研究生: |
黃喬楠 Qiao-Nan Huang |
---|---|
論文名稱: |
利用記憶體分解降低功率之JPEG2000編碼器設計 Power Reduction of A JPEG2000 Encoder Using Memory Decomposition |
指導教授: |
黃錫瑜
Shi - Yu Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 72 |
中文關鍵詞: | JPEG2000 編碼器 、小波轉換 、方塊編碼器 |
外文關鍵詞: | JPEG2000 encoder, DWT, EBCOT |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
JPEG2000是一個新制訂完成的靜態影像壓縮標準,比目前通用的JPEG標準有更高的壓縮率,並且可以支援許多新且實用的功能。目前,JPEG2000的硬體架構設計已成為數位相機的關鍵技術。
在這本論文中,我們提出完整的JPEG2000 編碼器的架構並且發展改良過的記憶體分解軟體(memory decomposition tool)進行JPEG2000 編碼器功率最佳化。這個軟體精確度方面改善了過去粗糙的方法,例如,我們建立精確功率模組,包括額外的解碼器、輸出多工器、位址驅動能力與每一個小的記憶體,來完成記憶體分解的方法,有了這些精確的功率模組,我們使用實際可行的搜尋方法來決定最佳的分割數目,針對任何功率消耗大的記憶體。
在實驗中, 我們證明利用記憶體分解軟體應用在JPEG2000編碼器,大約降低30% 的功率消耗。
JPEG2000 is a new still image compression standard. It has better compression performance than conventional JPEG standard, and it provides many useful features. The hardware implementation of JPEG2000, therefore, becomes essential technique of digital still camera. In this thesis, we have implemented a complete JPEG2000 encoder and performed power minimization on this design through an improved memory decomposition tool we developed. This tool is a refinement over previous methods in a number of aspects. For example, we build more accurate power models for the building blocks supporting memory decomposition methodology, including the external bank decoder, output multiplexor, address driver, and each memory sub-bank. With such accurate power models, we can then embark on a realistic search to decide the optimal bank number for decomposing an arbitrary given large memory. The experiments results show that about 30% power reduction can be achieved when utilizing this memory decomposition tool for our JPEG2000 encoder.
[ 1] “JPEG2000 Part 1 Final Committee Draft Version 1.0,” ISO/IEC JTC1/SC29/WG1 N1646R.
[ 2] “JPEG2000 Verification Model Version 7.0,” ISO/IEC JTC1/SC29/WG1 N1684R.
[ 3] D. Taubman, “EBCOT: Embedded Block Coding with Optimized Truncation,” Proceedings of the IEEE International Conference on Image Processing (ICIP), vol. 3, pp. 344-348, 1999.
[ 4] D. Taubman, “High Performance Scalable Image Compression With EBCOT,” IEEE Trans. On Image Processing, vol. 9, pp. 1158-1170, July, 2000.
[ 5] D. Taubman, E. Ordentlich, I. Ueno, “Embedded Block Coding in JPEG2000,” Proc. Of IEEE International Confernance on Image Processing (ICIP), vol. 2, pp. 3-36, Sep. 2000.
[ 6] Kuan-Fu Chen, Chung-Jr Lian, Hong-Hui Chen and Liang-Gee Chen, “Analysis and Architecture Design of EBCOT for JPEG2000,” The 2001 IEEE International Symposium on Circuits and System, vol. 2, pp. 765-768, 2001.
[ 7] Chung-Jr Lian, Kuan-Fu Chen, Hong-Hui Chen and Liang-Gee Chen, “Analysis and Architecture Design of Block-Coding Engine for EBCOT in JPEG2000,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, pp. 219-230, March 2003.
[ 8] C. Shannon, “A Mathematical Theory of Communication,” Bell System Technical Journal, vo1. 27, pp. 379-423, July 1948.
[ 9] W.B. Pennebaker, J.L. Mitchell, “Probability Estimation for the Q-Coder,” IBM Journal of Research and Development, vol. 32, pp. 737, 1988.
[ 10] S. Mallat, “A Theory for Multiresolution Signal Decomposition,” IEEE Trans. Pattern Recognition and Machine Intelligence, vol. 11, No.7, pp. 674-693, 1989.
[ 11] M. Vetterli and J. Kovaeevie, “Wavelets and Subband Coding,” 1995.
[ 12] I. Daubechies, “Orithonormal Bases of Compactly Supported Wavelets,” Communications on Pure and Applied Mathematics, Vol. XL1, pp. 090-996, 1988.
[ 13] Kishore Anrda, Chakrabarti, and Tinku Acharya, “A VLSI Architecture for Lifting-Based Forward and Inverse Wavelet Transform,” IEEE transactions on signal processing, vol. 50, pp. 996-977, 2002
[ 14] Michael D. Adams, Hong Man, Faouzi Kossentin, and Touradj Ebrahimi, “JPEG2000: The Next generation Still Image Compression Standard,” ISO/IEC JTC1/SC29/WG1 N1734R.
[ 15] Athanassios Skodras, Charilaos Christopulos and Touradj Ebrahimi, “The JPEG2000 Still Image Standard,” IEEE signal processing, pp. 36-58, 2001
[ 16] M. Boliek, J. Houchin, and G. Wu, “JPEG2000 Next Generation Image Compression System Features and Syntax,” Proc. Of IEEE International Conference on Image Processing (ICIP), vol. 1, pp. 45-48, Sep. 2000.
[ 17] Digital Compression and Coding of Continuous-Tone Still Images, ISO/IEC, International Standard DIS 10918.
[ 18] C.A. Christopoulos, A.N. Skodras, and T. Ebrahimi, “The JPEG2000 still image coding system: An overview,” IEEE Trans. Consumer Electron, vol. 46, pp. 1103-1127, 2000.
[ 19] I. Moccagatta, M. Z. Coban, and H. H. Chen, “Wavelet-Based Image Coding: Comparison of MPEG-4 and JPEG2000,” Proc. Of thirty-thied Asilomar Conference on Signals, Systems, and Computers, pp. 1178-1182, 1999.
[ 20] D. Santa-Cruz and T. Ebrahimi, “An Analytical Study of JPEG2000 Functionalities,” Proc. Of IEEE International Conference on Image Processing (ICIP), vol. 2, pp. 49-52, Sep. 2000.
[ 21] J. M. Shapiro, “An Embedded Hierarchical Image Coder Using Zerotrees of Wavelet Coefficient,” Proc. Of IEEE Data Compression Conference. PP. 214-223, 1993.
[ 22] A. Said and W. Pearlman, “A New, Fast and Efficient Image Codec Based on Set Partitioning In Hierarchical Trees,” IEEE Trans. Circuits and Systems for Video Technology. PP. 234-250, June 1996.
[ 23] Image Power Inc., “Image Power Developing Ultra High Speed Blackbird JPEG2000 Core,” VANCOUVER, British Columbia, April 18, 2001.
[ 24] J. Yoshida, “JPEG2000 Wave Rises As ADI Shows Still Camera Accelerator,” EETimes.Com, May 11, 2001.
[ 25] Luca Benini, Alberto Macii and Massimo Poncino “A Recursive Algorithm for Low-Power Memory Partitioning,” Proc. Of international symposium on Low power electronics and design, pp 78-83, 2000.