研究生: |
張文鏵 Zhang, Wen-Hua |
---|---|
論文名稱: |
均溫板各項量測參數對熱阻及最大熱傳量性能指標之影響 The influence of various measurement parameters of Vapor Chamber on thermal resistance and maximum heat transfer performance indicators |
指導教授: |
林唯耕
Lin, Wei-Keng |
口試委員: |
楊建裕
Yang, Chien-Yuh 孫珍理 Sun, Chen-li 楊愷祥 Yang, Kai-Shing 龔育諄 Kung, Yu-Chen 劉君愷 Liu, Chun-Kai |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2024 |
畢業學年度: | 112 |
語文別: | 中文 |
論文頁數: | 125 |
中文關鍵詞: | 均溫板 、熱傳導係數 、熱阻 、最小平方法 |
外文關鍵詞: | Vapor chamber, Thermal conductivity, Thermal resistance, Least square |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年AI及雲端的運算設備的效能不斷提升,散熱模組需求迎來龐大的市場商機,因為熱管理直接影響設備整體的可靠度。台灣在熱管及均溫板等散熱產品,不論是研發或生產技術都非常有競爭力。但散熱模組廠對於均溫板的產品,有各自不同的性能驗證方式,導致各廠商量測結果不是以同一基準判定產品好壞。所以本文深入探討均溫板各項量測參數,對於性能驗證結果的影響。
本研究以Angstrom Theory理論為基礎,搭配Flotherm模擬軟體之暫態分析功能,設計材料熱傳導係數的量測平台。包含動態溫控及數據擷取之專用程式,量測過程中,軟體可以自動擷取重要的關鍵參數,減少人為調整的誤差。熱傳導量測設備開發完成後,本文實測其重複性及精準度,針對電子散熱常見的金屬材料進行驗證,並分析一維及二維等不同尺寸的熱傳導數據。
本文針對厚均溫板、薄均溫板兩種不同的量測平台,依照其應用情境進行研究。以傅立葉熱傳理論為基礎,開發軸向及徑向的熱傳導性能驗證設備。蒸發段的加熱模組,本文提出以最小平方法(Least square)的數學模型計算TJS,這樣可以降低均溫板與銅塊接觸不良,提高軸向熱阻值量測準確性。冷凝段則是以水冷套件做為移熱機制,使用五種不同治具實測,分析量測數據,以減少逕向熱阻值量測誤差。薄均溫板的性能測試,本研究開發TGP兩點溫差的實驗架構。分析不同熱密度的測試情況,找出更能分辨薄型材料的熱擴散能力的設計。
本文完整的呈現理論分析與實驗架設的細節,期望可以幫助產業界對均溫板之量測標準更邁進一大步。
關鍵字:均溫板、熱傳導係數、熱阻、最小平方法
Continual advancements in the efficiency of artificial intelligence technology and cloud computing equipment have greatly increased the market demand for thermal modules, which directly affect the overall reliability of electronic equipment. Taiwan has considerable competitive advantages in technology for developing and manufacturing various thermal module components, including heat pipes and vapor chambers. However, thermal module manufacturers implement different methods for verifying the performance of their vapor chamber products, leading to inconsistency in measurement standards used for determining product quality. Given this situation, this study explored the various measurement parameters of vapor chambers to examine their effects on performance evaluation results.
Based on the Angstrom Theory, this study applied the transient state analysis function of the Flotherm simulation software to design a platform for measuring the thermal conductivity of product materials. The platform features designated programs for dynamic temperature control and data acquisition. During measurement, the platform software automatically acquires essential parameters to minimize errors due to manual adjustment. The repeatability and accuracy of the designed platform were tested with common metal materials used in thermal modules. In addition, the platform was used to analyze one-dimensional and two-dimensional thermal conductivity data obtained from components of varying sizes.
Two types of thermal modules were tested, namely thick vapor chamber and thin vapor chamber, according to their application scenarios. Based on Fourier’s law, measurement equipment was developed to verify the performance of the thermal module in axial and radial thermal resistance. The TJS of the evaporator section was calculated using the least square method to mitigate measurement error due to inadequate contact between the vapor chamber and copper block, thereby improving the measurement accuracy of axial thermal resistance. The condensation section featured a water-cooling module for heat removal, and 5 different cold plate were analyzed to reduce measurement errors pertaining to radial thermal resistance. To test thin vapor chambers, this study developed an experimental framework that measures the temperature difference between two points on a thermal ground plan. Analysis of test results obtained from different thermal densities yielded further insights into the thermal diffusion performance of thin vapor chambers using varying materials, thereby optimizing the design of measuring equipment.
The experimental configuration and theoretical analysis results of this study may serve as reference for enhancing industrial standards for measuring vapor chamber performance.
Keyword:Vapor chamber, Thermal conductivity, Thermal resistance, Least square
[1] Deng, D., Huang, Q., Xie, Y., Huang, X., & Chu, X. (2017). Thermal performance of composite porous vapor chambers with uniform radial grooves. Applied Thermal Engineering, 125, 1334-1344.
[2] Mochizuki, M., Saito, Y., Kiyooka, F., & Nguyen, T. (2007). The way we were and are going on cooling high power processors in the industries. Fujikura Technical Review, 36, 53.
[3] Li, B., Chen, H., Xu, J., Yin, X., & Hong, J. (2022). Topology optimization of vapor chamber internal structures consisting of evaporator and condenser. Applied Mathematical Modelling, 107, 233-255.
[4] Boukhanouf, R., Haddad, A., North, M. T., & Buffone, C. (2006). Experimental investigation of a flat plate heat pipe performance using IR thermal imaging camera. Applied Thermal Engineering, 26(17-18), 2148-2156.
[5] Wei, J. (2008). Challenges in cooling design of CPU packages for high-performance servers. Heat Transfer Engineering, 29(2), 178-187.
[6] G.P. Peterson, Y. Wang, C. Li. (2006). Evaporation/boiling in thin capillary wicks (l)—wick thickness effects. ASME Journal of Heat Transfer 128(2006)1312-1319.
[7] G.P. Peterson, C. Li. (2006). Evaporation/Boiling in thin capillary wicks (П)-effects of volumetric porosity and mesh size. ASME Journal of Heat Transfer 1281320-1328.
[8] Wang, Y., & Peterson, G. P. (2005). Investigation of a novel flat heat pipe. J. Heat Transfer, 127(2), 165-170.
[9] Wang, Y., & Vafai, K. (2000). An experimental investigation of the thermal performance of an asymmetrical flat plate heat pipe. International journal of heat and mass transfer, 43(15), 2657-2668.
[10] Mochizuki, M., Nguyen, T., Saito, Y., Horiuchi, Y., Mashiko, K., Sataphan, T., & Kawahara, Y. (2006). Latest vapor chamber technology for computer. In Proceedings of the 8th International Heat Pipe Symposium. Kumamoto, Japan , 349-353.
[11] Chen, Y. T., Kang, S. W., Hung, Y. H., Huang, C. H., & Chien, K. C. (2013). Feasibility study of an aluminum vapor chamber with radial grooved and sintered powders wick structures. Applied Thermal Engineering, 51(1-2), 864-870.
[12] Liu, W., Peng, Y., Luo, T., Luo, Y., & Huang, K. (2016). The performance of the vapor chamber based on the plant leaf. International Journal of Heat and Mass Transfer, 98, 746-757.
[13] Wang, R. T., Wang, J. C., & Chang, T. L. (2011). Experimental analysis for thermal performance of a vapor chamber applied to high-performance servers. Journal of Marine Science and Technology, 19(4), 3.
[14] Wang, J. C., & Chen, T. C. (2009). Vapor chamber in high performance server. In 2009 4th International Microsystems, IEEE, Packaging, Assembly and Circuits Technology Conference, 364-367.
[15] Wong, S. C., Hsieh, K. C., Wu, J. D., & Han, W. L. (2010). A novel vapor chamber and its performance. International Journal of Heat and Mass Transfer, 53(11-12), 2377-2384.
[16] Li, H. Y., Chiang, M. H., Lee, C. I., & Yang, W. J. (2010). Thermal performance of plate-fin vapor chamber heat sinks. International Communications in Heat and Mass Transfer, 37(7), 731-738.
[17] Velardo, J., Date, A., Singh, R., Nihill, J., Date, A., & Phan, T. L. (2019). On the effective thermal conductivity of the vapour region in vapour chamber heat spreaders. International Journal of Heat and Mass Transfer, 145, 118797.
[18] Ming, Z., Zhongliang, L., & Guoyuan, M. (2009). The experimental and numerical investigation of a grooved vapor chamber. Applied Thermal Engineering, 29(2-3), 422-430.
[19] Tsai, M. C., Kang, S. W., & de Paiva, K. V. (2013). Experimental studies of thermal resistance in a vapor chamber heat spreader. Applied Thermal Engineering, 56(1-2), 38-44.
[20] Wei, J., Chan, A., & Copeland, D. (2003). Measurement of vapor chamber performance [heatsink applications]. In Ninteenth Annual IEEE Semiconductor Thermal Measurement and Management Symposium, 191-194.
[21] Li, D., Huang, Z., Zhao, J., Jian, Q., & Chen, Y. (2021). Analysis of heat transfer performance and vapor–liquid meniscus shape of ultra-thin vapor chamber with supporting columns. Applied Thermal Engineering, 193, 117001.
[22] Chang, S. W., Chiang, K. F., & Cai, W. L. (2019). Thermal performance evaluation of thin vapor chamber. Applied Thermal Engineering, 149, 220-230.
[23] Li, Y. C., & Wong, S. C. (2021). Effects of vapor duct thickness on the capillary blocking and thermal performance of ultra-thin vapor chambers under natural convection cooling. Applied Thermal Engineering, 195, 117148.
[24] Yang, Y., Li, J., Wang, H., Liao, D., & Qiu, H. (2021). Microstructured wettability pattern for enhancing thermal performance in an ultrathin vapor chamber. Case studies in Thermal engineering, 25, 100906.
[25] Zhou, G., Zhou, J., Huai, X., Zhou, F., & Jiang, Y. (2022). A two-phase liquid immersion cooling strategy utilizing vapor chamber heat spreader for data center servers. Applied Thermal Engineering, 210, 118289.
[26] Ångstrom, A. J. (1862). Neue Methode, das Wärmeleitungsvermögen der Körper zu bestimmen. Annalen der Physik, 190(12), 513-530.
[27] Kanamori, H., Mizutani, H., & Fujii, N. (1969). Method of thermal diffusivity measurement. Journal of Physics of the Earth, 17(1), 43-53.
[28] Parrott, J. E., Stuckes, A. D., & Klemens, P. G. (1977). Thermal conductivity of solids. Pion Limited, London.
[29] Wagoner, G., Skokova, K. A., & Levan, C. D. (1999). Angstrom’s method for thermal property measurements of carbon fibers and composites. In The American Carbon Society, CARBON Conference.
[30] Bouchard, A. M. (2000). Angstrom’s method of determining thermal conductivity. Techn. Ber. The College of Wooster Physics Department, Ohio.
[31] (https://www.tglobalcorp.com/tw)
[32] Cheng, X., Yang, G., & Wu, J. (2021). Recent advances in the optimization of evaporator wicks of vapor chambers: From mechanism to fabrication technologies. Applied Thermal Engineering, 188, 116611.
[33] Liang, G., Yang, H., Wang, J., & Shen, S. (2021). Assessment of nanofluids pool boiling critical heat flux. International Journal of Heat and Mass Transfer, 164, 120403.
[34] (http://www.thermal.org.tw/Files/Events/2021621134539.pdf)
[35] 李波. (2016). FloTHERM 軟件基礎與應用實例. 中國水利水電出版社.
[36] 姚漢洲. (2013). 以 Angstrom method 量測均溫板之可行性研究, 國立清華大學工程與系統科學系碩士論文.
[37] 朱品彥. (2015). 均溫板性能量測參數之影響研究, 國立清華大學工程與系統科學系碩士論文.
[38] 陳哲凱. (2016). 均溫板標準量測實驗之建立與參數影響之研究, 國立清華大學工程與系統科學系碩士論文.
[39] 吳沛勳. (2018). 薄型電子裝置散熱元件熱擴散量測技術研究, 國立清華大學工程與系統科學系碩士論文.
[40] 蔡謦鍠. (2019). 薄型散熱材料之熱擴散率量測技術研究, 國立清華大學工程與系統科學系碩士論文.