簡易檢索 / 詳目顯示

研究生: 陳惠君
chen hui chun
論文名稱: 一個受力樑模型之分支點及其週期解路徑探討
Numerical Investigation for Branch Points and Periodic Solution Paths of A Forced Beam Model
指導教授: 簡國清
K.C.Jen
口試委員:
學位類別: 碩士
Master
系所名稱:
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 129
中文關鍵詞: 分支點打靶法牛頓迭代法隱函數定理解分支割線猜測法虛擬弧長延拓法.
外文關鍵詞: Newton’s iterative method, Implicit function theorem,Solution branches, Secant predictor, Pseudo- arclength continuation algorithm
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本論文主要在探討一個受力樑模型之分支點及其週期解路徑的分歧問題.
    首先,我們利用打靶法及牛頓迭代法,來計算出分歧點或及轉彎點,再以隱函數定理為基礎,利用Liapunov-schmidt降階法,虛擬弧長延拓法,割線猜測法及牛頓迭代法等數值方法,來延拓從分支點出發的所有週期解分支.
    最後,藉由參數的改變,分別求得分歧現象,並觀察分支點與週期解分支的變化.


    Abstract
    This thesis is to numerically investigate bifurcation problems on branch points and periodic solution paths of a forced beam model.
    First,we use shooting method and newton’s interative method to calculate the bifurcation points and tuning points. we base on implicit function theorem to get the path of all that passing through the branch points with the shooting method, Newton’s iterative method, pseudo-arclength continuation method and secant predictor and so on.
    Finally, we observe the bifurcation phenomenons of periodic solution paths at bifurcation points with several parameters.

    目錄 第一章 緒論 1 第二章 分歧理論與虛擬延拓法 4 2.1 分歧理論 4 2.2 分歧問題 6 2.3 局部延拓法 7 2.3.1 猜測法 8 2.3.2 解法 9 2.4 虛擬弧長延拓法 10 第三章 常微分方程解路徑之分支點及週期解分支13 3.1 求分支點 13 3.2 求過分支點解分支之延拓方向 21 3.2.1 Liapunov-schmidt 降階法 21 3.2.2 解分支之延拓方向 24 3.2.3 選取各解分支延拓方向週期解的初始值之猜值 27 3.3 求過分支點之週期解分支 28 3.3.1 虛擬弧長延拓法之數值計算 28 3.3.2 割線猜測與牛頓迭代法求解路徑 30 3.4 演算法 31 3.4.1 求非線性常微分方程組週期解之初始值及解路徑之 分支點 31 3.4.2 求週期解分支之延拓方向與該方向上第一點週期解 初始值之猜值 33 3.4.3 虛擬弧長延拓法求週期解分支 35 第四章 數值實驗 37 4.1 實驗(一): ,改變參數 所得的分歧 點和週期解路徑圖. 38 4.1 實驗(二): ,改變參數 所得的分歧 點和週期解路徑圖.69 4.1 實驗(三): ,改變參數 所得的分支 點和週期解路徑圖95 4.1 實驗(四): ,改變參數 所得的轉彎 點和週期解路徑圖. 109 第五章 結論 125 參考文獻127

    參考文獻
    [1] Allgower, E.L. and Chien, C.S., Continuation and local perturbation for multiple bifurcation, SIAM J. SCI. STAT. Comput., 7, pp.1265-1281, (1986)
    [2] Aselone, P. M. and Moore, R. H., An Extension of the Newton-Kantorovich Method for Solving Nonlinear Equations with An Application to Elasticity, J. Math. Anal. 13, pp.476-501, (1966)
    [3] Choi, Y. S., Jen, K. C., (簡國清) and McKenna, P. J., The Structure of the Solution Set for Periodic Oscillations in a Suspension Bridge Model, IMA J. Appl. Math., 47, pp.283-306, (1991)
    [4] Crandall,M.G., An Introduction to Constructive Aspects of
    Bifurcation Theorem, Academic Press, pp.1-35, 1977.
    [5] Crandall, M. G., and Rabinowitz, P.H. Mathematical Theory of Bifurcation,Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C.and Bessis, D., NATO Advanced Study Institute Series,(1979).
    [6] Eusebius Doedel Laurette S. Tuckerman (1999),Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems.
    [7] Hassard, B. D.,Kazarinoff, N. D., Wan, Y. H.(1981),Theory and Applications of Hopf Bifurcation, Cambridge University Press.
    [8] Jen, K. C. (簡國清), The Stability and Convergence of a Crank-Nicolson Scheme for a Nonlinear Beam Vibration Equation, Chinese Journal of Mathematics, Vol 23, No. 2, pp.97-121, (1995).
    [9] J.M Ortega.w.c. Rheinboldt:Iterative Solution of Nonlinear Equations in several variables.Academic press.New York London.1970.
    [10] Keller,H.B., in " Recent Advances in Numerical Analysis", Academic Press, New York, pp.73, 1978.
    [11] Keller,H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory Academic Press, pp.359-384, 1977.
    [12] Keller,H.B., Lectures on Numerical Methods in Bifurcation
    Problems, Springer-Verlag, 1987.
    [13] Kubiček,M., Evalution of Branching Points for Nonlinear
    Boundary-Value Problems Based on the GPM Technique,
    Applied Mathematics and Computation 1, pp.341-352, 1975.
    [14] Marsden J. E.,McCracken, M.(1976), The Hopf Bifurcation and its Application, Applied Mathematical Scieness, 19. Springer-Verlag.
    [15] Lazer, A. C., and McKenna, P. J. A Symmetry Theorem and Applications to Nonlinear Partial Differential Equations. J. Diff. Eq. 72, pp.95-106, (1988).
    [16] Lazer, A. C., and McKenna, P. J. Large Amplitude Periodic Oscillations in Suspension Bridge: Some New Connections with Nonlinear Analysis. SLAM Rev. 32, pp.537-578, (1989).
    [17] McKenna P. j. and Walter W., On the Mulitiplicity of the Solution Set of Some Nonlinear Boundary Value Problems. Nonlinear Analysis 8, pp.893-907, (1984).
    [18] Michael G. Crandall and Paul H. Rabinowitz, Bifurcation from Simple EigenValues, Journal of Functional Analysis 8, pp.321-340, (1971).
    [19] Michael G. Crandall and Paul H. Rabinowitz, Mathematical Theory
    of Bifurcation, Bifurcation Phenomena in Mathematical Physics
    and Related Topics, edit by C. Bardos and D. Bessis, NATO
    Advanced Study Institute Series, (1979).

    [20] Rheinboldt,W.C., Numerical Analysis of Parameterized Nonlinear Equations, Wiley,New York.
    [21] Wacker,H.(ed),Continuation Methods, Academic Press, New
    York, 1978.
    [22] 林慧芬,非線性邊界值問題分歧點計算及其解路徑延拓,新竹教育大學碩士論文, 2005.
    [23] 曾春菊,一個振動器模型的多重週期解之數值探討 ,新竹教育大學碩士論文, 2005.
    [24] 張定華, 非線性常微分方程週期倍增分歧問題之數值探討, 新竹教育大學碩士論文,2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE