研究生: |
朱家立 Chu, Ka-lip |
---|---|
論文名稱: |
二氧化鉿摻雜鋁在金屬-氧化物-半導體結構中之鐵電性探討 Aluminum Doped Hafnium Dioxide as Ferroelectric Material in MOS Structure |
指導教授: |
巫勇賢
Wu, Yung-Hsien |
口試委員: |
鄭淳護
Cheng, Chun-Hu 高瑄苓 Kao, Hsuan-Ling |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 英文 |
論文頁數: | 65 |
中文關鍵詞: | 鐵電性 、極化 、二氧化鉿 、鋁摻雜 、記憶體 、金屬-氧化物-半導體結構 、金屬-鐵電層-半導體結構 |
外文關鍵詞: | Hafnium dioxide, Aluminum doped, MFS |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鐵電材質及相關製程已經被研究數十年,然而因為諸多缺點不易克服而一直不具競爭力,直到近年成功誘發二氧化鉿的鐵電性,使得應用鐵電元件在現代半導體製程露出一絲曙光。另一方面,傳統的場效電晶體面臨到次臨界擺幅(Subthreshold Swing)60mV/dec的物理極限,也可以透過鐵電材質的負電容特性來超越。
本學位論文探討如何在MOS/MFIS結構下成功誘發二氧化鉿摻雜鋁的鐵電性,為進一步的鐵電記憶體及鐵電電晶體提供有用的資訊。相較於MFM的對稱結構,本論文證明在缺少下電極的情況下,適當的退火溫度及應力依舊可以使二氧化鉿摻雜鋁有P-E遲滯窗口,以及在小電壓操作下就有不錯的C-V圖形的順時針窗口。同時,我們觀察到雙向電流穩態存在元件之中,有成為新型記憶體的潛力,在我們初步的研究中可以得知其耐用度及資料保存度都有不錯的表現,而寫入抺除速度也被確認過。
Ferroelectric material and its fabrication have been researched for decades, but it still suffers from many drawbacks which makes it cannot be commercialized. Recently these problems seem to be possible to be solved because ferroelectricity in Hf-based material has been induced successfully. On the other hand, negative capacitance in ferroelectric material which is a plan to overcome limit of 60mV/dec subthreshold swing also attracts many engineers’ interest.
In this thesis, how to induce ferroelectricity of Hf0.95Al0.05OX in MFIS sturcure will be discussed. It will be useful to someone who wants to fabricate FEMFET or FeFET. Comparing with MFM symmetric structure, the authors successfully prove that it is feasible to induce ferroelectricity of Hf0.95Al0.05OX without bottom electrode in appropriate annealing condition. Ferroelectricity is confirmed by P-E curve, clockwise C-V curve. It is suit for low voltage operation for a large C-V hysteresis window. Besides, bi-stable current direction is observed in device, which has potential to develop novel memory device. In our incipient research, it not only demonstrates good endurance and retention but also be verified appropriate P/E pulse time.
[1] C. Kittel, "Theory of antiferroelectric crystals," Physical Review, vol. 82, no. 5, pp. 729-732, Jan. 1951.
[2] M. H. Park, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, and C. S. Hwang, "Toward a multifunctional monolithic device based on pyroelectricity and the electrocaloric effect of thin antiferroelectric HfXZr1−XO2 films," Nano Energy, vol. 12, pp. 131-140, Mar. 2015.
[3] S. Salahuddin and S. Datta, "Use of negative capacitance to provide voltage amplification for low power nanoscale devices," Nano Letters, vol. 8, no. 2, pp. 405-410, Feb. 2008.
[4] C. W. Yeung, "Steep On/Off Transistors for Future Low Power Electronics," University of California, Berkeley, EECS Department, Doctor of Philosophy, 2014.
[5] T. P. Ma and J.-P. Han, "Why is nonvolatile ferroelectric memory field-effect transistor still elusive?," IEEE Electron Device Letters, vol. 23, no. 7, pp. 386-388, Jul. 2002.
[6] D. A. Buck, "Ferroelectrics for digital information storage and Switching," Massachusetts Institute of Technology, Electrical Engineering, Master of Science, 1952.
[7] S.-Y. Wu, "A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor," IEEE Transactions on Electron Devices, vol. 21, no. 8, pp. 499-504, Aug. 1974.
[8] W. I. Kinney, W. Shepherd, W. Miller, J. Evans, and R. Womack, "A non-volatile memory cell based on ferroelectric storage capacitors," in IEEE International Electron Devices Meeting, Washington, DC, USA, 1987, pp. 850-851.
[9] C. T. Black, C. Farrell, and T. J. Licata, "Suppression of ferroelectric polarization by an adjustable depolarization field," Applied Physics Letters, vol. 71, no. 14, pp. 2041-2043, Oct. 1997.
[10] S. Sakai and R. Ilangovan, "Metal-ferroelectric-insulator-semiconductor memory FET with long retention and high endurance," IEEE Electron Device Letters, vol. 25, no. 6, pp. 369-371, Jun. 2004.
[11] H. Kohlstedt, Y. Mustafa, A. Gerber, A. Petraru, M. Fitsilis, R. Meyer, U. Bottger, and R. Waser, "Current status and challenges of ferroelectric memory devices," Microelectronic Engineering, vol. 80, pp. 296-304, Jun. 2005.
[12] C. H. Ahn, K. M. Rabe, and J. M. Triscone, "Ferroelectricity at the nanoscale: local polarization in oxide thin films and heterostructures," Science, vol. 303, no. 5657, pp. 488-491, Jan. 2004.
[13] U. Schroeder, S. Mueller, J. Mueller, E. Yurchuk, D. Martin, C. Adelmann, T. Schloesser, R. van Bentum, and T. Mikolajick, "Hafnium oxide based CMOS compatible ferroelectric materials," ECS Journal of Solid State Science and Technology, vol. 2, no. 4, pp. N69-N72, Jan. 2013.
[14] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors," in IEEE International Electron Devices Meeting, Washington, DC, USA, 2011, pp. 24.5.1-24.5.4.
[15] T. S. Böscke, J. Müller, D. Bräuhaus, U. Schröder, and U. Böttger, "Ferroelectricity in hafnium oxide thin films," Applied Physics Letters, vol. 99, no. 10, p. 102903, Sep. 2011.
[16] U. Schroeder, E. Yurchuk, J. Müller, D. Martin, T. Schenk, P. Polakowski, C. Adelmann, M. I. Popovici, S. V. Kalinin, and T. Mikolajick, "Impact of different dopants on the switching properties of ferroelectric hafniumoxide," Japanese Journal of Applied Physics, vol. 53, no. 8S1, p. 08LE02, Jul. 2014.
[17] J. C. Slater, "Atomic radii in crystals," The Journal of Chemical Physics, vol. 41, no. 10, p. 3199, Nov. 1964.
[18] M. H. Park, Y. H. Lee, H. J. Kim, Y. J. Kim, T. Moon, K. D. Kim, J. Muller, A. Kersch, U. Schroeder, T. Mikolajick, and C. S. Hwang, "Ferroelectricity and antiferroelectricity of doped thin HfO2-based films," Advanced Materials, vol. 27, no. 11, pp. 1811-1831, Mar. 2015.
[19] J. Muller, P. Polakowski, S. Mueller, and T. Mikolajick, "Ferroelectric hafnium oxide based materials and devices: Assessment of current status and future prospects," ECS Journal of Solid State Science and Technology, vol. 4, no. 5, pp. N30-N35, Feb. 2015.
[20] T. Shimada and T. Kitamura, "Multi-physics properties in ferroelectric nanowires and related structures from first-principles," in Nanowires: InTech, 2010.
[21] P. S. F. Endres. (2014). Dielectric hysteresis behaviour and domain structure of ferroelectric materials. Available: http://www.uni-due.de/ferroics/teilprojekt_p5_eng
[22] Cyferz. (2007, May 25). 1T FeRAM cell structure. Available: http://en.wikipedia.org/wiki/File:1T_FeRAM_cell_structure.svg
[23] S. Mueller, J. Mueller, A. Singh, S. Riedel, J. Sundqvist, U. Schroeder, and T. Mikolajick, "Incipient Ferroelectricity in Al-Doped HfO2 Thin Films," Advanced Functional Materials, vol. 22, no. 11, pp. 2412-2417, Mar. 2012.
[24] P. D. Lomenzo, Q. Takmeel, C. Zhou, Y. Liu, C. M. Fancher, J. L. Jones, S. Moghaddam, and T. Nishida, "The effects of layering in ferroelectric Si-doped HfO2 thin films," Applied Physics Letters, vol. 105, no. 7, p. 072906, Aug. 2014.
[25] M. Hyuk Park, H. Joon Kim, Y. Jin Kim, T. Moon, and C. Seong Hwang, "The effects of crystallographic orientation and strain of thin Hf0.5Zr0.5O2 film on its ferroelectricity," Applied Physics Letters, vol. 104, no. 7, p. 072901, Feb. 2014.
[26] E. Yurchuk, J. Muller, R. Hoffmann, J. Paul, D. Martin, R. Boschke, T. Schlosser, S. Muller, S. Slesazeck, R. van Bentum, M. Trentzsch, U. Schroder, and T. Mikolajick, "HfO2-based ferroelectric field-effect-transistors with 260 nm channel length and long data retention," in IEEE International Memory Workshop, Milan, Italy, 2012, pp. 1-4.
[27] C.-H. Cheng and A. Chin, "Low-leakage-current DRAM-like memory using a one-transistor ferroelectric MOSFET with a Hf-based gate dielectric," IEEE Electron Device Letters, vol. 35, no. 1, pp. 138-140, Jan. 2014.
[28] U. Valiyaneerilakkal, A. Singh, K. Singh, C. K. Subash, S. M. Abbas, R. Komaragiri, and S. Varghese, "Ferroelectric characteristics of MFIS structure with P(VDF–TrFE)/BaTiO3 nanocomposite as ferroelectric layer," Applied Physics A, vol. 117, no. 3, pp. 1535-1540, Jul. 2014.
[29] B. Xiao, B. Walker, and A. K. Pradhan, "Influence of an MgO interfacial layer on the properties of Pb(Zr,Ti)O3/ZnO ferroelectric–semiconductor heterostructures," Journal of Physics D: Applied Physics, vol. 47, no. 18, p. 185303, Apr. 2014.
[30] J. Müller, T. S. Böscke, S. Müller, E. Yurchuk, P. Polakowski, J. Paul, D. Martin, T. Schenk, K. Khullar, A. Kersch, W. Weinreich, S. Riedel, K. Seidel, A. Kumar, T. M. Arruda, S. V. Kalinin, T. Schlosser, R. Boschke, R. van Bentum, U. Schröder, and T. Mikolajick, "Ferroelectric hafnium oxide: A CMOS-compatible and highly scalable approach to future ferroelectric memories," in IEEE International Electron Devices Meeting, Washington, DC, USA, 2013, pp. 10.8.1-10.8.4.
[31] E. Yurchuk, J. Muller, J. Paul, T. Schlosser, D. Martin, R. Hoffmann, S. Mueller, S. Slesazeck, U. Schroeder, R. Boschke, R. van Bentum, and T. Mikolajick, "Impact of scaling on the performance of HfO2-based ferroelectric field effect transistors," IEEE Transactions on Electron Devices, vol. 61, no. 11, pp. 3699-3706, Nov. 2014.
[32] H.-T. Lue, C.-J. Wu, and T.-Y. Tseng, "Device modeling of ferroelectric memory field-effect-transistor (FeMFET)," IEEE Transactions on Electron Devices, vol. 491, no. 10, pp. 1790-1798, Oct. 2002.
[33] W.-C. Shih, P.-C. Juan, and J. Y.-m. Lee, "Fabrication and characterization of metal-ferroelectric (PbZr0.53Ti0.47O3)-Insulator (Y2O3)-semiconductor field effect transistors for nonvolatile memory applications," Journal of Applied Physics, vol. 103, no. 9, p. 094110, May 2008.
[34] Y. J. Fu, G. S. Fu, M. Li, D. M. Jia, Y. L. Jia, and B. T. Liu, "Investigation of Pt/Pb(Zr0.2Ti0.8)O3/Ti-Al-O/Si heterostructure as metal/ferroelectric/insulator/semiconductor," Applied Physics Letters, vol. 104, no. 4, p. 041903, Jan. 2014.
[35] Y. Q. Chen, X. B. Xu, Z. F. Lei, X. Y. Liao, X. Wang, C. Zeng, Y. F. En, and Y. Huang, "Effect of temperature on the electrical properties of a metal-ferroelectric (SrBi2Ta2O9)-insulator (HfTaO)-silicon capacitor," Journal of Physics D: Applied Physics, vol. 48, no. 3, p. 035109, Jan. 2015.
[36] C. H. Cheng and A. Chin, "Low-voltage steep turn-on pMOSFET using ferroelectric high-k gate dielectric," IEEE Electron Device Letters, vol. 35, no. 2, pp. 274-276, Feb. 2014.
[37] P. D. Lomenzo, P. Zhao, Q. Takmeel, S. Moghaddam, T. Nishida, M. Nelson, C. M. Fancher, E. D. Grimley, X. Sang, J. M. LeBeau, and J. L. Jones, "Ferroelectric phenomena in Si-doped HfO2 thin films with TiN and Ir electrodes," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 32, no. 3, p. 03D123, May 2014.