研究生: |
蕭毓霖 Xiao, Yu-Lin |
---|---|
論文名稱: |
開發奈米金比色法和分子印跡金電極檢測嘉磷塞殘留 Development of AuNPs colorimetry and molecularly imprinted polymer gold electrode for detection of glyphosate residue |
指導教授: |
莊淳宇
Chuang, Chun-Yu |
口試委員: |
王翔郁
Wang, Hsiang-Yu 曾昭銘 Tseng, Chai-Ming 翁睿謙 Weng, Rui-Cian |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 生醫工程與環境科學系 Department of Biomedical Engineering and Environmental Sciences |
論文出版年: | 2023 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | 農藥殘留 、嘉磷塞 、金奈米粒子 、比色法 、分子印跡金電極 |
外文關鍵詞: | pesticide residues, glyphosate, AuNPs, colorimetry, MIP gold electrode |
相關次數: | 點閱:61 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
生化法為常用農藥快篩方式之一,利用農藥抑制乙醯膽鹼酶進行檢測,雖然能用於市場即時檢測農藥殘留,但無法篩檢所有農藥。嘉磷塞(Glyphosate, GLY)為一種有機磷農藥,普遍施用於基因改良黃豆,由於GLY為乙醯膽鹼酶弱抑制劑,目前現行生化法無法適用於檢測GLY殘留。因此,本研究開發兩種檢測GLY殘留方法,期以在食品安全監測上具實質性助益。
本研究開發奈米金比色法(AuNPs colorimetry)檢測GLY,利用GLY和鉛離子之螯合效應,減弱鉛離子和AuNPs之間的靜電作用力,進而保留原本AuNPs顏色。比色法檢測結果顯示GLY濃度與AuNPs光吸收度具有良好負線性關係(R2 0.9964, LOD 0.0752 ppm),AuNPs光吸收度隨GLY濃度上升而減弱。本研究針對AuNPs比色法亦開發微量農藥檢測儀器,以影像判讀比色法試片上GLY,可偵測到GLY濃度線性範圍介於0.1-1 ppm (R2 0.9645, LOD 0.025 ppm)。此外,本研究利用電化學方式開發分子印跡(Molecularly imprinted polymer, MIP)金電極,在電極表面修飾殼聚醣(Chitosan),形成具有能吸附GLY之分子模腔,結合安培法(Amperometry, IT)檢測,可檢測GLY濃度線性範圍介於0.01-10 ppm (R2 0.8864, LOD 1.5 ppb)。利用MIP金電極-安培法檢測其他五種農藥,發現MIP金電極對於GLY具有專一性。本研究亦偵測黃豆樣本中GLY農藥殘留量,經水萃後,MIP金電極-安培法偵測結果呈現最佳線性濃度範圍為0.01-10 ppm (R2 0.9619, LOD 7.8 ppb),涵蓋台灣衛生福利部食品藥物管理署(Taiwan Food and Drug Administration)法定GLY於各項農作物之容許殘留量(0.1-10 ppm)。本研究成功開發AuNPs比色法和MIP金電極-安培法能專一性檢測GLY,並且MIP金電極-安培法能檢測水萃黃豆樣本中GLY殘留,因此有助於提高農作物GLY殘留篩檢比率,促進食品安全。
The biochemical assay is one of the common screening methods for rapid pesticide detection by utilizing the attenuation of acetylcholinesterase. Although biochemical assay can be employed for real-time pesticide residue detection in the market, it is currently unable to screen for all commonly used pesticides. Glyphosate (GLY) is an organophosphorus pesticide frequently used in genetically modified soybeans. The current biochemical assay is not applicable for detecting residual GLY due to its weak inhibition of acetylcholinesterase. Therefore, this study developed two methods to detect residual GLY for food safety monitoring.
This study developed an AuNPs colorimetry method to detect GLY by the chelation effect of GLY with lead ions to weaken the electrostatic interaction between lead ions and AuNPs and preserve the original color of the AuNPs. The results of AuNPs colorimetry method indicated a strong negative linear relationship between GLY concentration and AuNPs absorbance (R2 0.9964, LOD 0.0752 ppm) with AuNPs absorbance decreasing as GLY concentration increased. In addition, this study created a trace pesticide detection instrument for the AuNPs colorimetry method, capable of conductong image-based analysis of GLY on the AuNPs colorimetry test strip (linear range 0.1-1 ppm, R2 0.9645, LOD 0.025 ppm). Furthermore, this study introduced a molecularly imprinted material (MIP) gold electrode using an electrochemical approach, with the surface modification of chitosan to create molecularly imprinted cavities capable of adsorbing GLY for the detection of GLY (linear range 0.01-10 ppm, R2 0.8864, LOD 1.5 ppb). The MIP gold electrode performed its specificity for GLY detection when tested against five other pesticides. The MIP gold electrode was employed to detect GLY residues in soybean samples after water extraction, revealing a linear range of 0.01-10 ppm (R2 0.9619, LOD 7.8 ppb), which complies with the permissible GLY residue limits of agriculture crops established by the Taiwan FDA (0.1-10 ppm). This study successfully developed the AuNPs colorimetric method and MIP gold electrode for the specific detection of GLY, and in particular, the MIP gold electrode was capable of detecting GLY residues in water-extracted soybean samples. Consequently, these developments contributed to enhancing the screening ratio for GLY residues in agricultural crops for promoting food safety
1.FAOSTAT, Pesticides Use. Food and Agriculture Organization of the United Nations. 2020.
2.Duke, S.O., Glyphosate: Uses Other Than in Glyphosate-Resistant Crops, Mode of Action, Degradation in Plants, and Effects on Non-target Plants and Agricultural Microbes. Rev Environ Contam Toxicol, 2021. 255: p.1-65.
3.Benbrook, C.M., Trends in glyphosate herbicide use in the United States and globally. Environ Sci Eur, 2016. 28: p.3.
4.Green, J.M. and D.L. Siehl, History and Outlook for Glyphosate-Resistant Crops. Rev Environ Contam Toxicol, 2021. 255: p.67-91.
5.ISAAA, GM Approval Database. 2020, International Service for the Acquisition of Agri-biotech Applications.
6.Benevenuto, R.F., et al., Proteomic Profile of Glyphosate-Resistant Soybean under Combined Herbicide and Drought Stress Conditions. Plants (Basel), 2021. 10(11): p.2381.
7.Schütte, G., et al., Herbicide resistance and biodiversity: agronomic and environmental aspects of genetically modified herbicide-resistant plants. Environmental Sciences Europe, 2017. 29: p.5.
8.Shimono, A., et al., Initial invasion of glyphosate‐resistant Amaranthus palmeri around grain‐import ports in Japan. Plants, People, Planet, 2020. 2(6): p.640-648.
9.USGS, Estimated Annual Agricultural Pesticide Use. 2019, U.S. Geological Survey.
10.Tsai, W.-T., Trends in the Use of Glyphosate Herbicide and Its Relevant Regulations in Taiwan: A Water Contaminant of Increasing Concern. Toxics, 2019. 7(1): p.4.
11.方麗萍,回顧台灣農藥市場20年(2000-2020)。中華民國雜草學會會刊,2021。42: p.1-5。
12.Tudi, M., et al., Exposure Routes and Health Risks Associated with Pesticide Application. Toxics, 2022. 10(6): p.335.
13.Ou, J., et al., Degradation, adsorption and leaching of phenazine-1-carboxamide in agricultural soils. Ecotoxicol Environ Saf, 2020. 205: p.111374.
14.Warne, M.S.J. and A. Reichelt-Brushett, Pesticides and Biocides. 2023, Springer Nature Switzerland. p.155-184.
15.Rose, C.E., et al., Holistic assessment of occurrence and fate of metolachlor within environmental compartments of agricultural watersheds. Sci Total Environ, 2018. 612: p.708-719.
16.Rani, L., et al., An extensive review on the consequences of chemical pesticides on human health and environment. Journal of Cleaner Production, 2021. 283: p.321.
17.Silva-Madera, R.J., et al., Pesticide Contamination in Drinking and Surface Water in the Cienega, Jalisco, Mexico. Water, Air, & Soil Pollution, 2021. 232(2): p.43.
18.Degrendele, C., et al., Current use pesticides in soil and air from two agricultural sites in South Africa: Implications for environmental fate and human exposure. Sci Total Environ, 2022. 807: p.150455.
19.Fucic, A., et al., Reproductive Health Risks Associated with Occupational and Environmental Exposure to Pesticides. Int J Environ Res Public Health, 2021. 18(12): p.6576.
20.Lamichhane, J.R., et al., Revisiting Sustainability of Fungicide Seed Treatments for Field Crops. Plant Dis, 2020. 104(3): p.610-623.
21.Silva, V., et al., Pesticide residues in European agricultural soils - A hidden reality unfolded. Sci Total Environ, 2019. 653: p.1532-1545.
22.Novotny, E., Glyphosate, Roundup and the Failures of Regulatory Assessment. Toxics, 2022. 10(6): p.321.
23.Seralini, G.E., Why glyphosate is not the issue with Roundup. Journal of Biological Physics and Chemistry, 2015. 15(3): p.111-119.
24.Benbrook, C., Impacts of Genetically Engineered Crops on Pesticide Use: The First Thirteen Years. Environ Sci Europe, 2009. 24.
25.Robb, E.L. and M.B. Baker, Organophosphate Toxicity, in StatPearls. 2022: Treasure Island (FL).
26.Poirier, L., et al., Enzymatic degradation of organophosphorus insecticides decreases toxicity in planarians and enhances survival. Sci Rep, 2017. 7(1): p.15194.
27.Lopes-Ferreira, M., et al., Impact of Pesticides on Human Health in the Last Six Years in Brazil. Int J Environ Res Public Health, 2022. 19(6): p.3198.
28.Benavides-Piracon, J.A., et al., Prenatal and postnatal exposure to pesticides and school-age children's cognitive ability in rural Bogota, Colombia. Neurotoxicology, 2022. 90: p.112-120.
29.Martinez-Morcillo, S., et al., The organophosphorus pesticide dimethoate decreases cell viability and induces changes in different biochemical parameters of rat pancreatic stellate cells. Toxicol In Vitro, 2019. 54: p.89-97.
30.Eid, R.A., Apoptosis of Rat Renal Cells by Organophosphate Pesticide, Quinalphos: Ultrastructural Study. Saudi Journal of Kidney Diseases and Transplantation, 2017. 28(4): p.725-736.
31.Yang, F.W., et al., Organophosphorus pesticide triazophos: A new endocrine disruptor chemical of hypothalamus-pituitary-adrenal axis. Pestic Biochem Physiol, 2019. 159: p.91-97.
32.Patel, O., et al., Pesticide use, allergic rhinitis, and asthma among US farm operators. Journal of Agromedicine, 2018. 23(4): p.327-335.
33.Anuradha and J. Singh, Occurrence and Removal of Pesticides in Drinking Water. 2021, Springer International Publishing. p.233-257.
34.Hua, Y., et al., Advances in the Agro-Environment Migration of Organic Chemical Pollutants and Their Biotransformation in Crops. Agronomy, 2022. 12(12): p.3009.
35.Kumar, J., et al., An Overview of Some Biopesticides and Their Importance in Plant Protection for Commercial Acceptance. Plants, 2021. 10(6): p.1185.
36.RAGNARSDOTTIR, K.V., Environmental fate and toxicology of organophosphate pesticides. Journal of the Geological Society, 2000. 157(4): p.859-876.
37.Neylon, J., et al., Organophosphate Insecticide Toxicity in Neural Development, Cognition, Behaviour and Degeneration: Insights from Zebrafish. Journal of Developmental Biology, 2022. 10(4): p.49.
38.Adeyinka, A., E. Muco, and L. Pierre, Organophosphates, in StatPearls. 2022: Treasure Island (FL).
39.Reiss, R., et al., A review of epidemiologic studies of low-level exposures to organophosphorus insecticides in non-occupational populations. Crit Rev Toxicol, 2015. 45(7): p.531-641.
40.Guyton, K.Z., et al., Carcinogenicity of tetrachlorvinphos, parathion, malathion, diazinon, and glyphosate. Lancet Oncol, 2015. 16(5): p.490.
41.衛生福利部,農藥殘留容許量標準表,食品藥物管理目。2022。
42.Hagner, M., et al., Effects of a glyphosate-based herbicide on soil animal trophic groups and associated ecosystem functioning in a northern agricultural field. Scientific Reports, 2019. 9: p.8540.
43.Castrejon-Godinez, M.L., et al., Glyphosate Pollution Treatment and Microbial Degradation Alternatives, a Review. Microorganisms, 2021. 9(11): p.2322.
44.Kanissery, R., et al., Glyphosate: Its Environmental Persistence and Impact on Crop Health and Nutrition. Plants (Basel), 2019. 8(11): p.499.
45.Kanissery, R., et al., Glyphosate: Its Environmental Persistence and Impact on Crop Health and Nutrition. Plants, 2019. 8(11): p.499.
46.Kisvarga, S., et al., Morphological, Histological, and Glyphosate Residue Analysis of Helianthus annuus L. Plants Treated with Glyphosate. Agriculture, 2023. 13(5): p.1014.
47.Duke, S.O., et al., Glyphosate Effects on Plant Mineral Nutrition, Crop Rhizosphere Microbiota, and Plant Disease in Glyphosate-Resistant Crops. Journal of Agricultural and Food Chemistry, 2012. 60(42): p.10375-10397.
48.Karthikraj, R. and K. Kannan, Widespread occurrence of glyphosate in urine from pet dogs and cats in New York State, USA. Sci Total Environ, 2019. 659: p.790-795.
49.Connolly, A., et al., Characterising glyphosate exposures among amenity horticulturists using multiple spot urine samples. International Journal of Hygiene and Environmental Health, 2018. 221(7): p.1012-1022.
50.Martinez, A. and A.J. Al-Ahmad, Effects of glyphosate and aminomethylphosphonic acid on an isogeneic model of the human blood-brain barrier. Toxicol Lett, 2019. 304: p.39-49.
51.Zhang, L., et al., Exposure to glyphosate-based herbicides and risk for non-Hodgkin lymphoma: A meta-analysis and supporting evidence. Mutation Research/Reviews in Mutation Research, 2019. 781: p.186-206.
52.Peillex, C. and M. Pelletier, The impact and toxicity of glyphosate and glyphosate-based herbicides on health and immunity. Journal of Immunotoxicology, 2020. 17: p.163-174.
53.林韶凱&徐慈鴻,農產品中殘留農藥快速萃取技術。農業藥物毒物試驗所。2016。
54.Liu, M., et al., Dopamine-functionalized upconversion nanoparticles as fluorescent sensors for organophosphorus pesticide analysis. Talanta, 2019. 195: p.706-712.
55.台灣農業部農業藥物試驗所,食品中殘留農藥檢驗方法-極性農藥及其代謝物多重殘留分析方法(TFDAP0006.01)。2017。
56.農業藥物試驗所,行政院農業委員會新聞資料第333號:食安把關新利器 國際最速農藥殘留質譜快速篩檢技術。2019。https://www.acri.gov.tw/Item/Detail/%E9%A3%9F%E5%AE%89%E6%8A%8A%E9%97%9C%E6%96%B0%E5%88%A9%E5%99%A8-%E5%9C%8B%E9%9A%9B%E6%9C%80%E9%80%9F%E8%BE%B2%E8%97%A5%E6%AE%98%E7%95%99%E8%B3%AA%E8%AD%9C%E5%BF%AB%E9%80%9F
57.農業藥物毒物試驗所,農業部新聞文號7776:食安檢測的革命性新工具開發客製化的行動檢測實驗室表面增強拉曼光譜之農藥即時檢測系統應用。2017。https://www.moa.gov.tw/theme_data.php?theme=news&sub_theme=agri&id=7057
58.張美惠等人,生化檢驗法在蔬菜殘留農藥篩檢上可行性之探討。藥物食品檢驗局調查研究年報,1989:p.67-75。
59.農業藥物毒物試驗所,行政院農業委員會新聞資料第193號:因應巴拉刈全面禁用農委會啟用拉曼快檢新利器把關。2018。https://www.acri.gov.tw/En/Item/Detail/%E5%9B%A0%E6%87%89%E5%B7%B4%E6%8B%89%E5%88%88%E5%85%A8%E9%9D%A2%E7%A6%81%E7%94%A8-%E8%BE%B2%E5%A7%94%E6%9C%83%E5%95%9F%E7%94%A8%E6%8B%89%E6%9B%BC%E5%BF%AB%E6%AA%A2%E6%96%B0
60.農業藥物試驗所,拉曼不慢,食安把關的新利器。2017。https://www.acri.gov.tw/Item/Detail/%E3%80%8C%E6%8B%89%E6%9B%BC%E3%80%8D%E4%B8%8D%E6%85%A2%EF%BC%8C%E9%A3%9F%E5%AE%89%E6%8A%8A%E9%97%9C%E7%9A%84%E6%96%B0%E5%88%A9%E5%99%A8%EF%BC%81_%E8%BE%B2%E5%A7%94%E6%9C%83
61.農傳媒,農藥檢驗快又有效,拉曼光譜儀走入市集破解大眾農藥迷思。2020。https://www.agriharvest.tw/archives/42402
62.有機農藥全球資訊網,農藥快篩生化法快速便宜,但8成農藥驗不到,如何保障食安。2018。https://info.organic.org.tw/2830/
63.Umapathi, R., et al., Colorimetric based on-site sensing strategies for the rapid detection of pesticides in agricultural foods: New horizons, perspectives, and challenges. Coordination Chemistry Reviews, 2021. 446: p.214061.
64.Ma, S., et al., Ultrasensitive colorimetric detection of triazophos based on the aggregation of silver nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018. 538: p.343-349.
65.Huang, C., et al., Portable label-free inverse opal photonic hydrogel particles serve as facile pesticides colorimetric monitoring. Sensors and Actuators B: Chemical, 2018. 273: p.1705-1712.
66.Bordbar, M.M., et al., A paper-based colorimetric sensor array for discrimination and simultaneous determination of organophosphate and carbamate pesticides in tap water, apple juice, and rice. Mikrochim Acta, 2020. 187(11): p.621.
67.Lisa, M., et al., Gold nanoparticles based dipstick immunoassay for the rapid detection of dichlorodiphenyltrichloroethane: an organochlorine pesticide. Biosens Bioelectron, 2009. 25: p.224-7.
68.Cheng, N., et al., Pt-Ni(OH)(2) nanosheets amplified two-way lateral flow immunoassays with smartphone readout for quantification of pesticides. Biosens Bioelectron, 2019. 142: p.111498.
69.Chen, H., K. Zhou, and G. Zhao, Gold nanoparticles: From synthesis, properties to their potential application as colorimetric sensors in food safety screening. Trends in Food Science & Technology, 2018. 78: p. 83-94.
70.Liu, Q., et al., Colorimetric determination of the pesticide chlorothalonil based on the aggregation of gold nanoparticles. Mikrochim Acta, 2018. 185(7): p.354.
71.Tu, Q., et al., In situ colorimetric detection of glyphosate on plant tissues using cysteamine-modified gold nanoparticles. Analyst, 2019. 144(6): p.2017-2025.
72.Hong, G.-B., et al., Colorimetric Detection of 1-Naphthol and Glyphosate Using Modified Gold Nanoparticles. Sustainability, 2022. 14(17): p.10793.
73.Zhu, J., et al., Colorimetric Measurement of Deltamethrin Pesticide Using a Paper Sensor Based on Aggregation of Gold Nanoparticles. Coatings, 2021. 12: p.38.
74.Hong, C., et al., Sensitive and on-site detection of glyphosate based on papain-stabilized fluorescent gold nanoclusters. Anal Bioanal Chem, 2020. 412(29): p.8177-8184.
75.Kailasa, S.K., et al., Assembly of 6-aza-2-thiothymine on gold nanoparticles for selective and sensitive colorimetric detection of pencycuron in water and food samples. Talanta, 2019. 205: p.120087.
76.Liu, C.-P., et al., Revealing the Active Site of Gold Nanoparticles for the Peroxidase-Like Activity: The Determination of Surface Accessibility. Catalysts, 2019. 9(6): p.517.
77.Deraedt, C., et al., Sodium borohydride stabilizes very active gold nanoparticle catalysts. Chem Commun (Camb), 2014. 50(91): p.14194.
78.Zhou, Z., et al., Detection of herbicide glyphosates based on an anti-aggregation mechanism by using unmodified gold nanoparticles in the presence of Pb2+. Analytical Methods, 2017. 9(19): p.2890-2896.
79.Umapathi, R., et al., Portable electrochemical sensing methodologies for on-site detection of pesticide residues in fruits and vegetables. Coordination Chemistry Reviews, 2022. 453: p.214305.
80.Noori, J.S., J. Mortensen, and A. Geto, Recent Development on the Electrochemical Detection of Selected Pesticides: A Focused Review. Sensors, 2020. 20(8): p.2221.
81.Baksh, H., et al., Ultra-selective determination of carbofuran by electrochemical sensor based on nickel oxide nanoparticles stabilized by ionic liquid. Monatshefte für Chemie - Chemical Monthly, 2020. 151(11): p.1689-1696.
82.Noori, J.S., J. Mortensen, and A. Geto, Rapid and Sensitive Quantification of the Pesticide Lindane by Polymer Modified Electrochemical Sensor. Sensors (Basel), 2021. 21(2): p.393.
83.Qi, P., et al., Sensitive and selective detection of the highly toxic pesticide carbofuran in vegetable samples by a molecularly imprinted electrochemical sensor with signal enhancement by AuNPs. RSC Advances, 2018. 8(45): p.25334-25341.
84.Roushani, M. and N. Zalpour, Selective detection of Asulam with in-situ dopamine electropolymerization based electrochemical MIP sensor. Reactive and Functional Polymers, 2021. 169: p.105069.
85.Sarah Setznagla, I.C., Copper nanoparticles and reduced graphene oxide modified a glassy carbon electrode for the determination of glyphosate in water samples. International Journal of Environmental Analytical Chemistry, 2020. 102: p.293-305..
86.Fang, L., et al., Molecularly imprinted polymer-based optical sensors for pesticides in foods: Recent advances and future trends. Trends in Food Science & Technology, 2021. 116: p.387-404.
87.Herrera-Chacón, A., X. Cetó, and M. Del Valle, Molecularly imprinted polymers- towards electrochemical sensors and electronic tongues. Analytical and Bioanalytical Chemistry, 2021. 413(24): p.6117-6140.
88.Zouaoui, F., et al., Electrochemical Impedance Spectroscopy Microsensor Based on Molecularly Imprinted Chitosan Film Grafted on a 4-Aminophenylacetic Acid (CMA) Modified Gold Electrode, for the Sensitive Detection of Glyphosate. Front Chem, 2021. 9: p.621057.
89.Wu, S., et al., Highly sensitive and selective ion-imprinted polymers based on one-step electrodeposition of chitosan-graphene nanocomposites for the determination of Cr(VI). Carbohydr Polym, 2018. 195: p.199-206.
90.El-Akaad, S., et al., Capacitive sensor based on molecularly imprinted polymers for detection of the insecticide imidacloprid in water. Scientific Reports, 2020. 10: p.14479. .
91.Elshafey, R. and A.-E. Radi, Molecularly imprinted copolymer/reduced graphene oxide for the electrochemical detection of herbicide propachlor. Journal of Applied Electrochemistry, 2022. 52(12): p.1761-1771.
92.Li, Y., et al., A robust electrochemical sensing of molecularly imprinted polymer prepared by using bifunctional monomer and its application in detection of cypermethrin. Biosens Bioelectron, 2019. 127: p.207-214.
93.Zouaoui, F., et al., Electrochemical impedance spectroscopy determination of glyphosate using a molecularly imprinted chitosan. Sensors and Actuators B: Chemical, 2020. 309: p.127753.
94.Saxena, S., et al., Molecularly Imprinted Polymer‐based Novel Electrochemical Sensor for the Selective Detection of Aldicarb. physica status solidi (a), 2020. 217(9): p.1900599.
95.Selvamani, V., Stability Studies on Nanomaterials Used in Drugs, in Characterization and Biology of Nanomaterials for Drug Delivery. 2019. p.425-444.
96.Zheng, J., et al., Visual detection of glyphosate in environmental water samples using cysteamine-stabilized gold nanoparticles as colorimetric probe. Anal. Methods, 2013. 5(4): p.917-924.
97.Wang, X., et al., The construction of a CND/Cu2+ fluorescence sensing system for the ultrasensitive detection of glyphosate. Analytical Methods, 2020. 12(4): p.520-527.
98.Qin, Y., R. Huang, and G.J. Ye, An "on-off-on" fluorescence probe for glyphosate detection based on Cu(2+) modulated g-C(3)N(4) nanosheets. Front Chem, 2022. 10: p.1036683.
99.Li, Q., et al., Sensitive and Label-Free Colorimetric Detection of Glyphosate Based on the Suppression Peroxidase-Mimicking Activity of Cu(II) Ions. Molecules, 2023. 28(12): p.4630.
100.Rawat, K.A., et al., Mg2+ ion as a tuner for colorimetric sensing of glyphosate with improved sensitivity via the aggregation of 2-mercapto-5-nitrobenzimidazole capped silver nanoparticles. RSC Advances, 2016. 6(53): p.47741-47752.
101.Aydin, Z. and M. Keles, A reaction-based system for the colorimetric detection of glyphosate in real samples. Spectrochim Acta A Mol Biomol Spectrosc, 2022. 267: p.120501.
102.Jayasumana, C., S. Gunatilake, and P. Senanayake, Glyphosate, Hard Water and Nephrotoxic Metals: Are They the Culprits Behind the Epidemic of Chronic Kidney Disease of Unknown Etiology in Sri Lanka? International Journal of Environmental Research and Public Health, 2014. 11(2): p.2125-2147.
103.Chen, L., et al., Characterization of the Interaction between Cadmium and Chlorpyrifos with Integrative Techniques in Incurring Synergistic Hepatoxicity. PLoS ONE, 2013. 8(3): p.e59553.
104.Larsen, K.E., et al., The herbicide glyphosate is a weak inhibitor of acetylcholinesterase in rats. Environmental Toxicology and Pharmacology, 2016. 45: p.41-44.
105.Huang, L., et al., A Facile Approach to Preparing Molecularly Imprinted Chitosan for Detecting 2,4,6-Tribromophenol with a Widely Linear Range. Environments, 2017. 4(2): p.30.
106. Bitas, D. and V. Samanidou, Molecularly Imprinted Polymers as Extracting Media for the Chromatographic Determination of Antibiotics in Milk. Molecules, 2018. 23(2): p.316.
107.Ahmad, Z., Polymer Dielectric Materials. 2012, InTech.
108.Strnad, S., O. Sauperl, and L. Fras-Zemljic, Cellulose Fibres Funcionalised by Chitosan: Characterization and Application. 2010, Sciyo.
109.Zouaoui, F., et al., Experimental Study and Mathematical Modeling of a Glyphosate Impedimetric Microsensor Based on Molecularly Imprinted Chitosan Film. Chemosensors, 2020. 8(4): p.104.
110.Noori, J., et al., Detection of Glyphosate in Drinking Water: A Fast and Direct Detection Method without Sample Pretreatment. Sensors, 2018. 18(9): p.2961.
111.Sok, V. and A. Fragoso, Amperometric biosensor for glyphosate based on the inhibition of tyrosinase conjugated to carbon nano-onions in a chitosan matrix on a screen-printed electrode. Mikrochim Acta, 2019. 186(8): p.569.
112.Zhang, C., et al., A highly selective electrochemical sensor based on molecularly imprinted polypyrrole-modified gold electrode for the determination of glyphosate in cucumber and tap water. Analytical and Bioanalytical Chemistry, 2017. 409(30): p.7133-7144.
113.Xu, J., et al., A molecularly imprinted polypyrrole for ultrasensitive voltammetric determination of glyphosate. Microchimica Acta, 2017. 184(7): p.1959-1967.
114.衛生福利部食品藥物管理署,農藥殘留容許量標準1111304043。2023。
115.Zhang, S., et al., Impact of Matrix Species and Mass Spectrometry on Matrix Effects in Multi-Residue Pesticide Analysis Based on QuEChERS-LC-MS. Foods, 2023. 12(6): p.1226.
116.Zheng, X., C. Liu, and J. Hu, Residues and Dietary Risk Assessments of 2,4-D Isooctyl Ester, Metribuzin, Acetochlor, and 2-Ethyl-6-methylaniline in Corn or Soybean Fields. Journal of Agricultural and Food Chemistry, 2020. 68(15): p.4315-4324.
117.Sun, F., et al., NPA-Cu(2+) Complex as a Fluorescent Sensing Platform for the Selective and Sensitive Detection of Glyphosate. Int J Mol Sci, 2021. 22(18): p.9816.
118.Cai, Q., et al., Electrochemiluminescent Detection Method for Glyphosate in Soybean on Carbon Fiber-ionic Liquid Paste Electrode. Chinese Journal of Chemistry, 2011. 29(3): p.581-586.
119.Radi, A.E., R. Oreba, and R. Elshafey, Molecularly Imprinted Electrochemical Sensor for the Detection of Organophosphorus Pesticide Profenofos. Electroanalysis, 2021. 33(8): p.1945-1951.