研究生: |
汪永川 Yung-Chuan Wang |
---|---|
論文名稱: |
燒結毛細結構在熱管內之熱流特性 Hydraulic and Thermal Characters of Sintered Wick Structures in Heat Pipes |
指導教授: | 許文震 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 中文 |
論文頁數: | 101 |
中文關鍵詞: | 熱管 、毛細結構 、有效孔徑 、滲透度 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究已建立熱管毛細結構相關參數和熱管性能量測
設備,而在熱管內部流場觀測已有初步結果,希望能藉此作
為增強熱管性能及了解其內部物理現象之研究基礎。所架設
之毛細結構性質量測,包含了最大有效孔徑、滲透度及孔隙
度等參數。在熱管性能量測上,於不同加熱瓦數下,調整水
套冷卻能力,如冷卻水之入口溫度或是流量,來固定待測熱
管二分之一長度位置的溫度,並記錄其熱阻,若在某加熱瓦
數下,熱阻值突然變大則判定為乾涸(dry out),以此量測方
法,才能精準判斷熱管之性能以及不同熱管之性能比較。實
驗結果顯示, 以球形銅粉搭配鬆裝燒結法所製作之毛細結
構,當粉末粒徑愈小,其最大有效孔徑也愈小,雖然可以產
生較高之毛細壓力,但相對的也會造成工作流體在毛細結構
中,流動阻力上升,滲透度下降,而經由熱管性能測試後,
發現粉末粒徑愈大之熱管,蒸發端溫度愈低,而且其在不同
角度下皆有較好之熱傳量,由此可知,滲透度對於粉末燒結
式熱管性能的影響大於毛細壓力, 特別是當熱管長度愈長
時,滲透度之影響更為顯著。
The thermal performance of heat pipes and the capillary
structure parameters such as the pore radius, the permeability
and the porosity are investigated experimentally in this work.
In addition, there is a preliminary result of flow visualization
available in the plate heat pipe. For the measurement of
performance of heat pipes, the middle point of heat pipes is
maintained at constant temperature by adjusting the cooling
capacity, and then the thermal resistance is recorded at varied
power level. When the thermal resistance suddenly rises to a
great value, the dry-out phenomena will occur in the heat pipes.
Based on this measurement method, we can obtain the
maximum heat transfer rate of heat pipes and compare with
each other. The wick structures are made by a sintering process
with spherically loose copper powders of different sizes. The
results show that the process with fine particles gives a small
pore radius and permeability respectively. The heat transfer
rates of heat pipes are greater for the wick with larger particle
sizes. According to the present results, the performance of heat
pipes mainly depends on the permeability rather than the
capillary pressure especially for long heat pipes.
1.依日光 譯著, 1986, 「熱管技術理論實務」, 日本熱管技術協
會編。
2.B. R. Muson, D. F. Young and T. H. Okiishi, 2002, Fundamentals of
Fluid Mechanics, John Wiley & Sons, Inc., New York.
3.D. A. Pruzan, L. K. Klingensmith, K. E. Torrance and C. T. Avedisian,
1991, “Design of High-Performance Sintered Wick Heat
Pipes,“ International Journal of Heat and Mass Transfer, vol. 34,no. 6,
pp. 1417-1427.
4.M. P. Mughal and O. A. Plumb, 1996, “An Experimental Study of
Boiling on a Wicked Surface,“ International Journal of Heat and Mass
Transfer, vol. 39,no. 4, pp. 771-777.
5.Y. Cao, M. Cao, J. E. Beam and B. Donovan, 1996, “Experiments and
Analyses of Flat Miniature Heat Pipes,” Energy Conversion
Engineering Conference, IEEE, vol. 2, pp. 1402-1409.
6.K. C. Leong and C. Y. Liu, 1997, ”Characterization of Sintered Copper
Wicks Used in Heat Pipes,” Journal of Porous Materials, vol. 4, no. 4
pp. 303-308.
7.E. G. Reimbrecht, M. C. Fredel, E. Bazzo and F. M. Pereira, 1999,
“Manufacturing and Microstructural Characterization of Sintered
Nickel Wicks for Capillary Pumps,” Materials Research, vol. 2, no. 3,
pp. 225-229.
8.Y. Wang and K. Vafai, 2000, “An Experimental Investigation of the
Thermal Performance of an Asymmetrical Flat Plate Heat Pipe,”
International Journal of Heat and Mass Transfer, vol. 43, no. 15, pp.
2657-2668.
93
9.Y. Wang and K. Vafai, 2000, “An Experimental Investigation of the
Transient Characteristics on a Flat-Plate Heat Pipe During Startup and
Shutdown Operations,” Journal of Heat Transfer, vol. 122, no. 3, pp.
525-535.
10.Y. Avenas, C. Gillot, A. Bricard and C. Schaeffer, 2002, “On the Use
of Flat Heat Pipes as Thermal Spreaders in Power Electronics
Cooling,” PESC Record - IEEE Annual Power Electronics Specialists
Conference, vol. 2, pp. 753-757.
11.Y. Cheng, P. P. Ding, T. S. Sheu, B. Y. Shew and P. H. Chen, 2002,
“High Performance Flat Miniature Heat Pipes Fabricated by
UD-LIGAProcess,” Microsystem Technologies, vol. 9, no. 1-2, pp.
23-24.
12.R. R. Williams and D. K. Harris, 2003, “Cross-Plane and in Plane
Porous Properties Measurements of Thin Metal Felts: Applications in
Heat Pipes,” Experimental Thermal and Fluid Science, vol. 27, no. 3,
pp. 227-235.
13.M. A. Hanlon and H. B. Ma, 2003, “Evaporation Heat Transfer in
Sintered Porous Media,” Journal of Heat Transfer, vol. 125, no. 4, pp.
644-652.
14.Y. Xuan, Y. Hong and Q. Li, 2004, “Investigation on Transient
Behaviors of Flat Plate Heat Pipes,” Experimental Thermal and Fluid
Science, vol. 28, no. 2-3, pp 249-255.
15.A. Faghri, 1995, Heat Pipes Science and Technology, Taylor and
Francis, Washington.
16.G. P. Peterson, 1994, An Introduction to Heat Pipes, John Wiley &
Sons, Inc., New York.
17.S. Lowell, J. E. Shields, M. A. Thomas and M. Thommes, 2004,
94
Characterization of Porous Solids and Powders: Surface Area, Pore
Size and Density, Kluwer Academic Publishers, Dordrecht.
18.陳力俊 等著, 1994,「材料電子顯微鏡學」,行政院國家科學委
員會精密儀器發展中心。
19. 伍祖璁,黃錦鐘 譯著, 1996,粉末冶金,高立圖書。
20.ASTM E128-61, “Standard Test Method for Maximum Pore
Diameter and Permeability of Rigid Porous Filters for Laboratory
Use”.
21.E. Adrian, 1974, The Physics of Flow Through Porous Media,
University of Toronto Press, Toronto & Buffalo.
22.蘇青森 著, 1999, 「真空技術」, 東華書局。
23.Kozeny, 1927, Sitzungsberichte Akademie der Wissenschaf- ten in
Wien, Mathematisch Naturwissenschaftliche Klasse Abt. 2A, vol. 136,
pp. 271–306.
24.P. C. Carman, 1937, “Fluid Flow through a Granular Bed,”
Transactions of the Institution of Chemical Engineers, vol. 15, pp.
150-167.