigaito, M.; Sawamoto, M.; Higashimura, T., Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris- (triphenylphosphine)ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization. Macromolecules 1995, 28, 1721-1723.
13. Coca, S.; Jasieczek, C. B.; Beers, K. L.; Matyjaszewski, K., Polymerization of acrylates by atom transfer radical polymerization. Homopolymerization of 2‐hydroxyethyl acrylate. J. Polym. Sci. Pol. Chem. 1998, 36, 1417-1424.
14. Leiston-Belanger, J. M.; Penelle, J.; Russell, T. P., Synthesis and microphase separation of poly (styrene-b-acrylonitrile) prepared by sequential anionic and ATRP techniques. Macromolecules 2006, 39, 1766-1770.
15. Chiefari, J.; Chong, Y. K.; Ercole, F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer: The RAFT Process. Macromolecules 1998, 31, 5559-5562.
16. Georges, M. K.; Veregin, R. P.; Kazmaier, P. M.; Hamer, G. K., Narrow molecular weight resins by a free-radical polymerization process. Macromolecules 1993, 26, 2987-2988.
17. Moad, G.; Rizzardo, E.; Thang, S. H., Living radical polymerization by the RAFT process. Aust. J. Chem. 2005, 58, 379-410.
18. Moad, G.; Rizzardo, E., Alkoxyamine-initiated living radical polymerization: factors affecting alkoxyamine homolysis rates. Macromolecules 1995, 28, 8722-8728.
19. Moad, G.; Rizzardo, E.; Thang, S. H., Radical addition–fragmentation chemistry in polymer synthesis. Polymer 2008, 49, 1079-1131.
20. Natta, F. J. v.; Hill, J. W.; Carothers, W. H., Studies of Polymerization and Ring Formation. XXIII. 1 ε-Caprolactone and its Polymers. J. Am. Chem. Soc. 1934, 56, 455-457.
21. Hill, J. W., Studies on polymerization and ring formation. VI. Adipic anhydride. J. Am. Chem. Soc. 1930, 52, 4110-4114.
22. Carothers, W. H.; Natta, F. V., Studies on polymerization and ring formation. III. Glycol esters of carbonic acid. J. Am. Chem. Soc. 1930, 52, 314-326.
23. Drumright, R. E.; Gruber, P. R.; Henton, D. E., Polylactic acid technology. Adv. Mater. 2000, 12, 1841-1846.
24. Gross, R. A.; Kalra, B., Biodegradable polymers for the environment. Science 2002, 297, 803-807.
25. Jeong, B.; Bae, Y. H.; Lee, D. S.; Kim, S. W., Biodegradable block copolymers as injectable drug-delivery systems. Nature 1997, 388, 860-862.
26. Li, Y. Y.; Cunin, F.; Link, J. R.; Gao, T.; Betts, R. E.; Reiver, S. H.; Chin, V.; Bhatia, S. N.; Sailor, M. J., Polymer replicas of photonic porous silicon for sensing and drug delivery applications. Science 2003, 299, 2045-2047.
27. Lassalle, V.; Ferreira, M. L., PLA Nano‐and Microparticles for Drug Delivery: An Overview of the Methods of Preparation. Macromol. Biosci. 2007, 7, 767-783.
28. Minami, M.; Kozaki, S. US patent 2003/0023026 A1, 2003.
29. Rocca, M. C.; Carr, G.; Lambert, A. B.; MacQuarrie, D. J.; Clark, J. H. Process for the oxidation of cyclohexanone to ε-caprolactone. US patent 2003/6531615 B2, 2003.
30. Sisson, A. L.; Ekinci, D.; Lendlein, A., The contemporary role of ε-caprolactone chemistry to create advanced polymer architectures. Polymer 2013, 54, 4333-4350.
31. Penczek, S.; Duda, A.; Kaluzynski, K.; Lapienis, G.; Nyk, A.; Szymanski, R., Thermodynamics and kinetics of ring‐opening polymerization of cyclic alkylene phosphates. Wiley Online Library: 1993; Vol. 73, p 91-101.
32. Hiraguri, Y.; Endo, T., Synthesis and radical ring‐opening polymerization of 1, 2‐dicarbomethoxy‐3‐vinylcyclobutane. J. Polym. Sci. Polym. Lett. 1989, 27, 333-337.
33. Tokar, R.; Kubisa, P.; Penczek, S.; Dworak, A., Cationic polymerization of glycidol: coexistence of the activated monomer and active chain end mechanism. Macromolecules 1994, 27, 320-322.
34. Yu, G. E.; Heatley, F.; Booth, C.; Blease, T. G., Anionic polymerization of propylene oxide: Isomerization of allyl ether to propenyl ether end groups. J. Polym. Sci. Pol. Chem. 1994, 32, 1131-1135.
35. O'Keefe, B. J.; Hillmyer, M. A.; Tolman, W. B., Polymerization of lactide and related cyclic esters by discrete metal complexes. J. Chem. Soc.-Dalton Trans. 2001, 2215-2224.
36. Ajellal, N.; Carpentier, J.-F.; Guillaume, C.; Guillaume, S. M.; Helou, M.; Poirier, V.; Sarazin, Y.; Trifonov, A., Metal-catalyzed immortal ring-opening polymerization of lactones, lactides and cyclic carbonates. Dalton Trans. 2010, 39, 8363-8376.
37. Penczek, S.; Duda, A.; Szymanski, R., Intra‐and intermolecular chain transfer to macromolecules with chain scission. The case of cyclic esters. Macromol. Symp. 1998, 132, 441-449.
38. Ziegler, K.; Holzkamp, E.; Breil, H.; Martin, H., Das Mülheimer Normaldruck‐Polyäthylen‐Verfahren. Angew. Chem.-Int. Edit. 1955, 67, 541-547.
39. Natta, G.; Pino, P.; Corradini, P.; Danusso, F.; Mantica, E.; Mazzanti, G.; Moraglio, G., Crystalline high polymers of α-olefins. J. Am. Chem. Soc. 1955, 77, 1708-1710.
40. Luo, Z.; Zheng, T.; Li, H.; Zhou, Q.; Wang, A.; Zhang, L.; Hu, Y., A Submicron Spherical Polypropylene Prepared by Heterogeneous Ziegler–Natta Catalyst. Ind. Eng. Chem. Res. 2015, 54, 11247-11250.
41. Qi, M.; Zhang, B.; Fu, Z.; Xu, J.; Fan, Z., Millimeter‐size polyethylene hollow spheres synthesized with MgCl2‐supported Ziegler‐Natta catalyst. J. Appl. Polym. Sci. 2016, 133.
42. Kashiwa, N.; Tsutsui, T., Ethylene polymerization by supported vanadium catalyst. effect of carrier on activity and relationship between concentration of v (iii) and activity. Macromol. Rapid Commun. 1983, 4, 491-495.
43. Grishin, D.; Semyonycheva, L.; Telegina, E.; Smirnov, A.; Nevodchikov, V., Dicyclopentadienyl complexes of titanium, niobium, and tungsten in the controlled synthesis of poly (methyl methacrylate). Russ. Chem. Bull. 2003, 52, 505-507.
44. Grishin, D. F.; Ignatov, S. K.; Shchepalov, A. A.; Razuvaev, A. G., Mechanism of the controlled radical polymerization of styrene and methyl methacrylate in the presence of dicyclopentadienyltitanium dichloride. Appl. Organomet. Chem. 2004, 18, 271-276.
45. Asandei, A. D.; Moran, I. W., TiCp2Cl-catalyzed living radical polymerization of styrene initiated by oxirane radical ring opening. J. Am. Chem. Soc. 2004, 126, 15932-15933.
46. Asandei, A. D.; Chen, Y.; Moran, I. W.; Saha, G., Similarities and differences of epoxide, aldehyde and peroxide initiators for Cp2TiCl-catalyzed styrene living radical polymerizations. J. Organomet. Chem. 2007, 692, 3174-3182.
47. Asandei, A. D.; Moran, I. W., The ligand effect in Ti-mediated living radical styrene polymerizations initiated by epoxide radical ring opening. 2. Scorpionate and half-sandwich LTiCl3 complexes. J. Polym. Sci. Pol. Chem. 2005, 43, 6039-6047.
48. Asandei, A. D.; Moran, I. W.; Saha, G.; Chen, Y., Titanium-mediated living radical styrene polymerizations. V. Cp2TiCl-catalyzed initiation by epoxide radical ring opening: Effect of solvents and additives. J. Polym. Sci. Pol. Chem. 2006, 44, 2015-2026.
49. Asandei, A. D.; Moran, I. W.; Saha, G.; Chen, Y., Titanium-mediated living radical styrene polymerizations. VI. Cp2TiCl-catalyzed initiation by epoxide radical ring opening: Effect of the reducing agents, temperature, and titanium/epoxide and titanium/zinc ratios. J. Polym. Sci. Pol. Chem. 2006, 44, 2156-2165.
50. Asandei, A. D.; Chen, Y., Cp2TiCl-Catalyzed SET Reduction of Aldehydes A New Initiating Protocol for Living Radical Polymerization. Macromolecules 2006, 39, 7549–7554.
51. Diéguez, H. R.; López, A.; Domingo, V.; Arteaga, J. F.; Herrador, J. A. D. M.; Moral, J. F. Q. d.; Barrero, A. F., Weakening C−O Bonds: Ti(III), a New Reagent for Alcohol Deoxygenation and Carbonyl Coupling Olefination. J. Am. Chem. Soc. 2010, 132, 254-259.
52. Ayala, C. N.; Chisholm, M. H.; Gallucci, J. C.; Krempner, C., Chemistry of BDI* M (2+) complexes (M= Mg, Zn) and their role in lactide polymerization where BDI* is the anion derived from methylenebis (C-tBu, N-2, 6-diisopropylphenyl) imine BDI* H. Dalton Trans. 2009, 9237-9245.
53. Chisholm, M. H.; Gallucci, J.; Phomphrai, K., Lactide polymerization by well-defined calcium coordination complexes: comparisons with related magnesium and zinc chemistry. Chem. Commun. 2003, 48-49.
54. Ma, H.; Spaniol, T. P.; Okuda, J., Rare earth metal complexes supported by 1, ω-dithiaalkanediyl-bridged bis (phenolato) ligands: synthesis, characterization and ring-opening polymerization catalysis of l-lactide. Dalton Trans. 2003, 4770-4780.
55. Alaaeddine, A.; Amgoune, A.; Thomas, C. M.; Dagorne, S.; Bellemin‐Laponnaz, S.; Carpentier, J. F., Bis [bis (oxazolinato)] Complexes of Yttrium and Lanthanum: Molecular Structure and Use in Polymerization of dl‐Lactide and dl‐β‐Butyrolactone. Eur. J. Inorg. Chem. 2006, 2006, 3652-3658.
56. Asandei, A. D.; Saha, G., Living Ring‐Opening Polymerization of Cyclic Esters with Epoxide‐Derived Titanium Alkoxides. Macromol. Rapid Commun. 2005, 26, 626-631.
57. Asandei, A. D.; Chen, Y.; Adebolu, O. I.; Simpson, C. P., Living ring‐opening polymerization of ϵ‐caprolactone with Ti alkoxides derived from the Cp2TiCl‐catalyzed SET reduction of aldehydes. J. Polym. Sci. Pol. Chem. 2008, 46, 2869-2877.
58. Buffet, J.-C.; Okuda, J., Group 4 metal initiators for the controlled stereoselective polymerization of lactide monomers. Chem. Commun. 2011, 47, 4796-4798.
59. Whitelaw, E. L.; Davidson, M. G.; Jones, M. D., Group 4 salalen complexes for the production and degradation of polylactide. Chem. Commun. 2011, 47, 10004-10006.
60. Sauer, A.; Buffet, J.-C.; Spaniol, T. P.; Nagae, H.; Mashima, K.; Okuda, J., Synthesis, characterization, and lactide polymerization activity of group 4 metal complexes containing two bis (phenolate) ligands. Inorg. Chem. 2012, 51, 5764-5770.
61. Kricheldorf, H. R.; Berl, M.; Scharnagl, N., Poly (lactones). 9. Polymerization mechanism of metal alkoxide initiated polymerizations of lactide and various lactones. Macromolecules 1988, 21, 286-293.
62. Hsieh, K. C.; Lee, W. Y.; Hsueh, L. F.; Lee, H. M.; Huang, J. H., Synthesis and Characterization of Zirconium and Hafnium Aryloxide Compounds and Their Reactivity Towards Lactide and ϵ‐Caprolactone Polymerization. Eur. J. Inorg. Chem. 2006, 2006, 2306-2312.
63. Stolt, M.; Södergård, A., Use of monocarboxylic iron derivatives in the ring-opening polymerization of L-lactide. Macromolecules 1999, 32, 6412-6417.
64. John, A.; Katiyar, V.; Pang, K.; Shaikh, M. M.; Nanavati, H.; Ghosh, P., Ni (II) and Cu (II) complexes of phenoxy-ketimine ligands: Synthesis, structures and their utility in bulk ring-opening polymerization (ROP) of L-lactide. Polyhedron 2007, 26, 4033-4044.
65. Gowda, R. R.; Chakraborty, D., Copper acetate catalyzed bulk ring opening polymerization of lactides. J. Mol. Catal. A-Chem. 2011, 349, 86-93.
66. dos Santos Vieira, I.; Herres‐Pawlis, S., Lactide Polymerisation with Complexes of Neutral N‐Donors–New Strategies for Robust Catalysts. Eur. J. Inorg. Chem. 2012, 2012, 765-774.
67. Ropson, N.; Dubois, P.; Jérôme, R.; Teyssie, P., Macromolecular engineering of polylactones and polylactides. 20. Effect of monomer, solvent, and initiator on the ring-opening polymerization as initiated with aluminum alkoxides. Macromolecules 1995, 28, 7589-7598.
68. Horeglad, P.; Kruk, P.; Pécaut, J., Heteroselective Polymerization of rac-lactide in the presence of dialkylgallium alkoxides: The effect of Lewis base on polymerization stereoselectivity. Organometallics 2010, 29, 3729-3734.
69. Yu, I.; Acosta-Ramírez, A.; Mehrkhodavandi, P., Mechanism of living lactide polymerization by dinuclear indium catalysts and its impact on isoselectivity. J. Am. Chem. Soc. 2012, 134, 12758-12773.
70. Nijenhuis, A.; Grijpma, D.; Pennings, A., Lewis acid catalyzed polymerization of L-lactide. Kinetics and mechanism of the bulk polymerization. Macromolecules 1992, 25, 6419-6424.
71. Rafler, G.; Dahlmann, J., Biodegradable polymers. 6th comm. Polymerization of ϵ‐caprolactone. Acta Polym. 1992, 43, 91-95.
72. Piskun, Y. A.; Vasilenko, I. V.; Kostjuk, S. V.; Zaitsev, K. V.; Zaitseva, G. S.; Karlov, S. S., Titanium complexes of dialkanolamine ligands as initiators for living ring-opening polymerization of ε-caprolactone. J. Polym. Sci. Pol. Chem. 2010, 48, 1230-1240.
73. Asandei, A. D.; Chen, Y.; Adebolu, O. I.; Simpson, C. P., Living ring-opening polymerization of ε-caprolactone with Ti alkoxides derived from the Cp2TiCl-catalyzed SET reduction of aldehydes. J. Polym. Sci. Pol. Chem. 2008, 46, 2869-2877.
74. RajanBabu, T.; Nugent, W. A.; Beattie, M. S., Free radical-mediated reduction and deoxygenation of epoxides. J. Am. Chem. Soc. 1990, 112, 6408-6409.
75. Bailey, J. T.; Nyberg, D. D. Polystyrene-polyisoprene-polystyrene block copolymer latices and process for their preparation. US patent 1966/3238173 A, 1966.
76. Hawker, C. J.; Hedrick, J. L.; Malmström, E. E.; Trollsås, M.; Mecerreyes, D.; Moineau, G.; Dubois, P.; Jérôme, R., Dual living free radical and ring opening polymerizations from a double-headed initiator. Macromolecules 1998, 31, 213-219.
77. Mecerreyes, D.; Moineau, G.; Dubois, P.; Jérôme, R.; Hedrick, J. L.; Hawker, C. J.; Malmström, E. E.; Trollsas, M., Simultaneous Dual Living Polymerizations: A Novel One‐Step Approach to Block and Graft Copolymers. Angew. Chem.-Int. Edit. 1998, 37, 1274-1276.
78. Cianga, I.; Senyo, T.; Ito, K.; Yagci, Y., Electron Transfer Reactions of Radical Anions with TEMPO: A Versatile Route for Transformation of Living Anionic Polymerization into Stable Radical‐Mediated Polymerization. Macromol. Rapid Commun. 2004, 25, 1697-1702.
79. van As, B. A.; Thomassen, P.; Kalra, B.; Gross, R. A.; Meijer, E.; Palmans, A. R.; Heise, A., One-pot chemoenzymatic cascade polymerization under kinetic resolution conditions. Macromolecules 2004, 37, 8973-8977.
80. Bernaerts, K. V.; Du Prez, F. E., Dual/heterofunctional initiators for the combination of mechanistically distinct polymerization techniques. Prog. Polym. Sci. 2006, 31, 671-722.
81. Sha, K.; Li, D.; Wang, S.; Qin, L.; Wang, J., Synthesis and characterization of diblock copolymer by enzymatic ring-opening polymerization and ATRP from a novel bifunctional initiator. Polym. Bull. 2005, 55, 349-355.
82. Villarroya, S.; Zhou, J.; Duxbury, C. J.; Heise, A.; Howdle, S. M., Synthesis of Semifluorinated Block Copolymers Containing Poly (ε-caprolactone) by the Combination of ATRP and Enzymatic ROP in scCO2. Macromolecules 2006, 39, 633-640.
83. Thurecht, K. J.; Gregory, A. M.; Villarroya, S.; Zhou, J.; Heise, A.; Howdle, S. M., Simultaneous enzymatic ring opening polymerisation and RAFT-mediated polymerisation in supercritical CO 2. Chem. Commun. 2006, 4383-4385.
84. Kang, H. U.; Yu, Y. C.; Shin, S. J.; Kim, J.; Youk, J. H., One-pot synthesis of poly (N-vinylpyrrolidone)-b-poly (ε-caprolactone) block copolymers using a dual initiator for RAFT polymerization and ROP. Macromolecules 2013, 46, 1291-1295.
85. RajanBabu, T. V.; Nugent, W. A.; Beattie, M. S., Free radical-mediated reduction and deoxygenation of epoxides. J. Am. Chem. Soc. 1990, 112, 6408–6409.
86. Coutts, R. S. P.; Wailes, P. C., Dimeric dicyclopentadienyltitanium(III) halides. J. Organomet. Chem. 1973, 47, 375-382.
87. Arnal, M. L.; Balsamo, V.; López-Carrasquero, F.; Contreras, J.; Carrillo, M.; Schmalz, H.; V. Abetz ; Laredo, E.; Müller, A. J., Synthesis and Characterization of Polystyrene-b-poly(ethylene oxide)-b-poly(ε-caprolactone) Block Copolymers. Macromolecules 2001, 34, 7973–7982.
88. Meng, F.; Xu, Z.; Zheng, S., Microphase Separation in Thermosetting Blends of Epoxy Resin and Poly(ε-caprolactone)-block-Polystyrene Block Copolymers. Macromolecules 2008, 41, 1411–1420.