簡易檢索 / 詳目顯示

研究生: 鍾沂倫
Chung, Yi-Lun
論文名稱: 深度學習在大強子對撞機中的高逕向動量希格斯粒子應用
Deep Learning Applications for Boosted Higgs at the LHC
指導教授: 張敬民
Cheung, Kingman
口試委員: 徐百嫻
Hsu, Pai-Hsien
曾柏彥
Tseng, Po-Yen
郭家銘
Kuo, Chia-Ming
徐士傑
Hsu, Shih-Chieh
Song, Jeonghyeon
Song, Jeonghyeon
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 93
中文關鍵詞: 希格斯粒子對撞機物理深度學習
外文關鍵詞: Higgs Boson, collider physics, deep learning
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 希格斯玻色子在電弱對稱作用破缺探索中的角色眾所皆知,而且在極端的相空間中,也利於探索超越標準模型。在強子末態的高逕向動量希格斯粒子的範疇中,我們利用深度學習來研究三個物理現象。

    首先,我們在大強子對撞機的環境下,利用強子末態的高逕向動量希格斯粒子模擬數據,來訓練淺層與深層的神經網路結構來當噴流標示器。我們發現利用不同的部分子簇射蒙地卡羅法,都能最優化訓練出來的機器學習模型,這展現出深度學習分類器的普世性。

    第二,我們展示了機器學習在辨識高逕向動量希格斯粒子產生途徑的準確性。雙線流卷積神經網絡結合了噴流細部結構資訊與整體事件資訊,為從不同的高逕向動量希格斯粒子產生途徑中,將來自膠子-膠子融合法的事件精確地分離,提供了非常大的探索潛力。

    最後,我們研究在14 TeV 高流明大型子對撞機中的希格斯粒子對的產生。我們利用三線流卷積神經網絡,分析在雙希格斯場二重態模型架構中,來自膠子-膠子融合法產生的$pp \to H \to h h \to b\bar bb\bar b$事件。這樣的分析手法可以大幅增進事件訊號與背景訊號的分辨程度,也能提升對於參數空間探測的靈敏度。我們最後展現在雙希格斯場二重態模型架構中,四種類型的分析結果。

    我們利用了強子末態的高逕向動量希格斯粒子來當實際的深度學習應用例子,對於的靈敏度探索與增強發現的潛力,在大強子對撞機中或者其他,不論是不是對於高逕向動量希格斯粒子,深度學習也可以非常有彈性的延伸到各種的超越標準模型的課題。


    Higgs Bosons are well known to probe the structure of the electroweak-breaking sector and are sensitive probes of physics beyond the Standard Model in extreme regions of phase space. We employ deep learning approach to study phenomenology of boosted Higgs with hadronic final state in three cases.

    First, we treat the shallow and deep neural networks as jet tagger for simulated Lorentz boosted Higgs at the LHC. We found that a machine learning model trained on one Parton Shower Monte Carlo and tested on another simulation will likely be optimal. It indicates universality property of deep learning classifier.

    Second, we demonstrate the capability of machine learning to identify boosted Higgs production modes accurately. The two-stream convolutional neural network, which combines jet substructure and event information, holds a great discovery potential for boosted Higgs bosons via gluon-gluon fusion by precisely separating events into various production modes.

    Finally, we study a Higgs boson pair production at the 14 TeV HL-LHC. We apply three-stream convolutional neural network on the gluon-gluon fusion process $pp \to H \to h h \to b\bar bb\bar b$ in the framework of two-Higgs-doublet models. The approach can substantially improve the signal-background discrimination and thus improve the sensitivity coverage of the relevant parameter space. We show the results for Types I to IV.

    We take boosted Higgs in hadronic final state to be concrete examples via deep learning approach. It is flexible and may enhance sensitivity and discovery potential to BSM in a variety of physics processes with and without boosted Higgs bosons at the LHC and beyond.

    1 Introduction 1 2 Higgs Boson in the Standard Model and beyond 3 2.1 The Higgs Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 The Higgs Mechanism in the Electroweak Standard Model . . . . . 5 2.3 Two-Higgs-Doublet Models . . . . . . . . . . . . . . . . . . . . . . . 9 2.4 Higgs-pair Production in THDMs . . . . . . . . . . . . . . . . . . . 12 3 Deep Learning Classifiers 14 3.1 Basic Concepts of Feedforward Neural Network . . . . . . . . . . . 15 3.2 Basic Concepts of Boosted Decision Tree . . . . . . . . . . . . . . . 18 3.3 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4 the Universality of Hadronic Jet Classification 23 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 4.2 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2.1 Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . 25 4.2.2 High-level Features . . . . . . . . . . . . . . . . . . . . . . . 26 4.2.3 Low-level Features . . . . . . . . . . . . . . . . . . . . . . . 27 4.3 Classifier Architectures . . . . . . . . . . . . . . . . . . . . . . . . 28 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.5 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 37 5 Disentangling Boosted Higgs Boson Production Modes 38 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 5.2 Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . . . . . 39 5.3 Machine Learning Classifiers . . . . . . . . . . . . . . . . . . . . . . 40 5.3.1 The Boosted Decision Tree . . . . . . . . . . . . . . . . . . 41 5.3.2 The Two-stream Convolutional Neural Network . . . . . . . 44 5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 5.6 Conclusions and Outlook . . . . . . . . . . . . . . . . . . . . . . . . 51 6 Sensitivity on Two-Higgs-Doublet Models from Higgs-Pair Production via b¯bb¯b Final State 53 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 6.2 Two Higgs Doublet Models . . . . . . . . . . . . . . . . . . . . . . . 55 6.3 Sample Generation and Event Selections . . . . . . . . . . . . . . . 57 6.3.1 Monte Carlo Samples . . . . . . . . . . . . . . . . . . . . . . 58 6.3.2 High-level Features . . . . . . . . . . . . . . . . . . . . . . . 59 6.3.3 Low-level Features . . . . . . . . . . . . . . . . . . . . . . . 61 6.4 Baseline and Classifiers . . . . . . . . . . . . . . . . . . . . . . . . . 63 6.4.1 The Cut-based Method . . . . . . . . . . . . . . . . . . . . 63 6.4.2 The Boosted Decision Tree . . . . . . . . . . . . . . . . . . 64 6.4.3 The Three-stream Convolutional Neural Networks (3CNN) . 65 6.5 Results and Sensitivity Reach in 2HDM . . . . . . . . . . . . . . . 65 6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7 Conclusions 73

    [1] ATLAS Collaboration, G. Aad et al., Search for resonant pair production
    of Higgs bosons in the b¯bb¯b final state using pp collisions at

    s = 13 TeV
    with the ATLAS detector, Phys. Rev. D 105 (2022), no. 9 092002,
    [arXiv:2202.07288].
    [2] A. Hoecker, P. Speckmayer, J. Stelzer, J. Therhaag, E. von Toerne,
    H. Voss, M. Backes, T. Carli, O. Cohen, A. Christov, et al., Tmva-toolkit
    for multivariate data analysis, arXiv preprint physics/0703039 (2007).
    [3] P. Baldi, P. Sadowski, and D. Whiteson, Searching for Exotic Particles in
    High-Energy Physics with Deep Learning, Nature Commun. 5 (2014) 4308,
    [arXiv:1402.4735].
    [4] J. Lin, M. Freytsis, I. Moult, and B. Nachman, Boosting H → b¯b with
    Machine Learning, JHEP 10 (2018) 101, [arXiv:1807.10768].
    [5] Y.-L. Chung, S.-C. Hsu, and B. Nachman, Disentangling Boosted Higgs
    Boson Production Modes with Machine Learning, arXiv:2009.05930.
    [6] ATLAS Collaboration, G. Aad et al., Observation of a new particle in the
    search for the Standard Model Higgs boson with the ATLAS detector at the
    LHC, Phys. Lett. B 716 (2012) 1–29, [arXiv:1207.7214].
    [7] CMS Collaboration, S. Chatrchyan et al., Observation of a New Boson at
    a Mass of 125 GeV with the CMS Experiment at the LHC, Phys. Lett. B
    716 (2012) 30–61, [arXiv:1207.7235].
    [8] C.-T. Lu, J. Chang, K. Cheung, and J. S. Lee, An exploratory study of
    Higgs-boson pair production, JHEP 08 (2015) 133, [arXiv:1505.00957].
    [9] A. J. Larkoski, I. Moult, and B. Nachman, Jet Substructure at the Large
    Hadron Collider: A Review of Recent Advances in Theory and Machine
    Learning, Phys. Rept. 841 (2020) 1–63, [arXiv:1709.04464].
    [10] D. Guest, K. Cranmer, and D. Whiteson, Deep Learning and its
    Application to LHC Physics, Ann. Rev. Nucl. Part. Sci. 68 (2018) 161–181,
    [arXiv:1806.11484].
    [11] K. Albertsson et al., Machine Learning in High Energy Physics Community
    White Paper, arXiv:1807.02876.
    [12] A. Radovic, M. Williams, D. Rousseau, M. Kagan, D. Bonacorsi,
    A. Himmel, A. Aurisano, K. Terao, and T. Wongjirad, Machine learning at
    the energy and intensity frontiers of particle physics, Nature 560 (2018),
    no. 7716 41–48.
    [13] G. Carleo, I. Cirac, K. Cranmer, L. Daudet, M. Schuld, N. Tishby,
    L. Vogt-Maranto, and L. Zdeborová, Machine learning and the physical
    sciences, Rev. Mod. Phys. 91 (2019), no. 4 045002, [arXiv:1903.10563].
    [14] D. Bourilkov, Machine and Deep Learning Applications in Particle Physics,
    Int. J. Mod. Phys. A 34 (2020), no. 35 1930019, [arXiv:1912.08245].
    [15] HEP ML Community, “A Living Review of Machine Learning for Particle
    Physics.”
    [16] P. W. Higgs, Broken symmetries and the masses of gauge bosons, Phys.
    Rev. Lett. 13 (Oct, 1964) 508–509.
    [17] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys.
    Lett. 12 (1964) 132–133.
    [18] F. Englert and R. Brout, Broken symmetry and the mass of gauge vector
    mesons, Phys. Rev. Lett. 13 (Aug, 1964) 321–323.
    [19] P. W. Anderson, Plasmons, gauge invariance, and mass, Phys. Rev. 130
    (Apr, 1963) 439–442.
    [20] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson,
    The Higgs Hunter’s Guide, vol. 80. 2000.
    [21] F. Halzen and A. D. Martin,
    QUARKS AND LEPTONS: AN INTRODUCTORY COURSE IN MODERN PARTICLE PHYSICS.
    1984.
    [22] D. Griffiths, Introduction to elementary particles. 2008.
    [23] J. F. Gunion, H. E. Haber, G. L. Kane, and S. Dawson, Errata for the
    Higgs hunter’s guide, hep-ph/9302272.
    [24] M. Aoki, S. Kanemura, K. Tsumura, and K. Yagyu, Models of Yukawa
    interaction in the two Higgs doublet model, and their collider
    phenomenology, Phys. Rev. D 80 (2009) 015017, [arXiv:0902.4665].
    [25] G. C. Branco, P. M. Ferreira, L. Lavoura, M. N. Rebelo, M. Sher, and J. P.
    Silva, Theory and phenomenology of two-Higgs-doublet models, Phys. Rept.
    516 (2012) 1–102, [arXiv:1106.0034].
    [26] S. L. Glashow, Partial-symmetries of weak interactions, Nuclear Physics 22
    (1961), no. 4 579–588.
    [27] A. Salam and J. Ward, Electromagnetic and weak interactions, Physics
    Letters 13 (1964), no. 2 168–171.
    [28] S. Weinberg, A model of leptons, Phys. Rev. Lett. 19 (Nov, 1967)
    1264–1266.
    [29] J. Goldstone, A. Salam, and S. Weinberg, Broken symmetries, Phys. Rev.
    127 (Aug, 1962) 965–970.
    [30] S. L. Glashow and S. Weinberg, Natural conservation laws for neutral
    currents, Phys. Rev. D 15 (Apr, 1977) 1958–1965.
    [31] E. A. Paschos, Diagonal neutral currents, Phys. Rev. D 15 (Apr, 1977) 1966–1972.
    [32] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, P. Torrielli,
    E. Vryonidou, and M. Zaro, Higgs pair production at the LHC with NLO
    and parton-shower effects, Phys. Lett. B 732 (2014) 142–149,
    [arXiv:1401.7340].
    [33] B. Hespel, D. Lopez-Val, and E. Vryonidou, Higgs pair production via
    gluon fusion in the Two-Higgs-Doublet Model, JHEP 09 (2014) 124,
    [arXiv:1407.0281].
    [34] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
    2016. http://www.deeplearningbook.org.
    [35] T. M. Mitchell, Machine Learning. McGraw-Hill, New York, 1997.
    [36] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to
    Statistical Learning: with Applications in R. Springer, 2013.
    [37] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
    O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
    J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
    E. Duchesnay, Scikit-learn: Machine learning in Python, Journal of
    Machine Learning Research 12 (2011) 2825–2830.
    [38] L. de Oliveira, M. Kagan, L. Mackey, B. Nachman, and A. Schwartzman,
    Jet-images — deep learning edition, JHEP 07 (2016) 069,
    [arXiv:1511.05190].
    [39] CMS Collaboration Collaboration, Heavy flavor identification at CMS
    with deep neural networks, .
    [40] ATLAS Collaboration Collaboration, Identification of Jets Containing
    b-Hadrons with Recurrent Neural Networks at the ATLAS Experiment,
    tech. rep., CERN, Geneva, Mar, 2017. All figures including auxiliary
    figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/
    PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-003.
    [41] L. G. Almeida, M. Backović, M. Cliche, S. J. Lee, and M. Perelstein,
    Playing Tag with ANN: Boosted Top Identification with Pattern
    Recognition, JHEP 07 (2015) 086, [arXiv:1501.05968].
    [42] P. T. Komiske, E. M. Metodiev, and M. D. Schwartz, Deep learning in
    color: towards automated quark/gluon jet discrimination, JHEP 01 (2017)
    110, [arXiv:1612.01551].
    [43] L. de Oliveira, M. Paganini, and B. Nachman, Learning Particle Physics by
    Example: Location-Aware Generative Adversarial Networks for Physics
    Synthesis, Comput. Softw. Big Sci. 1 (2017), no. 1 4, [arXiv:1701.05927].
    [44] J. Cogan, M. Kagan, E. Strauss, and A. Schwarztman, Jet-Images:
    Computer Vision Inspired Techniques for Jet Tagging, JHEP 02 (2015)
    118, [arXiv:1407.5675].
    [45] M. Feickert and B. Nachman, A Living Review of Machine Learning for
    Particle Physics, arXiv:2102.02770.
    [46] G. Karagiorgi, G. Kasieczka, S. Kravitz, B. Nachman, and D. Shih,
    Machine Learning in the Search for New Fundamental Physics,
    arXiv:2112.03769.
    [47] A. Buckley et al., General-purpose event generators for LHC physics, Phys.
    Rept. 504 (2011) 145–233, [arXiv:1101.2599].
    [48] B. Nachman, A guide for deploying Deep Learning in LHC searches: How
    to achieve optimality and account for uncertainty, SciPost Phys. 8 (2020)
    090, [arXiv:1909.03081].
    [49] G. Louppe, M. Kagan, and K. Cranmer, Learning to Pivot with Adversarial
    Networks, in Advances in Neural Information Processing Systems
    (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,
    S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc.,
    2017. arXiv:1611.01046.
    [50] C. Englert, P. Galler, P. Harris, and M. Spannowsky, Machine Learning
    Uncertainties with Adversarial Neural Networks, Eur. Phys. J. C79 (2019),
    no. 1 4, [arXiv:1807.08763].
    [51] S. Wunsch, S. Jórger, R. Wolf, and G. Quast, Reducing the dependence of
    the neural network function to systematic uncertainties in the input space,
    arXiv:1907.11674.
    [52] J. M. Clavijo, P. Glaysher, and J. M. Katzy, Adversarial domain
    adaptation to reduce sample bias of a high energy physics classifier,
    arXiv:2005.00568.
    [53] P. De Castro and T. Dorigo, INFERNO: Inference-Aware Neural
    Optimisation, Comput. Phys. Commun. 244 (2019) 170–179,
    [arXiv:1806.04743].
    [54] A. Ghosh, B. Nachman, and D. Whiteson, Uncertainty-aware machine
    learning for high energy physics, Phys. Rev. D 104 (2021), no. 5 056026,
    [arXiv:2105.08742].
    [55] N. Simpson and L. Heinrich,
    neos: End-to-End-Optimised Summary Statistics for High Energy Physics, in
    20th International Workshop on Advanced Computing and Analysis Techniques in Physics Research:
    AI Decoded - Towards Sustainable, Diverse, Performant and Effective Scientific Computing,
    3, 2022. arXiv:2203.05570.
    [56] A. Ghosh and B. Nachman, A Cautionary Tale of Decorrelating Theory
    Uncertainties, arXiv:2109.08159.
    [57] B. Nachman and C. Shimmin, AI Safety for High Energy Physics,
    arXiv:1910.08606.
    [58] A. Stein, X. Coubez, S. Mondal, A. Novak, and A. Schmidt, Improving
    robustness of jet tagging algorithms with adversarial training,
    arXiv:2203.13890.
    [59] J. Bellm et al., Herwig 7.0/Herwig++ 3.0 release note, Eur. Phys. J. C 76
    (2016), no. 4 196, [arXiv:1512.01178].
    [60] T. Sjostrand, S. Mrenna, and P. Z. Skands, A Brief Introduction to
    PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852–867,
    [arXiv:0710.3820].
    [61] J. A. Aguilar-Saavedra, Taming modeling uncertainties with mass
    unspecific supervised tagging, Eur. Phys. J. C 82 (2022), no. 3 270,
    [arXiv:2201.11143].
    [62] C. Frye, A. J. Larkoski, J. Thaler, and K. Zhou, Casimir Meets Poisson:
    Improved Quark/Gluon Discrimination with Counting Observables, JHEP
    09 (2017) 083, [arXiv:1704.06266].
    [63] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer,
    H. S. Shao, T. Stelzer, P. Torrielli, and M. Zaro, The automated
    computation of tree-level and next-to-leading order differential cross
    sections, and their matching to parton shower simulations, JHEP 07
    (2014) 079, [arXiv:1405.0301].
    [64] J. Butterworth et al., PDF4LHC recommendations for LHC Run II, J.
    Phys. G 43 (2016) 023001, [arXiv:1510.03865].
    [65] NNPDF Collaboration, R. D. Ball et al., Parton distributions for the
    LHC Run II, JHEP 04 (2015) 040, [arXiv:1410.8849].
    [66] P. Skands and R. Verheyen, Multipole photon radiation in the Vincia
    parton shower, Phys. Lett. B 811 (2020) 135878, [arXiv:2002.04939].
    [67] H. Brooks and C. T. Preuss, Efficient multi-jet merging with the Vincia
    sector shower, Comput. Phys. Commun. 264 (2021) 107985,
    [arXiv:2008.09468].
    [68] N. Fischer, S. Prestel, M. Ritzmann, and P. Skands, Vincia for Hadron
    Colliders, Eur. Phys. J. C 76 (2016), no. 11 589, [arXiv:1605.06142].
    [69] N. Dawe, E. Rodrigues, H. Schreiner, B. Ostdiek, D. Kalinkin, M. R.,
    S. Meehan, aryan26roy, and domen13, scikit-hep/pyjet: Version 1.8.2,
    Jan., 2021.
    [70] M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys.
    J. C72 (2012) 1896, [arXiv:1111.6097].
    [71] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kt jet clustering
    algorithm, JHEP 04 (2008) 063, [arXiv:0802.1189].
    [72] M. Cacciari, G. P. Salam, and G. Soyez, The Catchment Area of Jets,
    JHEP 04 (2008) 005, [arXiv:0802.1188].
    [73] A. Buckley and C. Pollard, QCD-aware partonic jet clustering for truth-jet
    flavour labelling, Eur. Phys. J. C 76 (2016), no. 2 71, [arXiv:1507.00508].
    [74] J. Thaler and K. Van Tilburg, Identifying Boosted Objects with
    N-subjettiness, JHEP 03 (2011) 015, [arXiv:1011.2268].
    [75] J. Thaler and K. Van Tilburg, Maximizing Boosted Top Identification by
    Minimizing N-subjettiness, JHEP 02 (2012) 093, [arXiv:1108.2701].
    [76] A. J. Larkoski, I. Moult, and D. Neill, Power Counting to Better Jet
    Observables, JHEP 12 (2014) 009, [arXiv:1409.6298].
    [77] A. J. Larkoski, G. P. Salam, and J. Thaler, Energy Correlation Functions
    for Jet Substructure, JHEP 06 (2013) 108, [arXiv:1305.0007].
    [78] Particle Data Group, Review of Particle Physics, Progress of Theoretical
    and Experimental Physics 2020 (08, 2020) 083C01.
    [79] T. O’Malley, E. Bursztein, J. Long, F. Chollet, H. Jin, L. Invernizzi, et al.,
    “Kerastuner.” https://github.com/keras-team/keras-tuner, 2019.
    [80] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
    R. Salakhutdinov, Dropout: A simple way to prevent neural networks from
    overfitting, Journal of Machine Learning Research 15 (2014), no. 56
    1929–1958.
    [81] D. P. Kingma and J. Ba, Adam: A method for stochastic optimization,
    2017.
    [82] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
    Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
    A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur,
    J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah,
    M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker,
    V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden,
    M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale
    machine learning on heterogeneous systems, 2015. Software available from
    tensorflow.org.
    [83] M. D. Zeiler, ADADELTA: an adaptive learning rate method, CoRR abs/
    1212.5701 (2012) [arXiv:1212.5701].
    [84] ATLAS Collaboration, Search for boosted resonances decaying to two
    b-quarks and produced in association with a jet at

    s = 13 TeV with the
    ATLAS detector, .
    [85] CMS Collaboration, A. M. Sirunyan et al., Inclusive search for highly
    boosted Higgs bosons decaying to bottom quark-antiquark pairs in
    proton-proton collisions at

    s = 13 TeV, arXiv:2006.13251.
    [86] ATLAS Collaboration, G. Aad et al., Identification of boosted Higgs
    bosons decaying into b-quark pairs with the ATLAS detector at 13 TeV,
    Eur. Phys. J. C 79 (2019), no. 10 836, [arXiv:1906.11005].
    [87] CMS Collaboration Collaboration, Performance of Deep Tagging
    Algorithms for Boosted Double Quark Jet Topology in Proton-Proton
    Collisions at 13 TeV with the Phase-0 CMS Detector, .
    [88] K. Datta and A. J. Larkoski, Novel Jet Observables from Machine
    Learning, JHEP 03 (2018) 086, [arXiv:1710.01305].
    [89] E. A. Moreno, T. Q. Nguyen, J.-R. Vlimant, O. Cerri, H. B. Newman,
    A. Periwal, M. Spiropulu, J. M. Duarte, and M. Pierini, Interaction
    networks for the identification of boosted H → bb decays, Phys. Rev. D 102
    (2020), no. 1 012010, [arXiv:1909.12285].
    [90] K. Becker et al., Precise predictions for boosted Higgs production,
    arXiv:2005.07762.
    [91] D. Pagani, H.-S. Shao, and M. Zaro, RIP Hb¯b: How other Higgs production
    modes conspire to kill a rare signal at the LHC, arXiv:2005.10277.
    [92] J. Pumplin, How to tell quark jets from gluon jets, Phys. Rev. D 44 (1991)
    2025–2032.
    [93] ATLAS Collaboration Collaboration, Quark versus Gluon Jet Tagging
    Using Jet Images with the ATLAS Detector, Tech. Rep.
    ATL-PHYS-PUB-2017-017, CERN, Geneva, Jul, 2017.
    [94] P. T. Komiske, E. M. Metodiev, B. Nachman, and M. D. Schwartz,
    Learning to classify from impure samples with high-dimensional data, Phys.
    Rev. D 98 (2018), no. 1 011502, [arXiv:1801.10158].
    [95] J. Barnard, E. N. Dawe, M. J. Dolan, and N. Rajcic, Parton Shower
    Uncertainties in Jet Substructure Analyses with Deep Neural Networks,
    Phys. Rev. D95 (2017), no. 1 014018, [arXiv:1609.00607].
    [96] G. Kasieczka, T. Plehn, M. Russell, and T. Schell, Deep-learning Top
    Taggers or The End of QCD?, JHEP 05 (2017) 006, [arXiv:1701.08784].
    [97] S. Macaluso and D. Shih, Pulling Out All the Tops with Computer Vision
    and Deep Learning, JHEP 10 (2018) 121, [arXiv:1803.00107].
    [98] J. Li, T. Li, and F.-Z. Xu, Reconstructing boosted Higgs jets from event
    image segmentation, arXiv:2008.13529.
    [99] J. Li and H. Sun, An Attention Based Neural Network for Jet Tagging,
    arXiv:2009.00170.
    [100] T. Q. Nguyen, D. Weitekamp, D. Anderson, R. Castello, O. Cerri,
    M. Pierini, M. Spiropulu, and J.-R. Vlimant, Topology classification with
    deep learning to improve real-time event selection at the LHC, Comput.
    Softw. Big Sci. 3 (2019), no. 1 12, [arXiv:1807.00083].
    [101] ATLAS Collaboration Collaboration, Convolutional Neural Networks
    with Event Images for Pileup Mitigation with the ATLAS Detector, Tech.
    Rep. ATL-PHYS-PUB-2019-028, CERN, Geneva, Jul, 2019.
    [102] M. Andrews, M. Paulini, S. Gleyzer, and B. Poczos, End-to-End Physics
    Event Classification with the CMS Open Data: Applying Image-based Deep
    Learning on Detector Data to Directly Classify Collision Events at the
    LHC, arXiv:1807.11916.
    [103] V. S. Ngairangbam, A. Bhardwaj, P. Konar, and A. K. Nayak, Invisible
    Higgs search through Vector Boson Fusion: A deep learning approach,
    arXiv:2008.05434.
    [104] M. Botje et al., The PDF4LHC Working Group Interim Recommendations,
    arXiv:1101.0538.
    [105] R. Frederix and S. Frixione, Merging meets matching in MC@NLO, JHEP
    12 (2012) 061, [arXiv:1209.6215].
    [106] P. Artoisenet et al., A framework for Higgs characterisation, JHEP 11
    (2013) 043, [arXiv:1306.6464].
    [107] F. Demartin, F. Maltoni, K. Mawatari, B. Page, and M. Zaro, Higgs
    characterisation at NLO in QCD: CP properties of the top-quark Yukawa
    interaction, Eur. Phys. J. C 74 (2014), no. 9 3065, [arXiv:1407.5089].
    [108] A. J. Larkoski, S. Marzani, G. Soyez, and J. Thaler, Soft Drop, JHEP 05
    (2014) 146, [arXiv:1402.2657].
    [109] M. Dasgupta, A. Fregoso, S. Marzani, and G. P. Salam, Towards an
    understanding of jet substructure, JHEP 09 (2013) 029,
    [arXiv:1307.0007].
    [110] CMS Collaboration, A. M. Sirunyan et al., Inclusive search for a highly
    boosted Higgs boson decaying to a bottom quark-antiquark pair, Phys. Rev.
    Lett. 120 (2018), no. 7 071802, [arXiv:1709.05543].
    [111] I. Moult, L. Necib, and J. Thaler, New Angles on Energy Correlation
    Functions, JHEP 12 (2016) 153, [arXiv:1609.07483].
    [112] LHC Higgs Cross Section Working Group Collaboration,
    D. de Florian, C. Grojean, et al.,
    Handbook of LHC Higgs Cross Sections: 4. Deciphering the Nature of the Higgs Sector.
    CERN Yellow Reports: Monographs. Oct, 2016. 869 pages, 295 figures,
    248 tables and 1645 citations. Working Group web page: https://
    twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWG.
    [113] Particle Data Group Collaboration, M. Tanabashi et al., Review of
    Particle Physics, Phys. Rev. D 98 (2018), no. 3 030001.
    [114] J. H. Friedman, Stochastic gradient boosting, Computational Statistics &
    Data Analysis 38 (2002), no. 4 367 – 378. Nonlinear Methods and Data
    Mining.
    [115] G. Ridgeway, Generalized boosted models: A guide to the gbm package,
    2006.
    [116] T. Chen and C. Guestrin, Xgboost, Proceedings of the 22nd ACM SIGKDD
    International Conference on Knowledge Discovery and Data Mining (Aug,
    2016).
    [117] G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y.
    Liu, Lightgbm: A highly efficient gradient boosting decision tree, in
    Advances in Neural Information Processing Systems 30 (I. Guyon, U. V.
    Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
    R. Garnett, eds.), pp. 3146–3154. Curran Associates, Inc., 2017.
    [118] N. Belyaev, R. Konoplich, and K. Prokofiev, Study of kinematic observables
    sentitive to the higgs boson production channel inpp→hjjprocess, Journal of
    Physics: Conference Series 934 (dec, 2017) 012030.
    [119] C.-H. Chan, K. Cheung, Y.-L. Chung, and P.-H. Hsu, Vector Boson Fusion
    versus Gluon Fusion, Phys. Rev. D 96 (2017), no. 9 096009,
    [arXiv:1706.02864].
    [120] J. Shelton, Jet Substructure, in
    Theoretical Advanced Study Institute in Elementary Particle Physics:
    Searching for New Physics at Small and Large Scales, pp. 303–340, 2013.
    arXiv:1302.0260.
    [121] J. Conway, R. Bhaskar, R. Erbacher, and J. Pilot, Identification of
    High-Momentum Top Quarks, Higgs Bosons, and W and Z Bosons Using
    Boosted Event Shapes, Phys. Rev. D 94 (2016), no. 9 094027,
    [arXiv:1606.06859].
    [122] CMS Collaboration Collaboration, New Developments for Jet
    Substructure Reconstruction in CMS, .
    [123] D. Pappadopulo, A. Thamm, R. Torre, and A. Wulzer, Heavy Vector
    Triplets: Bridging Theory and Data, JHEP 09 (2014) 060,
    [arXiv:1402.4431].
    [124] A. Azatov and A. Paul, Probing Higgs couplings with high pT Higgs
    production, JHEP 01 (2014) 014, [arXiv:1309.5273].
    [125] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys.
    Rev. Lett. 13 (1964) 508–509.
    [126] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector
    Mesons, Phys. Rev. Lett. 13 (1964) 321–323.
    [127] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Global Conservation
    Laws and Massless Particles, Phys. Rev. Lett. 13 (1964) 585–587.
    [128] K. Cheung, J. S. Lee, and P.-Y. Tseng, Higgs Precision (Higgcision) Era
    begins, JHEP 05 (2013) 134, [arXiv:1302.3794].
    [129] K. Cheung, J. S. Lee, and P.-Y. Tseng, New Emerging Results in Higgs
    Precision Analysis Updates 2018 after Establishment of Third-Generation
    Yukawa Couplings, JHEP 09 (2019) 098, [arXiv:1810.02521].
    [130] E. W. N. Glover and J. J. van der Bij, HIGGS BOSON PAIR
    PRODUCTION VIA GLUON FUSION, Nucl. Phys. B 309 (1988)
    282–294.
    [131] D. A. Dicus, C. Kao, and S. S. D. Willenbrock, Higgs Boson Pair
    Production From Gluon Fusion, Phys. Lett. B 203 (1988) 457–461.
    [132] T. Plehn, M. Spira, and P. M. Zerwas, Pair production of neutral Higgs
    particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46–64, [hepph/
    9603205]. [Erratum: Nucl.Phys.B 531, 655–655 (1998)].
    [133] A. Djouadi, W. Kilian, M. Muhlleitner, and P. M. Zerwas, Production of
    neutral Higgs boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45–49, [hepph/
    9904287].
    [134] S. Dawson, S. Dittmaier, and M. Spira, Neutral Higgs boson pair
    production at hadron colliders: QCD corrections, Phys. Rev. D 58 (1998)
    115012, [hep-ph/9805244].
    [135] U. Baur, T. Plehn, and D. L. Rainwater, Determining the Higgs Boson
    Selfcoupling at Hadron Colliders, Phys. Rev. D 67 (2003) 033003, [hep-ph/
    0211224].
    [136] T. Binoth, S. Karg, N. Kauer, and R. Ruckl, Multi-Higgs boson production
    in the Standard Model and beyond, Phys. Rev. D 74 (2006) 113008, [hepph/
    0608057].
    [137] U. Baur, T. Plehn, and D. L. Rainwater, Examining the Higgs boson
    potential at lepton and hadron colliders: A Comparative analysis, Phys.
    Rev. D 68 (2003) 033001, [hep-ph/0304015].
    [138] J. Baglio, A. Djouadi, R. Gröber, M. M. Mühlleitner, J. Quevillon, and
    M. Spira, The measurement of the Higgs self-coupling at the LHC:
    theoretical status, JHEP 04 (2013) 151, [arXiv:1212.5581].
    [139] J. Grigo, J. Hoff, K. Melnikov, and M. Steinhauser, On the Higgs boson
    pair production at the LHC, Nucl. Phys. B 875 (2013) 1–17,
    [arXiv:1305.7340].
    [140] V. Barger, L. L. Everett, C. B. Jackson, and G. Shaughnessy, Higgs-Pair
    Production and Measurement of the Triscalar Coupling at LHC(8,14),
    Phys. Lett. B 728 (2014) 433–436, [arXiv:1311.2931].
    [141] J. Chang, K. Cheung, J. S. Lee, C.-T. Lu, and J. Park, Higgs-boson-pair
    production H(→bb¯)H(→γγ) from gluon fusion at the HL-LHC and
    HL-100 TeV hadron collider, Phys. Rev. D 100 (2019), no. 9 096001,
    [arXiv:1804.07130].
    [142] J. Chang, K. Cheung, J. S. Lee, and J. Park, Probing the trilinear Higgs
    boson self-coupling at the high-luminosity LHC via multivariate analysis,
    Phys. Rev. D 101 (2020), no. 1 016004, [arXiv:1908.00753].
    [143] J. H. Kim, K. Kong, K. T. Matchev, and M. Park, Probing the Triple
    Higgs Self-Interaction at the Large Hadron Collider, Phys. Rev. Lett. 122
    (2019), no. 9 091801, [arXiv:1807.11498].
    [144] S. L. Glashow and S. Weinberg, Natural Conservation Laws for Neutral
    Currents, Phys. Rev. D 15 (1977) 1958.
    [145] E. A. Paschos, Diagonal Neutral Currents, Phys. Rev. D 15 (1977) 1966.
    [146] J. Song and Y. W. Yoon, Wγ decay of the elusive charged Higgs boson in
    the two-Higgs-doublet model with vectorlike fermions, Phys. Rev. D 100
    (2019), no. 5 055006, [arXiv:1904.06521].
    [147] P. Bechtle, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein, and
    J. Wittbrodt, HiggsSignals-2: Probing new physics with precision Higgs
    measurements in the LHC 13 TeV era, Eur. Phys. J. C 81 (2021), no. 2
    145, [arXiv:2012.09197].
    [148] ATLAS Collaboration, M. Aaboud et al., Search for Higgs bosons
    produced via vector-boson fusion and decaying into bottom quark pairs in

    s = 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 98
    (2018), no. 5 052003, [arXiv:1807.08639].
    [149] ATLAS Collaboration, M. Aaboud et al., Measurements of gluon-gluon
    fusion and vector-boson fusion Higgs boson production cross-sections in theH → WW∗ → eνμν decay channel in pp collisions at

    s = 13 TeV with the
    ATLAS detector, Phys. Lett. B 789 (2019) 508–529, [arXiv:1808.09054].
    [150] ATLAS Collaboration, M. Aaboud et al., Cross-section measurements of
    the Higgs boson decaying into a pair of τ -leptons in proton-proton
    collisions at

    s = 13 TeV with the ATLAS detector, Phys. Rev. D 99
    (2019) 072001, [arXiv:1811.08856].
    [151] ATLAS Collaboration, G. Aad et al., Higgs boson production cross-section
    measurements and their EFT interpretation in the 4ℓ decay channel at

    s =13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020), no. 10
    957, [arXiv:2004.03447]. [Erratum: Eur.Phys.J.C 81, 29 (2021), Erratum:
    Eur.Phys.J.C 81, 398 (2021)].
    [152] CMS Collaboration, A. M. Sirunyan et al., Search for ttH production in
    the H → bb decay channel with leptonic tt decays in proton-proton
    collisions at

    s = 13 TeV, JHEP 03 (2019) 026, [arXiv:1804.03682].
    [153] CMS Collaboration, A. M. Sirunyan et al., Search for the Higgs boson
    decaying to two muons in proton-proton collisions at

    s = 13 TeV, Phys.
    Rev. Lett. 122 (2019), no. 2 021801, [arXiv:1807.06325].
    [154] CMS Collaboration, Measurements of properties of the Higgs boson in the
    four-lepton final state in proton-proton collisions at

    s = 13 TeV, .
    [155] CMS Collaboration, Measurements of differential Higgs boson production
    cross sections in the leptonic WW decay mode at

    s = 13 TeV, .
    [156] P. Bechtle, D. Dercks, S. Heinemeyer, T. Klingl, T. Stefaniak, G. Weiglein,
    and J. Wittbrodt, HiggsBounds-5: Testing Higgs Sectors in the LHC 13
    TeV Era, Eur. Phys. J. C 80 (2020), no. 12 1211, [arXiv:2006.06007].
    [157] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams,
    HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds
    from LEP and the Tevatron, Comput. Phys. Commun. 181 (2010)
    138–167, [arXiv:0811.4169].
    [158] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, and K. E. Williams,
    HiggsBounds 2.0.0: Confronting Neutral and Charged Higgs Sector
    Predictions with Exclusion Bounds from LEP and the Tevatron, Comput.
    Phys. Commun. 182 (2011) 2605–2631, [arXiv:1102.1898].
    [159] P. Bechtle, O. Brein, S. Heinemeyer, O. Stal, T. Stefaniak, G. Weiglein,
    and K. Williams, Recent Developments in HiggsBounds and a Preview of
    HiggsSignals, PoS CHARGED2012 (2012) 024, [arXiv:1301.2345].
    [160] P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein,
    and K. E. Williams, HiggsBounds − 4: Improved Tests of Extended Higgs
    Sectors against Exclusion Bounds from LEP, the Tevatron and the LHC,
    Eur. Phys. J. C 74 (2014), no. 3 2693, [arXiv:1311.0055].
    [161] P. Bechtle, S. Heinemeyer, O. Stal, T. Stefaniak, and G. Weiglein, Applying
    Exclusion Likelihoods from LHC Searches to Extended Higgs Sectors, Eur.
    Phys. J. C 75 (2015), no. 9 421, [arXiv:1507.06706].
    [162] O. Stål and T. Stefaniak, Constraining extended Higgs sectors with
    HiggsSignals, PoS EPS-HEP2013 (2013) 314, [arXiv:1310.4039].
    [163] P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein,
    HiggsSignals: Confronting arbitrary Higgs sectors with measurements at
    the Tevatron and the LHC, Eur. Phys. J. C 74 (2014), no. 2 2711,
    [arXiv:1305.1933].
    [164] P. Bechtle, S. Heinemeyer, O. Stål, T. Stefaniak, and G. Weiglein, Probing
    the Standard Model with Higgs signal rates from the Tevatron, the LHC
    and a future ILC, JHEP 11 (2014) 039, [arXiv:1403.1582].
    [165] F. Arco, S. Heinemeyer, and M. J. Herrero, Exploring sizable triple Higgs
    couplings in the 2HDM, Eur. Phys. J. C 80 (2020), no. 9 884,
    [arXiv:2005.10576].
    [166] R. D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867
    (2013) 244–289, [arXiv:1207.1303].
    [167] C. Degrande, Automatic evaluation of UV and R2 terms for beyond the
    Standard Model Lagrangians: a proof-of-principle, Comput. Phys.
    Commun. 197 (2015) 239–262, [arXiv:1406.3030].
    [168] D. Eriksson, J. Rathsman, and O. Stal, 2HDMC: Two-Higgs-Doublet Model
    Calculator Physics and Manual, Comput. Phys. Commun. 181 (2010)
    189–205, [arXiv:0902.0851].
    [169] P. Artoisenet, R. Frederix, O. Mattelaer, and R. Rietkerk, Automatic
    spin-entangled decays of heavy resonances in Monte Carlo simulations,
    JHEP 03 (2013) 015, [arXiv:1212.3460].
    [170] M. L. Mangano, M. Moretti, F. Piccinini, and M. Treccani, Matching
    matrix elements and shower evolution for top-pair production in hadronic
    collisions, Journal of High Energy Physics 2007 (jan, 2007) 013–013.
    [171] J. Alwall et al., Comparative study of various algorithms for the merging of
    parton showers and matrix elements in hadronic collisions, Eur. Phys. J. C
    53 (2008) 473–500, [arXiv:0706.2569].
    [172] D. Krohn, J. Thaler, and L.-T. Wang, Jet Trimming, JHEP 02 (2010) 084,
    [arXiv:0912.1342].
    [173] S. D. Ellis and D. E. Soper, Successive combination jet algorithm for
    hadron collisions, Phys. Rev. D 48 (1993) 3160–3166, [hep-ph/9305266].
    [174] ATLAS Collaboration, M. Aaboud et al., Measurements of b-jet tagging
    efficiency with the ATLAS detector using tt events at

    s = 13 TeV, JHEP
    08 (2018) 089, [arXiv:1805.01845].
    [175] ATLAS Collaboration, M. Aaboud et al., Search for Higgs bosons
    produced via vector-boson fusion and decaying into bottom quark pairs in

    s = 13 TeV pp collisions with the ATLAS detector, Phys. Rev. D 98
    (2018), no. 5 052003, [arXiv:1807.08639].
    [176] ATLAS Collaboration, M. Aaboud et al., Measurements of gluon-gluon
    fusion and vector-boson fusion Higgs boson production cross-sections in theH → WW∗ → eνμν decay channel in pp collisions at

    s = 13 TeV with the
    ATLAS detector, Phys. Lett. B 789 (2019) 508–529, [arXiv:1808.09054].
    [177] ATLAS Collaboration, M. Aaboud et al., Cross-section measurements of
    the Higgs boson decaying into a pair of τ -leptons in proton-proton
    collisions at

    s = 13 TeV with the ATLAS detector, Phys. Rev. D 99
    (2019) 072001, [arXiv:1811.08856].
    [178] ATLAS Collaboration, G. Aad et al., Higgs boson production cross-section
    measurements and their EFT interpretation in the 4ℓ decay channel at

    s =13 TeV with the ATLAS detector, Eur. Phys. J. C 80 (2020), no. 10
    957, [arXiv:2004.03447]. [Erratum: Eur.Phys.J.C 81, 29 (2021), Erratum:
    Eur.Phys.J.C 81, 398 (2021)].
    [179] CMS Collaboration, A. M. Sirunyan et al., Search for ttH production in
    the H → bb decay channel with leptonic tt decays in proton-proton
    collisions at

    s = 13 TeV, JHEP 03 (2019) 026, [arXiv:1804.03682].
    [180] CMS Collaboration, A. M. Sirunyan et al., Search for the Higgs boson
    decaying to two muons in proton-proton collisions at

    s = 13 TeV, Phys.
    Rev. Lett. 122 (2019), no. 2 021801, [arXiv:1807.06325].
    [181] CMS Collaboration Collaboration, Measurements of properties of the
    Higgs boson in the four-lepton final state in proton-proton collisions at

    s = 13 TeV, tech. rep., CERN, Geneva, 2019.
    [182] CMS Collaboration Collaboration, Measurements of differential Higgs
    boson production cross sections in the leptonic WW decay mode at

    s = 13 TeV, tech. rep., CERN, Geneva, 2019.

    QR CODE