簡易檢索 / 詳目顯示

研究生: 魏小芬
Wei, Hsiao-Fen
論文名稱: Silica改質奈米碳管之製備及其於場發射顯示器之應用研究
Preparation of Silica Modified Carbon Nanotube and Their Application in the Field Emission Display
指導教授: 薛敬和
Hsiue, Ging-Ho
朱一民
Chu, I-Ming
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 134
中文關鍵詞: 奈米碳管表面改質矽烷化合物溶膠-凝膠反應奈米碳管場發射顯示器
外文關鍵詞: carbon nanotube, surface modification, silane, sol-gel reaction, CNT-FED
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究藉由一系列矽烷化合物(Silane) 經溶膠-凝膠反應對硝酸/硫酸處理過之奈米碳管進行表面改質,以提升其在溶劑中的分散穩定性,並利用紅外線光譜與拉曼光譜對矽烷化合物改質之奈米碳管進行結構鑑定。另外,利用電子顯微鏡、穿透式電子顯微鏡、比表面積分析儀、表面電位分析儀與穿透度量測對矽烷化合物改質之奈米碳管進行分散穩定性分析,經上述分析結果顯示,帶有辛基的矽烷化合物改質之奈米碳管在不同極性之溶劑中皆具有最佳分散穩定性。
    因此,將辛基矽烷化合物改質之奈米碳管與聚甲基丙烯酸甲酯依不同比例製備成網印材料,並利用微差掃描卡計與熱重損失分析儀分析其熱性質,結果顯示,當辛基矽烷化合物改質之奈米碳管在聚甲基丙烯酸甲酯中的含量增加時,複合材料的熱穩定性也隨著提高。另外,亦以動態機械分析儀量測複合材料的機械性質,結果顯示,複合材料的抗拉強度也隨著辛基矽烷化合物改質之奈米碳管在聚甲基丙烯酸甲酯中含量的增加而提高。以電子顯微鏡與原子力顯微鏡分析複合材料網印後的表面形態與分散性,結果顯示,3 wt%辛基矽烷化合物改質之奈米碳管在聚甲基丙烯酸甲酯中具有最佳的分散效果,在將其製做成二極結構奈米碳管場發射顯示器,利用超高真空陣列測試器進行場發射特性分析時發現,添加3 wt%辛基矽烷化合物改質之奈米碳管於聚甲基丙烯酸甲酯中具有較佳的發光均勻性及較低的驅動電場1.9 V/μm,且在固定電場下,具有較大的電流值。
    最後為了改善三極結構奈米碳管場發射陰極板製作精度,本研究利用水平旋轉噴灑蝕刻機制,讓蝕刻液經由噴嘴由下往上噴灑,提高蝕刻速率,減少殘留,使蝕刻孔洞的形狀接近於非等向性蝕刻。製程參數最佳化實驗中得到,當顯影液濃度為 2.2 wt%,噴壓1034 Pa時可以得到最大的蝕刻因子為0.7737,蝕刻圖形的均勻性為94 %。在三極結構中,控制陽極電壓為1500 V,閘極電壓為100 V,可得到電流強度為10 mA,發光均勻度為83.85 %。


    In this study, we modified the acid treated carbon nanotubes (CNTs) by a series of silane compounds via sol-gel process to improve the CNTs’ dispersion stability in solvents. The silane modified CNTs were identified by Infrared and Raman spectra. In addition, the dispersion stability of silane modified CNTs were analyzed by scanning electron microscope (SEM), transmission electron microscope (TEM), BET (specific surface area analyzer), zeta potentiometer and UV-vis spectrophotometer. The results shown that silane with n-octyl group (OTES) modified CNTs (OTES-HCNTs) possess the best dispersion stability in different polarity solvents.
    Therefore, we prepare the screen-printed composites by blending different OTES-HCNTs contents in Poly(methyl methacrylate) (PMMA), and using differential scanning calorimetry (DSC) and thermal gravimetric analyzer (TGA) to analyze thermal properties of the composites. The thermal stability of OTES-HCNTs composites was improved with increasing the content of OTES-HCNTs. From the dynamic mechanical analyzer (DMA) analysis, the tensile strength of composites raises with increasing the OTES-HCNTs’ contents in PMMA. The surface morphology and dispersion stability of CNTs in composites are analyzed by SEM and atomic force microscopy (AFM); the results show that PMMA with 3 wt% OTES-HCNTs possess the best dispersion uniformity. The field emission properties were investigated by ultra-high vacuum array tester, which show that adding 3 wt% OTES-HCNTs in PMMA with better light uniformity, low drive electric field of 1.9 V/μm, and larger current under fixed electric field.
    Finally, to improve the fabricated precision of triode structure CNTs field emission display, we design the horizontal rotating spray etching mechanism, which the etchant were sprayed through the nozzle from the bottom-up to improve the etching rate. The shape of the etching holes close to anisotropic etching. Form the experimental results, the optimal process parameters were obtained as the etchant concentration of 2.2 wt%, the injection pressure of 1034 Pa. The etching factor of 0.7737 and etching patterns uniformity of 94% could be achieved under the above parameters. In the triode structure CNTs field emission display, the current intensity of 10 mA and emission uniformity of 83.85% could be received as the anode voltage of 1500 V and the gate voltage of 100 V.

    摘 要 ABSTRACT 目 錄 圖 目 錄 表 目 錄 流程目錄 第一章 緒論 1.1 前言 1.2 研究動機 第二章 文獻回顧 2.1 奈米碳管簡介 2.1.1 奈米碳管起源 2.1.2 奈米碳管結構及特性 2.1.3 奈米碳管主要製程 2.1.3.1 弧光放電法(arc-discharge method) 2.1.3.2 雷射熱昇華法(laser ablation method) 2.1.3.3 化學氣相沉積法 (chemical vapor deposition) 2.1.4 奈米碳管之分散 2.1.5 奈米碳管/PMMA複合材料之製作 2.1.6 奈米碳管網印材料 2.2 奈米複合材料 2.2.1 奈米粒子特性與分散行為 2.2.2 奈米複合材料的穩定化設計 2.2.3 分散效果之評估方法 2.3 濕蝕刻製程與設備 2.3.1 濕蝕刻製程 2.3.2 濕蝕刻設備 2.3.2.1 浸洗式化學洗淨站 2.3.2.2 單晶圓旋轉清洗設備 2.3.2.3 超音波清洗系統 2.3.2.4 噴洗式化學洗淨機 第三章 實驗 3.1 實驗藥品 3.2 使用設備與量測儀器 3.3 實驗步驟 3.3.1 奈米碳管與混酸溶液反應 3.3.2 奈米碳管與矽烷化合物之溶膠/凝膠反應 3.3.2.1 含矽奈米碳管之合成 3.3.2.2 不同反應物比例含矽奈米碳管之合成 3.3.3 奈米碳管/PMMA複合材料之製備 3.3.3.1 含矽奈米碳管/PMMA複合材料之製作 3.3.3.2 不同比例OTES-HCNT/PMMA材料之製作 3.3.3.3 奈米碳管網印材料之塗佈 3.3.4 濕蝕刻設備之改良與精進 3.3.4.1 提高厚膜材料蝕刻均勻性的機台設計 3.3.4.2 機台驗證規劃 第四章 結果與討論 PART I: 利用溶膠-凝膠反應改質奈米碳管 4.1 奈米碳管純化/表面官能基化 4.1.1 以拉曼光譜決定酸處理時間 4.1.2 結構鑑定 4.1.3 形態學鑑定 4.2 純化奈米碳管與矽烷化合物之溶膠/凝膠反應 4.2.1 結構鑑定 4.2.2 含矽奈米碳管在溶劑中分散穩定性分析 4.2.3 含矽奈米碳管熱性質分析 4.3 各種含矽奈米碳管在PMMA中分散均勻性探討 4.3.1 結構鑑定 4.3.2 分散穩定性分析 4.3.3 熱性質分析 4.4 OTES-HCNT之特性分析 4.4.1 不同反應成分比 4.4.1.1 分散性研究 4.4.1.2 熱性質分析 4.4.2 OTES-HCNT在不同極性溶劑中之分散穩定性分析 4.5 OTES-HCNT/PMMA複合材料之製備 4.5.1 結構分析 4.5.2 OTES-HCNT/PMMA不同混成比例探討 4.5.2.1 表面形態與分散性 4.5.2.2 機械性質 4.5.2.3 熱性質 4.6 CNT-FED場發射電子源網印用漿料之製備 4.6.1 分散性 4.6.2 場發射特性量測 PART II: CNT-FED三極結構面板製作精度提升 4.7 CNT-FED三極結構陰極板規格與製作 4.8 濕蝕刻機台製程參數最佳化 4.8.1 機台設計 4.8.2 製程參數最佳化 4.8.2.1 噴嘴的形式與蝕刻液噴灑的方向 4.8.2.2 噴嘴的噴壓與蝕刻液濃度 4.9 三極結構CNT-FED陰極板之絕緣層蝕刻 4.10 場發射與發光均勻性驗證 第五章 結論與展望 本研究之原創性工作 參考文獻 個人著作目錄

    1. J. A. E. Gibson, Nature, 359, 369 (1953).
    2. P. G. Wiles and J. Abrahamsion, Carbon., 16, 341 (1978).
    3. P. G. Wiles, J. Abrahamsion and B. I. Rhoades, Abstract in proceedings of 14th Biennial Conf. On Carbon (USA) (1979).
    4. S. Iijima and T.Ichihashi, Nature, 363(6430), 603 (1993).
    5. D. S. Bethune, C. H. Kiang and M. S. Devries, Nature, 363, 605 (1993).
    6. S. Iijima, Nature, 354, 56 (1991).
    7. M. S. Dresseelhaus, G. Dresseelhaus, and R. Saito, Carbon, 33, 883 (1995).
    8. P. J. F. Harris, S. C. Tsang, J. B. Claridge and M. L. H. Green, J. Chem. Soc., Faraday Trans, 90, 2799 (1994).
    9. 拓墣產業研究所整理 (2003).
    10. S. Yahachi and U. Sashiro, Carbon, 38, 169 (2000).
    11. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert and R. E. Smalley, Chem. Phys. Lett., 243, 49 (1995).
    12. A. C. Dillon, P. A. Parilla, J. L. Alleman, J. D. Perkins and M. J. Heben, Chem. Phys. Lett., 316, 13 (2000).
    13. L. Ci, J. Wei, B. Wei, J. Liang, C. Xu and D. Wu, Carbon, 39, 329 (2001).
    14. H. M. Cheng, F. Li, G. Su, H. Y. Pan, L. L. He, X. Sun and M. S. Dresselhaus, Appl. Phys. Lett., 72, 3282 (1998).
    15. B. Chris, Z. Wei, J. Sungho and Z. Otto, Appl. Phys. Lett., 77, 830 (2000).
    16. M. Okai, T. Muneyoshi, T. Yaguchi, and S. Sasaki, Appl. Phys. Lett., 77, 3468 (2000).
    17. Z. P. Huang, J. W. Xu, Z. F. Ren, J. H. Wang, M. P. Siegal and P. N. Provencio, Appl. Phys. Lett., 73, 3845 (1998).
    18. S. C. Tsang, Y. K. Chen and M. L. H. Green, Nature, 372, 159 (1994).
    19. R. M. Lago, S. C. Tsang, K. L. Lu, Y. K. Chen, and M. L. H. Green, J. Chem. Soc., Chem. Commun., 13, 1355 (1995).
    20. H. Hiura, T. W. Ebbesen and K. Tanigaki, Adv. Mater., 7, 275 (1995).
    21. J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y.S. Shon, T. R. Lee, D. T. Colbert and R. E. Smalley, Science, 280, 1253 (1998).
    22. I. Popova, J. T. Yates, M. J. Bronikowski, C. B. Huffman, J. Liu, R. E. Smalley, H. H. Hwu and J. G. Chen, J. Am. Chem. Soc., 123, 10699 (2001).
    23. D. B. Mawhinney, V. Naumenko, J. T. Yates, J. Liu and R. E. Smalley, Chem. Phys. Lett., 321, 292 (2000).
    24. J. Xie and V. KVaradan, Smart Mater. Struct, 11, 962 (2002).
    25. W. Huang, Y. Lin, S. Taylor, J. Gaillard, A. M. Rao and Y. P. Sun, Nano Lett., 2, 231 (2002).
    26. T. Wang, X. Hu, X. Qu and S. Dong, J. Phys. Chem. B, 110, 6631 (2006).
    27. A. Hamwi, H. Alvergnat, S. Bonnamy and F. Beguin, Carbon, 35, 723 (1997).
    28. D. Q. Yang, J. F. Rochette and E. Sacher, J. Phys. Chem. B, 109, 7788 (2005).
    29. M. A. Hamon, J. Chen, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund and R. C. Haddon, Adv. Mater., 11, 834 (1999).
    30. U. D. Weglikowska, J. M. Benoit, P. W. Chiu, R. Graupner, S. Lebedkin and S. Roth, Current Applied physics, 2, 497 (2002).
    31. J. Chen, M. A. Hamon, H. Hu, Y. Chen, A. M. Rao, P. C. Eklund and R. C. Haddon, Science, 282, 95 (1998).
    32. V. Georgakilas, K. Kordatos, M. Prato, M. Holzinger and A. Hirsch, J. Am. Chem. Soc., 124, 760 (2002).
    33. B. Y. Wu, A. H. Liu, X. P. Zhou and Z. D. Jiang, Chem. J. Chinese Univ. 16, 1641 (1995).
    34. W. Zhou, Bachelor Thesis, Huazhong University of Science and Technology, Wuhan, China, 2003.
    35. S. Qin, D. Qin, W. T. Ford, D. Resasco and J. E. Herrera, J. Am. Chem. Soc. 126, 170 (2004).
    36. H. Kong, C. Gao and D. Y. Yan, J. Am. Chem. Soc. 126, 412 (2004).
    37. Y. Wang, Z. Iqbal and S. Mitra, J. Am. Chem. Soc., 128, 95 (2006).
    38. Y. L. Liu and W. H. Chen, Macromolecules, 40, 8881 (2007).
    39. C Velasco-Santos, A L Mart´ınez-Hern´andez, M Lozada-Cassou, A Alvarez-Castillo and V M Casta˜no, Nanotechnology 13 495 (2002).
    40. J. Kathi, K. Y. Rhee and J. H. Lee, Composites: Part A, 40, 800 (2009).
    41. Z. Jia, Z. Wang, C. Xu, J. Liang, B. Wei, D. Wu and S. Zhu, Mater. Sci. Eng., A271, 395 (1999).
    42. C. Ste´phan, T. P. Nguyen, M. Lamy, D. L. Chapelle, S. Lefrant, C. Journet and P. Bernier, Synthetic Metals, 108, 139 (2000).
    43. Z. Jin, K. P. Pramoda, G. Xu and S. H. Goh, Chem. Phys. Lett., 337, 43 (2001).
    44. Z. Jin, K. P. Pramoda, S. H. Goh and G. Xu, Mater. Res. Bull., 37, 271 (2002).
    45. C. A. Cooper, D. Ravich, D. Lips, J. Mayer and H. D. Wagner, Compos. Sci. Technol., 62, 1105 (2002).
    46. C. Velasco-Santos, A. L. Martı´nez-Herna´ndez, F. T. Fisher, R. Ruoff and V. M. Castano, Chem. Mater., 15, 4470 (2003).
    47. Y. Sabba and E. L. Thomas, Macromolecules, 37, 4815 (2004).
    48. Z. Yang, B. Dong, Y. Huang, L. Liu, F. Y. Yan and H. L. Li, Mater. Lett., 59, 2128 (2005).
    49. S. J. Park, S. T. Lim, M. S. Cho, H. M. Kim, J. Joo and H. J. Choi, Current Applied Physics, 5, 302 (2005).
    50. J. Liu, T. Liu and S. Kumar, Polymer, 46, 3419 (2005).
    51. J. L. Kwo, Meiso Yokoyama, W.C. Wang, F.Y. Chuang and I.N. Lin, Diamond and Related Materials, 9, 1270 (2000).
    52. J. M. Kim, W. B. Choi, N. S. Lee and J. E. Jung, Diamond and Related Materials, 9, 1184 (2000).
    53. N. S. Lee, D. S. Chungb, I. T. Hana, J. H. Kangb, Y. S. Choib, H. Y. Kimb, S. H. Parkb, Y. W. Jina, W. K. Yib, M. J. Yunb, J. E. Jungb, C. J. Lee, J. H, You, S. H. Joc, C. G. Lee and J. M. Kim, Diamond and Related Materials, 10, 265 (2001).
    54. J. E. Junga, Y. W. Jin, J. H. Choi, Y. J. Park, T. Y. Ko, D. S. Chung, J. W. Kim, J. E. Jang, S. N. Cha, W. K. Yi, S. H. Cho, M. J. Yoon, C. G. Lee, J. H. You, N. S. Lee, J. B. Yoo and J. M. Kim, Physica B 323, 71 (2002).
    55. J. H. Park, J. S. Moon, J. H. Han, A. S. Berdinskiy, D. G. Kuvshinov, J. B. Yoo, C. Y. Park, J. W. Nam, J. H. Park, C. G. Lee and D. H. Choe, Diamond & Related Materials, 14, 1463 (2005).
    56. J. H. Park, J. S. Moon, J. W. Nam, J. B. Yoo, C. Y. Park, J. M. Kim, J. H. Park, C. G. Lee and D. H. Choe, Diamond & Related Materials, 14, 2113 (2005).
    57. J. H. Park, J. H. Choi, J.S. Moon, D. G. Kushinov, J. B. Yoo, C. Y. Park, J. W. Nam, C. K. Lee, J. H. Park and D.H. Choe, Carbon, 43, 698 (2005).
    58. J. W. Nam, S. H. Cho, Y. C. Choi, J. S. Ha, J. H. Park, D. H. Choe, J. B. Yoo and J. H. Park, Diamond & Related Materials, 14, 2089 (2005).
    59. J. H. Park, G. H. Son, J. S. Moon, J. H. Han, A. S. Berdinsky, D. G. Kuvshinov, J. B. Yoo and C. Y. Park, J. Vac. Sci. Technol. B 23.2, 749 (2005).
    60. G. D. Parfitt, 3rd ed., Applied Science Publishers, Inc., New Jersey (1981).
    61. D. Attwood and A. T. Florence, Chapman and Hall, London, New York (1983).
    62. T. Sato and R. J. Ruch, Marcel Dekker, Inc., New York (1980).
    63. R. H. Ottewill and J. Colloid Inter. Sci., 58, 357 (1977).
    64. T. Saito, K. Matsushige and K. Tanaka, Physica B, 323, 280 (2002).
    65. B. Vincent, Advanced in Colloid and Interface Science, 4, 193 (1974).
    66. E. D. Goddard and B. Vincent, ACS Symposium series 240, Washington, D. C. (1984).
    67. T. F. Tadros, Academic Press, London (1982).
    68. T. Sato, J. Coating. Technol., 657, 51 (1979).
    69. J. M. Bonard, M. Croci, C. Klinke, R. Kurt, O. Noury and N. Weiss, Carbon, 40, 1715 (2002).
    70. 半導體製程技術,文京圖書公司,張景學
    71. 莊達人,VLSI 製造技術,高立圖書有限公司
    72. 李世鴻,積體電路製程技術,五南圖書公司
    73. 張勁燕,半導體製造設備,五南出版社
    74. 陳泰宏、黃元璋,中華民國專利公告號513388,申請日2001/04/04
    75. 邱顯星,中華民國專利公告號279544,申請日1995/10/26
    76. 李廷盛、尹其光等著。超聲化學,北京,科學出版社,1995
    77. R. Jung, W.I. Park, S.M. Kwon, H.S. Kim and H.J. Jin, Polymer, 49, 2071 (2008).
    78. D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S. Meier and J.P. Selegue, Nano. Lett., 2, 615 (2002).
    79. D.H. Napper, Polymeric Stabilization of Colloid Dispersions, Academic Press: London (1984).
    80. W.K. LaMer and T.W. Healy, Rev. Pure Appl. Chem., 13, 112 (1963).
    81. E.L. Mackor, J. Colloid Interface Sci., 6, 492 (1951).
    82. E.L. Mackor and J.H. van der Waals, J. Colloid Interface Sci., 7, 535 (1952).
    83. 賀鵬,趙安赤。高分子通報,1,74 (2001).
    84. 曹珍元。化工新型材料,28(11),3 (1000).
    85. K. Esumi, M. Ishigami, A. Nakajima, K. Sawada and H. Honda, Carbon, 34(2), 279 (1996).
    86. Q. Jiang, M. Z. Qu, B. L. Zhang and Z. L. Yu: Carbon 40, 2743 (2002).
    87. T. Q. Nguyen, J. Wu, V. Doan, B. J. Schwartz and S. H. Tolbert: Science 288, 652 (2000).
    88. X. Liu and M. B. C.Park, J. Appl. Polym. Sci. 114, 3414 (2009).
    89. K. H. Kim and W. H. Jo, Composites Science and Technology, 68, 2120 (2008).
    90. Brostow, W. Science of Materials; John Wiley & Sons: New York, 1989.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE