簡易檢索 / 詳目顯示

研究生: 汪永川
Yung-Chuan Wang
論文名稱: 燒結毛細結構在熱管內之熱流特性
Hydraulic and Thermal Characters of Sintered Wick Structures in Heat Pipes
指導教授: 許文震
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 101
中文關鍵詞: 熱管毛細結構有效孔徑滲透度
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究已建立熱管毛細結構相關參數和熱管性能量測
    設備,而在熱管內部流場觀測已有初步結果,希望能藉此作
    為增強熱管性能及了解其內部物理現象之研究基礎。所架設
    之毛細結構性質量測,包含了最大有效孔徑、滲透度及孔隙
    度等參數。在熱管性能量測上,於不同加熱瓦數下,調整水
    套冷卻能力,如冷卻水之入口溫度或是流量,來固定待測熱
    管二分之一長度位置的溫度,並記錄其熱阻,若在某加熱瓦
    數下,熱阻值突然變大則判定為乾涸(dry out),以此量測方
    法,才能精準判斷熱管之性能以及不同熱管之性能比較。實
    驗結果顯示, 以球形銅粉搭配鬆裝燒結法所製作之毛細結
    構,當粉末粒徑愈小,其最大有效孔徑也愈小,雖然可以產
    生較高之毛細壓力,但相對的也會造成工作流體在毛細結構
    中,流動阻力上升,滲透度下降,而經由熱管性能測試後,
    發現粉末粒徑愈大之熱管,蒸發端溫度愈低,而且其在不同
    角度下皆有較好之熱傳量,由此可知,滲透度對於粉末燒結
    式熱管性能的影響大於毛細壓力, 特別是當熱管長度愈長
    時,滲透度之影響更為顯著。


    The thermal performance of heat pipes and the capillary
    structure parameters such as the pore radius, the permeability
    and the porosity are investigated experimentally in this work.
    In addition, there is a preliminary result of flow visualization
    available in the plate heat pipe. For the measurement of
    performance of heat pipes, the middle point of heat pipes is
    maintained at constant temperature by adjusting the cooling
    capacity, and then the thermal resistance is recorded at varied
    power level. When the thermal resistance suddenly rises to a
    great value, the dry-out phenomena will occur in the heat pipes.
    Based on this measurement method, we can obtain the
    maximum heat transfer rate of heat pipes and compare with
    each other. The wick structures are made by a sintering process
    with spherically loose copper powders of different sizes. The
    results show that the process with fine particles gives a small
    pore radius and permeability respectively. The heat transfer
    rates of heat pipes are greater for the wick with larger particle
    sizes. According to the present results, the performance of heat
    pipes mainly depends on the permeability rather than the
    capillary pressure especially for long heat pipes.

    摘要..................................................................................... I ABSTRACT .......................................................................... II 誌謝..................................................................................... III 目錄..................................................................................... IV 圖表索引.............................................................................. VII 第一章 緒論......................................................................... 1 1.1 研究動機................................................................. 1 1.2 文獻回顧................................................................. 3 1.3 研究目的................................................................. 8 第二章 理論分析................................................................. 13 2.1 熱管的基本特性....................................................... 13 2.2 熱管的限制界限....................................................... 14 2.3 水銀測孔儀及掃描式電子顯微鏡原理簡介............... 16 第三章 實驗設備與方法....................................................... 22 3.1 毛細結構性質量測................................................... 22 3.1.1 有效孔徑....................................................... 22 V 3.1.2 滲透度........................................................... 24 3.1.3 孔隙度........................................................... 26 3.2 熱管性能測試.......................................................... 26 3.2.1 實驗方法....................................................... 27 3.2.2 實驗步驟....................................................... 27 3.3 熱管內部流場觀測系統............................................ 28 3.3.1 可視化平板式熱管之設計.............................. 29 3.3.2 可視化平板式熱管之製作及實驗觀測............ 29 第四章 結果與討論.............................................................. 56 4.1 毛細結構性質量測................................................... 56 4.1.1 有效孔徑....................................................... 56 4.1.2 滲透度........................................................... 57 4.1.3 孔隙度........................................................... 61 4.2 熱管性能測試.......................................................... 62 4.3 熱管內部流場觀測結果............................................ 64 第五章 結論與未來展望....................................................... 89 5.1 結論......................................................................... 89 VI 5.2 未來工作展望......................................................... 90 參考文獻.............................................................................. 92 附錄..................................................................................... 95 附錄A 不同工作流體與容器材料相容性【15】............ 95 附錄B 工作流體種類和其操作溫度範圍【15】............ 96 附錄C 熱電隅校正程序................................................ 97 VII 圖表索引 表4-1 不同粉徑粉末之毛細結構性質...............................66 表4-2 孔隙度之比較.........................................................79 圖1-1 熱管的操作原理示意圖........................................... 9 圖1-2 毛細現象示意圖, γ:液體比重, σ:表面張力, θ: 接觸角【2】........................................................... 9 圖1-3 熱管毛細結構組織,由上而下依序為溝槽式、網 格式及粉末燒結式.................................................10 圖1-4 燒結顆粒表面的薄膜蒸發現象【13】....................11 圖1-5 實驗設備示意圖【13】..........................................12 圖2-1 不同工作流體的液體傳輸係數與溫度分佈圖 【16】....................................................................19 圖2-2 最大熱傳極限與操作溫度關係圖【15】.................19 圖2-3 接觸示意圖【16】.................................................20 圖2-4 水銀測孔儀操作情形示意圖...................................20 圖2-5 多孔性材料中的空孔結構示意圖............................21 VIII 圖2-6 SEM 構造顯意圖.....................................................21 圖3-1 毛細結構性質測試樣品..........................................32 圖3-2 熱管性能測試,不同角度下位置示意圖.................32 圖3-3 有效孔徑示意圖.....................................................33 圖3-4 有效孔徑及滲透度量測系統示意圖........................33 圖3-5 有效孔徑及滲透度量測系統實體圖,(a)測試設備 (b)差壓計(c)高壓空氣鋼瓶.....................................34 圖3-6 毛細結構測試樣品與測試系統密合情形.................35 圖3-7 毛細結構表面產生第一顆氣泡之情形....................35 圖3-8 達西定律實驗示意圖..............................................36 圖3-9 熱管性能測試示意圖..............................................37 圖3-10 加熱銅塊..............................................................38 圖3-11 熱管性能測試系統................................................38 圖3-12 熱管測試之實驗設備,(a)溫度記錄器(b)幫浦(c) 流量計(d)恆溫水槽(e)電源供應器(f)電木(g)過濾 器(h)減壓閥............................................................39 圖3-13 熱管測試區,(a)水平放置(b)傾斜角度30 度........40 圖3-14 冷卻水套及其內部構造........................................41 IX 圖3-15 熱電隅在熱管上的位置示意圖..............................41 圖3-16 為熱管水平放置時,不同瓦數下熱管的溫度分 佈圖.......................................................................42 圖3-17 不同輸入瓦數,蒸發端和冷凝端之溫差...............42 圖3-18 不同角度下,熱管所能傳導之最大熱傳量...........43 圖3-19 可視化平板式熱管示意圖,a)前視圖(b)上視圖....44 圖3-20 熱電隅及電阻溫度偵測器(resistance temperature detectors,RTD)之位置示意圖.............45 圖3-21 本次實驗所觀測之可視化平板式熱管,(a)上視 圖(b)前視圖............................................................46 圖3-22 可視化平板式熱管及其外部之絕熱電木...............47 圖3-23 可視化平板式熱管,(a)加熱銅塊(b)冷卻水套......47 圖3-24 超音波振盪儀.......................................................48 圖3-25 真空烤箱..............................................................48 圖3-26 石墨模具..............................................................49 圖3-27 真空油脂..............................................................49 圖3-28 扭力板手..............................................................49 圖3-29 氦氣測漏儀..........................................................50 X 圖3-30 真空幫浦..............................................................51 圖3-31 玻璃試管..............................................................51 圖3-32 連接閥..................................................................51 圖3-33 熱管主體抽真空及工作流體充填..........................52 圖3-34 鉗子.....................................................................52 圖3-35 2 mm 銅管剪斷之缺口及缺口錫銲密合,(a)銅管 (b)剪斷(c)錫銲.......................................................53 圖3-36 熱管內部流場觀測實驗示意圖..............................54 圖3-37 熱管內部流場觀測實驗系統.................................55 圖4-1 Type C,橫截面最大有效孔徑................................66 圖4-2 Type D,橫截面最大有效孔徑................................67 圖4-3 Type E,橫截面最大有效孔徑.................................67 圖4-4 Type F,橫截面最大有效孔徑.................................68 圖4-5 Type C 之孔徑分佈..................................................68 圖4-6 Type D 之孔徑分佈..................................................69 圖4-7 Type E 之孔徑分佈..................................................69 圖4-8 Type F 之孔徑分佈..................................................70 XI 圖4-9 不同粒徑尺寸毛細結構之孔徑分佈........................70 圖4-10 Type C,水銀測孔儀與氣泡點測試法之結果比較 ..............................................................................71 圖4-11 Type D,水銀測孔儀與氣泡點測試法之結果比較 ..............................................................................71 圖4-12 Type E,水銀測孔儀與氣泡點測試法之結果比較 ..............................................................................72 圖4-13 Type F,水銀測孔儀與氣泡點測試法之結果比較 ..............................................................................72 圖4-14 毛細結構之孔徑示意圖........................................73 圖4-15 Type C,流量與壓差之關係..................................73 圖4-16 Type D,流量與壓差之關係..................................74 圖4-17 Type E,流量與壓差之關係..................................74 圖4-18 Type F,流量與壓差之關係...................................75 圖4-19 不同粒徑粉末之毛細結構,流量與壓差之關係....75 圖4-20 將多孔性材料視為由許多長直通道組成...............76 圖4-21 Type C,滲透度量測結果與Carman-Kozeny equation 之比較......................................................76 圖4-22 Type C,滲透度量測結果與Modified XII Carman-Kozeny equation 之比較.............................77 圖4-23 Type D,滲透度量測結果與Modified Carman-Kozeny equation 之比較.............................77 圖4-24 Type E,滲透度量測結果與Modified Carman-Kozeny equation 之比較.............................78 圖4-25 Type F,滲透度量測結果與Modified Carman-Kozeny equation 之比較.............................78 圖4-26 Type C 熱管水平放置時,不同加熱瓦數,熱管 之溫度分佈圖.........................................................79 圖4-27 Type D 熱管水平放置時,不同加熱瓦數,熱管 之溫度分佈圖.........................................................80 圖4-28 Type E 熱管水平放置時,不同加熱瓦數,熱管 之溫度分佈圖.........................................................80 圖4-29 Type F 熱管水平放置時,不同加熱瓦數,熱管 之溫度分佈圖.........................................................81 圖4-30 加熱瓦數為20W,水平放置時,熱管之溫度分 佈...........................................................................81 圖4-31 加熱瓦數為25W,水平放置時,熱管之溫度分 佈...........................................................................82 圖4-32 加熱瓦數為30W,水平放置時,熱管之溫度分 XIII 佈...........................................................................82 圖4-33 Type C 水平放置時,不同輸入瓦數,蒸發端和 冷凝端之溫差.........................................................83 圖4-34 Type D 水平放置時,不同輸入瓦數,蒸發端和 冷凝端之溫差.........................................................83 圖4-35 Type E 水平放置時,不同輸入瓦數,蒸發端和 冷凝端之溫差.........................................................84 圖4-36 Type F 水平放置時,不同輸入瓦數,蒸發端和 冷凝端之溫差.........................................................84 圖4-37 不同角度下,熱管所能傳導之最大熱傳量...........85 圖4-38 不同輸入瓦數,熱管之溫度分佈..........................86 圖4-39 不同輸入瓦數,蒸發端和冷凝端之溫差...............86 圖4-40 輸入瓦數170W 時,蒸發端毛細結構情形............87 圖4-41 輸入瓦數170W 時,冷凝端毛細結構情形............87 圖4-42 不同輸入瓦數,腔體內部蒸發端之壓力...............88 圖5-1 厚度不均勻之毛細結構..........................................91 圖C1 校正設備之恆溫水槽.............................................100 圖C2 校正設備之標準溫度計.........................................100 XIV 圖C3 銅塊插槽...............................................................101 圖C4 待測熱電隅置入插槽內.........................................101

    1.依日光 譯著, 1986, 「熱管技術理論實務」, 日本熱管技術協
    會編。
    2.B. R. Muson, D. F. Young and T. H. Okiishi, 2002, Fundamentals of
    Fluid Mechanics, John Wiley & Sons, Inc., New York.
    3.D. A. Pruzan, L. K. Klingensmith, K. E. Torrance and C. T. Avedisian,
    1991, “Design of High-Performance Sintered Wick Heat
    Pipes,“ International Journal of Heat and Mass Transfer, vol. 34,no. 6,
    pp. 1417-1427.
    4.M. P. Mughal and O. A. Plumb, 1996, “An Experimental Study of
    Boiling on a Wicked Surface,“ International Journal of Heat and Mass
    Transfer, vol. 39,no. 4, pp. 771-777.
    5.Y. Cao, M. Cao, J. E. Beam and B. Donovan, 1996, “Experiments and
    Analyses of Flat Miniature Heat Pipes,” Energy Conversion
    Engineering Conference, IEEE, vol. 2, pp. 1402-1409.
    6.K. C. Leong and C. Y. Liu, 1997, ”Characterization of Sintered Copper
    Wicks Used in Heat Pipes,” Journal of Porous Materials, vol. 4, no. 4
    pp. 303-308.
    7.E. G. Reimbrecht, M. C. Fredel, E. Bazzo and F. M. Pereira, 1999,
    “Manufacturing and Microstructural Characterization of Sintered
    Nickel Wicks for Capillary Pumps,” Materials Research, vol. 2, no. 3,
    pp. 225-229.
    8.Y. Wang and K. Vafai, 2000, “An Experimental Investigation of the
    Thermal Performance of an Asymmetrical Flat Plate Heat Pipe,”
    International Journal of Heat and Mass Transfer, vol. 43, no. 15, pp.
    2657-2668.
    93
    9.Y. Wang and K. Vafai, 2000, “An Experimental Investigation of the
    Transient Characteristics on a Flat-Plate Heat Pipe During Startup and
    Shutdown Operations,” Journal of Heat Transfer, vol. 122, no. 3, pp.
    525-535.
    10.Y. Avenas, C. Gillot, A. Bricard and C. Schaeffer, 2002, “On the Use
    of Flat Heat Pipes as Thermal Spreaders in Power Electronics
    Cooling,” PESC Record - IEEE Annual Power Electronics Specialists
    Conference, vol. 2, pp. 753-757.
    11.Y. Cheng, P. P. Ding, T. S. Sheu, B. Y. Shew and P. H. Chen, 2002,
    “High Performance Flat Miniature Heat Pipes Fabricated by
    UD-LIGAProcess,” Microsystem Technologies, vol. 9, no. 1-2, pp.
    23-24.
    12.R. R. Williams and D. K. Harris, 2003, “Cross-Plane and in Plane
    Porous Properties Measurements of Thin Metal Felts: Applications in
    Heat Pipes,” Experimental Thermal and Fluid Science, vol. 27, no. 3,
    pp. 227-235.
    13.M. A. Hanlon and H. B. Ma, 2003, “Evaporation Heat Transfer in
    Sintered Porous Media,” Journal of Heat Transfer, vol. 125, no. 4, pp.
    644-652.
    14.Y. Xuan, Y. Hong and Q. Li, 2004, “Investigation on Transient
    Behaviors of Flat Plate Heat Pipes,” Experimental Thermal and Fluid
    Science, vol. 28, no. 2-3, pp 249-255.
    15.A. Faghri, 1995, Heat Pipes Science and Technology, Taylor and
    Francis, Washington.
    16.G. P. Peterson, 1994, An Introduction to Heat Pipes, John Wiley &
    Sons, Inc., New York.
    17.S. Lowell, J. E. Shields, M. A. Thomas and M. Thommes, 2004,
    94
    Characterization of Porous Solids and Powders: Surface Area, Pore
    Size and Density, Kluwer Academic Publishers, Dordrecht.
    18.陳力俊 等著, 1994,「材料電子顯微鏡學」,行政院國家科學委
    員會精密儀器發展中心。
    19. 伍祖璁,黃錦鐘 譯著, 1996,粉末冶金,高立圖書。
    20.ASTM E128-61, “Standard Test Method for Maximum Pore
    Diameter and Permeability of Rigid Porous Filters for Laboratory
    Use”.
    21.E. Adrian, 1974, The Physics of Flow Through Porous Media,
    University of Toronto Press, Toronto & Buffalo.
    22.蘇青森 著, 1999, 「真空技術」, 東華書局。
    23.Kozeny, 1927, Sitzungsberichte Akademie der Wissenschaf- ten in
    Wien, Mathematisch Naturwissenschaftliche Klasse Abt. 2A, vol. 136,
    pp. 271–306.
    24.P. C. Carman, 1937, “Fluid Flow through a Granular Bed,”
    Transactions of the Institution of Chemical Engineers, vol. 15, pp.
    150-167.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE