簡易檢索 / 詳目顯示

研究生: 林宏憬
Huang-Ching Lin
論文名稱: 碳包覆二氧化鈦奈米顆粒的製備與應用
The Preparation and Applications of Carbon-coated Titania Nanoparticles
指導教授: 楊家銘
Chia-Min Yang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 122
中文關鍵詞: 碳包覆二氧化鈦二氧化鈦碳包覆奈米粒子
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文旨在製備碳包覆二氧化鈦奈米結構,並應用於紫外光分解污染物與染料敏化太陽能電池中。我們以蔗糖為碳源,利用非水溶液溶膠-凝膠法製備碳包覆二氧化鈦奈米顆粒,並藉由控制合成條件與煅燒溫度,調控材料的結構與組成。我們以這些碳包覆奈米顆粒進行亞甲基藍的光解反應,發現其活性較商用二氧化鈦P25高出數倍。另外,我們也將碳包覆二氧化鈦奈米顆粒作為染料敏化太陽能電池的活性層,發現光電轉換效率較商用二氧化鈦ST21高。另一方面,我們在類似的非水溶液合成條件下,加入商用二氧化鈦作為晶種,製備出三維的二氧化鈦奈米結構,並利用它作為染料敏化太陽能電池的反射層,希望能提高電解質液的擴散效率,而能進一步提高光電轉換效率。


    Carbon-coated titania nanostructures have been prepared for applications of methylene blue photodecomposition and dye-sensitized solar cells. The carbon-coated titania nanoparticles are synthesized by nonaqueous sol-gel route using sucrose as a carbon source. The structure and composition can be controlled by changing the synthetic conditions and pyrolysis temperature. The thus prepared carbon-coated titania nanoparticles can decompose methylene blue under UV irradiation with much higher rates than commercial P25 titania. When being used as active layer materials, the resulting dye-sensitized solar cells exhibit higher conversion efficiency than the cells using commercial ST-21 titania. Furthermore, the same synthesis strategy can be applied to prepare titania nanostructures by seeding growth. With unique three-dimensional morphology, the titania nanostructures are incorporated in dye-sensitized solar cells as scattering layer materials to enhance the diffusion efficiency of electrolyte and the conversion efficiency of the cell.

    中文摘要 I 英文摘要 II 目錄 III 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 二氧化鈦奈米結構 2 1.2 二氧化鈦奈米顆粒的製備 4 1.2.1 水溶液溶膠-凝膠法 4 1.2.2 非水溶液溶膠-凝膠法 7 1.3 二氧化鈦的光催化反應 10 1.3.1 光催化原理 10 1.3.2 二氧化鈦的光催化動力學機制 12 1.4 染料敏化太陽能電池 14 1.4.1 染料敏化太陽能電池的結構 16 1.4.2 太陽能電池光電轉換效率的測定 19 1.5 碳包覆二氧化鈦奈米顆粒 22 1.6 植晶法 24 1.7 研究動機 25 第二章 實驗部分 27 2-1 實驗藥品 27 2-2 二氧化鈦奈米結構的製備 28 2-2-1 溶膠-凝膠法成長的二氧化鈦奈米顆粒 28 2-2-2 以植晶法成長的二氧化鈦奈米結構 31 2-3 光催化活性測試 33 2-3-1 光催化活性測試的溶液配置 33 2-3-2 光催化活性測試的實驗裝置 33 2-3-3 亞甲基藍的吸附測試 34 2-3-4 紫外光降解亞甲基藍活性測試 34 2-4 太陽能電池光電轉換效率測試 37 2-4-1 Paste與實驗溶液的製備 37 2-4-2 染料敏化太陽能電池電極的製備與組裝 40 2-4-3 太陽能電池光轉化效率的量測裝置 43 2-5 實驗儀器鑑定 45 2-5-1 X光粉末繞射儀 45 2-5-2 氮氣物理吸附儀 47 2-5-3 穿透式電子顯微鏡 51 2-5-4 掃描式電子顯微鏡 53 2-5-5 熱重分析儀 54 2-5-6 拉曼光譜儀 56 2-5-7 紫外光/可見光光譜儀 57 2-5-8表面輪廓儀 58 第三章 結果與討論 59 3-1. 碳包覆二氧化鈦奈米顆粒 59 3-1-1 以不同碳源合成碳包覆二氧化鈦奈米顆粒 59 3-1-2 真空高溫煅燒的碳包覆二氧化鈦奈米顆粒 63 3-1-3 不同碳含量包覆的二氧化鈦奈米顆粒 76 3-2. 植晶法合成二氧化鈦奈米結構 82 3-2-1 PXRD的鑑定 82 3-2-2 SEM與TEM的影像分析 84 3-3. 碳包覆二氧化鈦奈米顆粒的光催化活性 90 3-3-1煅燒溫度對光催化活性的影響 90 3-3-2 不同碳含量對光催化活性的影響 94 3-4. 染料敏化太陽能電池的光電轉換效率 99 3-4-1 以碳包覆二氧化鈦奈米顆粒作活性層 99 3-4-2 植晶法合成花狀二氧化鈦奈米結構的光電轉換效率 109 結論 117 參考文獻 118

    [1] Fujishima, A.; Honda, K. Nature 1972, 37, 238.
    [2] Linsebigler, A. L.; Lu, G.; Yates, J. T. Chem. Rev. 1995, 95, 735.
    [3] Zhang, H.; Banfield, J. F. J. Mater. Chem. 1998, 8, 2073.
    [4] Qian, X.; Qin, D.; Song, Q.; Bai, Y.; Li, T.; Tang, X.; Wang, E.; Dong, S. Thin Solid Films 2001, 385, 152.
    [5] Hwu, Y.; Yao, Y. D.; Cheng, N. F.; Tung, C. Y.; Lin, H. M. Nanostruct. Mater. 1997, 9, 355.
    [6] Kominami, H.; Kohno, M.; Kera, Y. J. Mater. Chem. 2000, 10, 1151.
    [7] Ye, X.; Sha, J.; Jiao, Z.; Zhang, L. Nanostruct. Mater. 1998, 8, 919.
    [8] Zhang, H.; Banfield, J. F. J. Phys. Chem. B 2000, 104, 3481.
    [9] Brinker, C. J.; Scherer, G. W. Sol–Gel Science: The Physics and Chemsitry of Sol–Gel Processing, Academic Press, London, 1990.
    [10] Hubert-Pfalzgraf, L. G. New J. Chem. 1987, 11, 663.
    [11] Bradley, D. C. Chem. Rev. 1989, 89, 1317.
    [12] Lee, G. R.; Crayston, J. A. Adv. Mater. 1993, 5, 434.
    [13] Mehrotra, R. C.; Singh, A. Prog. Inorg. Chem. 1997, 46, 239.
    [14] Mehrotra, R. C.; Singh, A. Chem. Soc. Rev. 1996, 25, 1.
    [15] Bradley, D. C.; Mehrotra, R. C.; Rothwell, I. P.; Singh, A. Alkoxo and Aryloxo Derivatives of Metals, Academic Press, London, 2001.
    [16] Turova, N. Y.; Turevskaya, E. P.; Kessler, V. G.; Yanovskaya, M. I. The Chemistry of Metal Alkoxides, Kluwer Academic, Boston, 2002.
    [17] Niederberger, M.; Bartl, M. H.; Stucky, G. D. Chem. Mater. 2002, 14, 4364.
    [18] Arnal, P.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. J. Mater. Chem. 1996, 6, 1925.
    [19] Wang, C.; Deng, Z.; Li, Y. Inorg. Chem. 2001, 40, 5210.
    [20] Wang, C.; Deng, Z. X.; Zhang, G. H.; Fan, S. S.; Li, Y. D. Powder Technol. 2002, 125, 39.
    [21] Li, G.; Li, L.; Boerio-Goates, J.; Woodfield, B. F. J. Am. Chem. Soc. 2005, 127, 8659.
    [22] Garnweitner, G.; Niederberger, M. J. Mater. Chem. 2008, 18, 1171.
    [23] Vioux, A. Chem. Mater. 1997, 9, 2292.
    [24] Garnweitner, G. PhD dissertation, Universität Potsdam, 2005.
    [25] Niederberger, M.; Bartl, M. H.; Stucky, G. D. J. Am. Chem. Soc. 2002, 124, 13642.
    [26] Arnal, P.; Corriu, R. J. P.; Leclercq, D.; Mutin, P. H.; Vioux, A. Mater. Res. Soc. Symp. Proc. 1994, 346, 339.
    [27] Garnweitner, G.; Antonietti, M.; Niederberger, M. Chem. Commun. 2005, 397.
    [28] Steunou, N.; Ribot, F.; Boubekeur, K.; Maquet, J.; Sanchez, C. New J. Chem. 1999, 23, 1079.
    [29] Gaskins B. C.; Lannutti, J. J. J. Mater. Res. 1996, 11, 1953.
    [30] Huang, W. P.; Tang, X. H.; Wang, Y. Q.; Koltypin, Y.; Gedanken, A. Chem. Commun. 2000, 1415.
    [31] Wang, C.C.; Ying, J.Y. Chem. Mater. 1999, 11, 3113.
    [32] Wu, M.M.; Lin, G.; Chen, D.; Wang, G.G.; He, D.; Feng, S.H.; Xu, R.R. Chem. Mater. 2002, 14, 1974.
    [33] Wang, C.; Deng, Z.X.; Li, D. Inorg. Chem. 2001, 40, 5210.
    [34] Cheng, H.M.; Ma, J.M.; Zhao, Z.G.; Qi, L.M. Chem. Mater. 1995, 7, 663.
    [35] Bedjat, I.; Kamat, P.V. J. Phys. Chem. 1995, 99, 9182.
    [36] Giraudeau, A.; Fan, F. R. F.; Bard, A. J. J. Am. Chem. Soc. 1980, 16, 102.
    [37] Fessenden. R. W.; Kamat, P. V. J. Phys. Chem. 1995, 99, 12902.
    [38] Cozzoli, P. D.; Comparelli, R.; Fanizza. E.; Curri, M. L.; Agostiano, A.; Laub, D. J. Am. Chem. Soc. 2004, 126, 3868.
    [39] Kitano, M.; Matsuoka, M.; Ueshima, M.; Anpo, M. Appl. Catal. A 2007, 325, 1.
    [40] Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69.
    [41] Durrant, J. R. ; Haque, S. A. Nature Mat. 2003, 2, 362.
    [42] Grätzel, M. Inorg. Chem. 2005, 44, 6841.
    [43] Grätzel, M. Nature. 2001, 414, 338.
    [44] Grätzel, M. J. Photochem. Photobiol. C Rev. 2003, 4, 145.
    [45] Kroon, J. M.; Bakker, N. J.; Smit, H. J. P.; Thampi, K. R.; Wang, P.; Zakeeruddin, S. M.; Grätzel, M.; Hinsch, A.; Hore, S.; Wurfel, U.; Sastrawan, R.; Durrant, J. R.; Palomares, E.; Pettersson, H.; Gruszecki, T,; Walter, J.; Skupien, K.; Tulloch, G. E. Prog. Photovolt: Res. Appl. 2007, 15, 1.
    [46] Ito, S.; Chen, P.; Comte, P.; Nazeeruddin, M. K.; Liska, P.; Pechy, P.; Grätzel, M. Prog. Photovolt: Res. Appl. 2007, 15, 603
    [47] Toyoda, M.; Nanbu, Y.; Nakazawa, Y.; Hirano, M.; Inagaki, M. Appli. Catal. B: Environ. 2004, 49, 227.
    [48] Inagaki, M.; Nonaka, R.; Tryba, B.; Morawski, A. W. Chemosphere 2006, 64, 437.
    [49] Liu, G.; Chen, Z.; Dong, C.; Zhao, Y.; Li, F.; Lu, G. Q. Cheng, H. M. J. Phys. Chem. B 2006, 110, 20823.
    [50] Kim, D. S.; Kwak, S. Y. Appl. Catal. A: Gen. 2007, 323, 110.
    [51] Soler-Illia, G. J. A. A.; Patarin, J.; Lebeau, B.; Sanchez, C. Chem. Rev. 2002, 102, 4093.
    [52] Mao,Y.; Kanungo, M.; Hemraj-Benny, T.; Wong, S. S. J. Phys. Chem. B 2006, 110, 702.
    [53] Wu, J. M.; Huang, B.; Wang, M.; Osaka, A. J. Am. Ceram. Soc. 2006, 89, 2660.
    [54] Wu, J. M.; Qi, B. J. Phys. Chem. C 2007, 111, 666.
    [55] Wu, G.; Wang, J.; Thomas, D. F.; Chen, A. Langmuir 2008, 24, 3503.
    [56] Yangy, S.; Gao, L. Chem. Lett. 2005, 34, 1044.
    [57] Bakardjieva, S.; Stengl, V.; Szatmary, L.; Subrt, J.; Lukac, J.; Murafa, N.; Niznansky, D.; Cizek, K.; Jirkovsky, J.; Petrova, N. J. Mater. Chem. 2006, 16, 1709.
    [58] Li, y.; Liu, j.; Jia, Z. Mater. Lett. 2006, 60, 1753.
    [59] Castaneda, L.; Terrones, M. Physica. B 2007, 390, 143.
    [60] Choi, W. Y.; Termin, A.; Hoffmann M. R. J. Phys. Chem. 1994, 98, 13669.
    [61] Umebayashi, T.; Yamaki, T.; Itoh, H.; Asai, K. J. Phys. Chem. Solids 2002, 63, 1909.
    [62] Aski, R.; Morikawa, T.; Ohwaki, T.; Aoki, K. Science 2001, 293, 269.
    [63] M.Khan, S. U.; AL-shahry, M.; Ingler, W. B., Jr. Science 2002 297, 2243.
    [64] Li, Y.; Hwang, D.; Lee, N. H.; Kim, S.-J. Chem. Phys. Lett. 2005, 404, 25.
    [65] Ohno, T.; Tsubota, T.; Toyofuku, M.; Inaba, R. Catal. Lett. 2004, 98, 255.
    [66] Wu, N. L.; Lee, M. S. Int. J. Hydrogen Energy 2004, 29, 1601.
    [67] Subramanian, V.; Wolf, E.; Kamat, P. J. Phys. Chem. B 2003, 107, 7479.
    [68] Tseng, I. H.; Chang, W. C.; Wu, J. C. S. Appl. Catal. B Environ. 2002, 37, 37.
    [69] Tseng, I. H.; Wu, J. C. S.; Chou, H. Y. J. Catal. 2004, 221, 432.
    [70] Bardos, E. S.; Czili, H.; Horvath, A. J. Photochem. Photobiol. A Chem. 2003, 154, 195.
    [71] Hagfeldt, A.; Grätzel, M. Chem. Rev. 1995, 95, 49.
    [72] Kalyanasundaram, K.; Grätzel, M. Coord. Chem. Rev. 1998, 77, 347.
    [73] Nazeeruddin, M. K.; Péchy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Grätzel, M. J. Am. Chem. Soc. 2001, 123, 1613.
    [74] Altobello, S.; Argazzi, R.; Caramori, S.; Contado, C.; Fré, S. D.; Rubino, P.; Choné, C.; Larramona, G.; Bignozzi, C. A. J. Am. Chem. Soc. 2005, 127, 15342.
    [75] Hattori, S.; Wada, Y.; Yanagida, S.; Fukuzumi, S. J. Am. Chem. Soc. 2005, 127, 9648.
    [76] Matos, J.; Laine, J.; Hermann, J.-M. Appli. Catal. B 1998, 18, 281.
    [77] Herrmann, J.-M.; Matos, J.; Disdier, J.; Guillard, C.; Laine, J.; Malato, S.; Blanco, Catal. Today 1999, 54, 255.
    [78] Matos, J.; Laine, J.; Hermann, J.-M. J. Catal. 2001, 200, 10.
    [79] Tsumura, T.; Kojitani, N.; Umemura, H.; Toyoda, M.; Inagaki, M. Appl. Surf. Sci. 2002, 196, 429.
    [80] Tryba, B.; Morawski, A. W.; Inagaki, M. Appl. Catal. B 2003, 41, 427.
    [81] Tsumura, T.; Kojitani, N.; Izumi, I.; Iwashita, N.; Toyoda, M.; Inagaki, M. J. Mater. Chem. 2002, 12, 1391.
    [82] Tryba, B.; Tsumura, T.; Junas, M.; Morawski, A. W.; Inagaki, M. Appl. Catal. B 2004, 50, 177.
    [83] Tryba, B.; Morawski, A. W.; Tsumura, T.; Toyoda, M.; Inagaki, M. J. Photochem. Photobiol. A Chem. 2004, 167, 127.
    [84] Inagaki, M.; Kojin, F.; Tryba, B.; Toyoda, M. Carbon 2005, 43, 1652.
    [85] Tryba, B.; Toyoda, M.; Morawski, A. W.; Inagaki, M. Chemosphere 2005, 60, 477.
    [86] Matsunaga, T.; Inagaki, M. Appl. Catal. B 2006, 64, 9.
    [87] Toyoda, M.; Inagaki, M.; Tryba, B.; Morawski, A. W. J. Hazar. Mater. 2007, 140, 369.
    [88] Tsumura, T.; Hattori, Y.; Kaneko, K.; Hirose, Y.; Inagaki, M.; Toyoda, M. Desalinationl. 2004, 169, 269-275.
    [89] Jana, N. R.; Geaheart, L.; Murphy, C. J. J. Phys. Chem. B 2001, 105, 4065.
    [90] Jana, N. R.; Gearheart, L.; Murphy, C. J. Adv. Mater. 2001, 13, 1389.
    [91] Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J. Langmuir 2002, 18, 922.
    [92] Busbee, B. D.; Obare, S. O.; Murphy, C. J. Adv. Mater. 2003, 15, 414.
    [93] Nikoobakht, B.; El-Sayed, M. A. Chem. Mater. 2003, 15, 1957.
    [94] Jana, N. R.; Gearheart, L.; Murphy, C. J. Chem. Mater. 2001, 13, 2313.
    [95] Al-Ekabi, H.; Serpone, N. J. Phys. Chem. 1988, 92, 5726.
    [96] Beltran-Heredia, J.; Torregrosa, J.; Dominguez, J. R.; Peres, J. A. J. Hazard. Mater. B 2001, 83, 255.
    [97] Zhou, J. K.; Lv, L. ; Yu, J.; Li, H. L.; Guo, P.-Z.; Sun, H.; Zhao, X. S. J. Phys. Chem. C 2008, 112, 5316.
    [98] Zhang, H.; Banfield, J. F. J. Phys. Chem. B 2000, 104, 3481-3487.
    [99] Chou, T. P.; Zhang, Q.; Russo, B.; Fryxell, G. E.; Cao, G. J.Phys.Chem. C 2007, 111, 6296.
    [100] Nguyen, T.-V.; Lee, H.-C.; Yang, O.-B. Sol. Energy Mater. Sol. Cells 2006, 90, 967.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE