簡易檢索 / 詳目顯示

研究生: 陳盈瑞
Chen, Yin-Jui
論文名稱: 高速馬赫曾德爾矽光調變器及鍺光偵測器之設計與分析
Design and Analysis of High Speed Silicon Mach-Zehnder Optical Modulators and Germanium Photodetectors
指導教授: 李明昌
Lee, Ming-Chang
口試委員: 劉怡君
Liu, Yi-Chun
徐碩鴻
Hsu, Shuo-Hung
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 光電工程研究所
Institute of Photonics Technologies
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 159
中文關鍵詞: 等效電路模型光調變傳輸線矽光子鍺光偵測器
外文關鍵詞: Equivalent circuit model, Optical modulation, Transmission lines, Silicon photonics, Germanium photodetector
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近年來數據傳輸需求大幅增加,導致大量數據傳輸的速度達到前所未有的需求,而光通訊傳輸系統相較於電通訊傳輸系統具有更低的能量損耗,並且有更快的傳輸速率,而本篇所注重的主要元件為高速矽光調變器以及高速鍺光偵測器,我們將設計並整合以上兩種元件,建構具上傳及下載的矽光子光載射頻轉換光電晶片模組。
    本篇利用矽光調變器及鍺光偵測器之等效電路模型來進行元件設計,首先針對矽光子光載射頻轉換光電晶片所運用的被動元件(光波導、光柵耦合器、多模干涉耦合器以及波長解多工器)進行設計,接著根據本篇所整理的元件設計參數與元件特性關係,建立其設計流程。
    接著根據設計流程進行矽波導(鍺波導)尺寸、調變區域(收光區域)、傳輸電極尺寸及長度等最佳化設計,而根據矽光調變器的模擬(量測)結果顯示,當電極長度為1mm時,其電光操作頻寬約為37(21)GHz,長度為2mm時,則約為23(10)GHz;而根據鍺光偵測器的模擬結果顯示,當鍺波導寬度為0.5μm時,其操作頻寬約為20GHz,而當鍺波導寬度為0.4μm時,其操作頻寬約為25GHz。
    而在矽光調變器的量測上,當電極長度為1mm時,我們成功觀測到32Gb/s調變之眼圖;而當電極長度為2mm時,我們成功觀測到28Gb/s調變之眼圖。


    With continuous demand for data transmission during the past few years. This has resulted in an unprecedented demand in the speed and volume of data transmission. Compared with the electric transmission system, the optical transmission system has lower energy loss and has higher transmission speed. The main devices of this thesis are high-speed silicon electro-optical modulators and high-speed germanium photodetectors. We design and integrate the above two devices to construct silicon photonic integrated circuits for radio-over-fiber system with upload and download functions.
    In this thesis, we design the silicon optical modulators and germanium photodetectors based on their equivalent circuit model. At first, we design the passive devices (optical waveguide, grating coupler, multimode interference coupler and wavelength demultiplexer) in silicon photonic integrated circuits for radio-over-fiber system. Then, we establish the design flow according to the relationship between the characteristics and parameters of the devices.
    Next, we optimize the dimension of silicon(germanium) waveguide, modulation (photodetection) region, size and length of traveling-wave electrode based on the design flow. According to the simulation(measurement) results of optical modulators, the operation bandwidth is about 37(21)GHz / 23(10)GHz when the length of the electrode is 1mm / 2mm. According to the simulation result of germanium photodetectors, the operation bandwidth is about 20GHz(25GHz) when the width of the germanium waveguide is 0.5μm(0.4μm).
    In the measurement of silicon optical modulators, we successfully observe the eye diagram under 32Gb/s(28Gb/s) modulation when the length of the electrode is 1mm(2mm).

    摘要 II 目錄 IV 圖目錄 VI 表目錄 XVI 第一章 緒論 1 1.1前言 1 1.2研究動機與目的 3 1.3論文架構 5 第二章 矽光調變器及鍺光偵測器之原理與設計 6 2.1被動光學元件之原理與設計 6 2.1.1矽光波導 6 2.1.2光柵耦合器 13 2.1.3多模干涉耦合器 18 2.1.4馬赫曾德爾波長解多工器 28 2.2主動光學元件之原理與設計 31 2.2.1矽光調變器之原理介紹 31 2.2.2鍺光偵測器之原理介紹 42 2.3傳輸電極之原理與設計 46 2.4矽光調變器與鍺光偵測器其設計關鍵參數及設計流程 54 第三章 矽光調變器及鍺光偵測器之等效電路模型分析 68 3.1主動光學元件之等效電路模型介紹 68 3.1.1矽光調變器之等效電路模型 68 3.1.2鍺光偵測器之等校電路模型 76 3.2矽光調變器之光電特性模擬與分析 79 3.3鍺光偵測器之光電特性模擬與分析 98 第四章 元件製作與量測分析 115 4.1元件製作流程介紹 115 4.2量測系統介紹 117 4.3矽光調變器之量測與分析 120 4.3.1非對稱型調變器在不同直流偏壓下之光頻譜分析 120 4.3.2非對稱型調變器其調變效率之分析 128 4.3.3非對稱型調變器之高頻眼圖分析 130 4.3.4非對稱型調變器與商用調變器之高頻眼圖比較 137 4.3.5非對稱型調變器之散射參數分析 142 第五章 結果與討論 152 5.1結論 152 5.2未來改善方向 156 參考資料 157

    [1] https://engineering.ucsb.edu/insights2006/pdf/presentations/insights 2006_mario_paniccia.pdf, M. Panicca, “First electrically pumped hybrid silicon laser.ppt”, Oct. 2016.
    [2] T. Pfeiffer, “Next generation mobile fronthaul and midhaul architectures”, J. Opt. Commun. Netw., vol. 7, no. 11, pp. 38–45, Nov. 2015.
    [3] Liu, A., Liao, L., Rubin, D., Nguyen, H., Ciftcioglu, B., Chetrit, Y., Izhaky, N., and Paniccia, M.: “High-speed optical modulation based on carrier depletion in a silicon waveguide”, Opt. Express, 2007, 15, (2), pp. 660–668
    [4] T. Yin, R. Cohen, M. Morse, G. Sarid, Y. Chetrit, D. Rubin, and M. Paniccia, “31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate,” Opt. Exp., vol. 15, pp. 13965–13971, 2007.
    [5] U. Fischer, T. Zinke, J. R. Kropp, F. Arndt, and K. Petermann, “0.1 db/cm waveguide losses in single mode SOI RIB waveguides,” IEEE Photon. Technol. Lett., vol. 8, pp. 647–648, May 1996.
    [6] K. Okamoto, “Fundamentals of Optical Waveguides.” New York: Academic, 2000.
    [7] Palik, E., “Handbook of Optical Constants of Solids.” Academic Press, 1998.
    [8] Byun, K.E., et al. “Graphene for metal-semiconductor Ohmic contacts” , in 2012 IEEE Nanotechnology Materials and Devices Conference (NMDC2012). 2012.
    [9] Vivien, L., et al., “Comparison between strip and rib SOI microwaveguides for intra-chip light distribution.” Optical Materials, 2005. 27(5): p. 756-762.
    [10] Loewen, E.G. and E. Popov, “Diffraction gratings and applictions.” Marcel Dekker Inc, 1997.
    [11] Taillaert, D., “Grating Couplers as interface between optical fibers and nanophotonic waveguides.” Ph.D dissertation, Ghent University, 2004.
    [12] Bryngdahl, O., “Image formation using self-imaging techniques*.” Journal of the Optical Society of America, 1973. 63(4): p. 416-419.
    [13] Soldano, L.B. and E.C.M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications.” Journal of Lightwave Technology, 1995. 13(4): p. 615-627.
    [14] Bachmann, M., P.A. Besse, and H. Melchior, “General self-imaging properties in N × N multimode interference couplers including phase relations.” Applied Optics, 1994. 33(18): p. 3905-3911.
    [15] T. Mizuno et al., “Uniform wavelength spacing Mach-Zehnder interferometer using phase-generating couplers,” J. Lightwave Technol. 24(8), 3217–3226 (2006).
    [16] Ding, R., et al., “Design and characterization of a 30-GHz bandwidth low-power silicon traveling-wave modulator.” Optics Communications, 2014. 321: p. 124-133.
    [17] Soref, R. and B. Bennett, “Electrooptical effects in silicon. IEEE Journal of Quantum Electronics,” 1987. 23(1): p. 123-129.
    [18] Reed, G.T., et al., “High-speed carrier-depletion silicon Mach-Zehnder optical modulators with lateral PN junctions. Frontiers in Physics,” 2014. 2(77).
    [19] Jia Ming Liu, “Photonics Devices”, Cambridge University Press, 2005
    [20] Akiyama, S., et al., “Compact PIN-Diode-Based Silicon Modulator Using Side-Wall-Grating Waveguide.” IEEE Journal of Selected Topics in Quantum Electronics, 2013. 19(6): p. 74-84.
    [21] Patel, D., et al., “High-speed compact silicon photonic Michelson interferometric modulator.” Optics Express, 2014. 22(22): p. 26788-26802.
    [22] Rogalski, A., “Infrared detectors: status and trends.” Progress in Quantum Electronics, 2003. 27(2–3): p. 59-210.
    [23] Sze, S. M., Coleman, D. J. & Loya, A. “Current transport in metal–semiconductor– metal (MSM) structures.” Solid-State Electron. 14, 1209–1218 (1971).
    [24] Paolo., F.D., “Networks and Devices Using Planar Transmissions Lines.” Taylor & Francis, 2000.
    [25] D. M. Pozar, “Microwave Engineering,” 2nd ed. New York: Wiley, 1998.
    [26] H. Yu and W. Bogaerts, “An equivalent circuit model of the traveling wave electrode for carrier-depletion-based silicon optical modulators,” J. Lightwave Technol. 30(11), 1602–1609 (2012).
    [27] Timurdogan, E., et al. “Vertical Junction Silicon Microdisk Modulators at 25Gb/s.” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference 2013. 2013. Anaheim, California: Optical Society of America.
    [28] J.-M. Lee, S. H. Cho, and W.-Y. Choi, “An equivalent circuit model for germanium waveguide vertical photodetectors on Si,” IEEE Photon. Technol. Lett., vol. 28, no. 21, pp. 2435–2438, Nov. 1, 2016.
    [29] M. M. Fard, G. Cowan, and O. Liboiron-Ladouceur, “Responsivity optimization of a high-speed germanium-onsilicon photodetector,” Opt. Express 24(24), 27738–27752 (2016).
    [30] E. Chen and S.Y. Chou, “Characteristics of coplanar transmission lines on multilayer substrates: Modeling and experiments,” IEEE Trans. Microw. Theory Tech., vol. 45, no. 6, pp. 939–945, Jun. 1997.
    [31] W. Heinrich, “Quasi-TEM description of MMIC coplanar lines including conductor-loss-effects,” IEEE Trans. Microw. Theory Tech., vol. 41, no. 1, pp. 45–52, Jan. 1993.
    [32] V. Milanović, M. Ozgur, D. C. Degroot, J. A. Jargon, M. Gaitan, and M. E. Zaghloul, “Characterization of broadband transmission for coplanar waveguides on CMOS silicon substrates,” IEEE Trans. Microw. Theory Tech., vol. 46, no. 5, pp. 632–640, May 1998.
    [33] W. Dally and J. Poulton, “Digital Systems Engineering,” Cambridge Univ. Press, New York, 1998. 1602–1609 (2012).
    [34] http://www.fujitsu.com/downloads/OPTCMP/lineup/40gln/ln40gdqpsk-catalog-e.pdf
    [35] Chen, H., "Development of an 80 Gbit/s InP-based Mach-Zehnder Modulator. Ph.D dissertation," Dept. Elect. Eng. Comput. Sci., Technical Univ., 2007: p. 65–66
    [36] Walker, R.G., "High-speed III-V semiconductor intensity modulators." IEEE Journal of Quantum Electronics, 1991. 27(3): p. 654-667.

    QR CODE