簡易檢索 / 詳目顯示

研究生: 董純婷
Chun-Ting Dong
論文名稱: 網狀內管氣舉式反應器混合效能之探討
Liquid Mixing in an Airlift Reactor with Net Draft Tube
指導教授: 黃世傑
Shyh-Jye Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2001
畢業學年度: 89
語文別: 中文
論文頁數: 80
中文關鍵詞: 氣舉式反應器液相混合軸向分散係數
外文關鍵詞: airlift reactor, liquid mixing, axial dispersion coefficient
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文以混合時間與軸向分散係數為指標,探討網狀內管氣舉式反應器在各操作條件下之液相混合性能。實驗使用26升網狀內管氣舉式反應器,以空氣作為氣體,水或CMC溶液作為液體。操作變數包括氣體流速、網目大小、內管直徑、內管長度、頂部液體高度、反應器高度、固體負荷量以及液體性質,並採用注入追蹤劑方法以及Ohki和Inoue (1970) 所提之分析方法來估算液相軸向分散係數。
    實驗結果得知,網狀內管氣舉式反應器的液體流動行為較傾向氣泡床,而偏離傳統實壁管氣舉式反應器。因此,其可視為一種改良式之氣泡床。由於仍保有液體循環特性,再加上氣、液可在網管間來回穿梭,故其混合時間遠低於氣泡床,且網目愈小之網狀內管氣舉式反應器,其混合效能愈佳,但軸向分散係數在高氣速操作下略低於實壁內管氣舉式反應器。

    軸向分散係數與反應器內流體的流動型式有關,大致上隨氣速增加而增加,惟在流動型式改變的過渡期時,隨氣速增加而減少。內外管直徑比為0.6時,具有較佳的混合。內管長度愈高,液體流速增加,混合效果愈好。頂部液體高度增加,對軸向分散係數影響不大,當增加至一定值後,軸向分散係數開始下降。軸向分散係數不隨反應器高度而改變。

    此外,固體粒子具有攪拌作用,因此增加固體粒子可以提高軸

    向分散係數,降低混合時間。黏度增加會促使氣泡融合,平均氣泡

    直徑增加,所以黏度愈高,混合效能愈好。軸向分散係數與混合時間可由經驗方程式預測之,誤差在正負30%內。


    Liquid mixing characteristics were studied for the airlift reactor operating with net draft tube. The experimental reactor had a working volume of 26 L, column diameter of 0.13 m, and total height of 2 m. Experiments were carried out using air, water (or CMC solution), and polystyrene particles. Mixing in the liquid phase was assessed by the tracer-response technique and fast conductivity measurements.
    It was found that the flow pattern in an airlift reactor with net draft tube was similar to that in bubble columns instead of traditional airlift reactor. The mixing time decreased and the axial dispersion coefficient increased with increasing net mesh number. Moreover, the axial dispersion coefficient increased while rising superficial gas velocity except the transition from bubbly to churn-turbulent flow regime. The better diameter ratio of draft tube to column was 0.6, and the reactor with higher draft tube had better mixing performance. However, the top section had slight influence on liquid mixing, and the dispersion coefficient didn’t change with the reactor. Furthermore, adding solids and increasing liquid viscosity would enhance the mixing efficiency. In addition, the correlation between dispersion coefficient and these variables was established and the observed values were in agreement with the calculated values with a deviation of 30 %.

    總目錄 頁次 摘要 總目錄………………………………………………………...…………I 圖目錄………………………………………………………...………III 表目錄…………………………………………………………...………V 一、 緒論……………………………………………….…...…………1 1-1前言…………………………………………………………………..1 1-2研究動機……………………………………………..………………3 1-3研究目的…………………………………………….……………….3 二、 文獻回顧……………………………………………………………4 2-1 氣舉式反應器概述………………………………………………….4 2-1-1 傳統氣舉式反應器的結構……………………………………….4 2-1-2 網狀內管氣舉式反應器的特色………………………………….6 2-1-3氣舉式反應器之應用……………………………………………..8 2-2 氣舉式反應器之混合性能………………………………………….9 2-2-1通氣量的影響…………………………………….……………….9 2-2-2反應器型態的影響……………………………….………………10 2-2-3液體性質的影響………………………………………………….12 2-2-4固體粒子的影響………………………………………………….13 2-3 混合參數之估算………………………………….……………….14 2-3-1混合參數………………………………………………………….14 2-3-2軸向分散模式…………………………………………………….17 2-3-3軸向分散係數之估算…………………………………………….20 2-3-4軸向分散係數之經驗式………………………………………….23 三、 實驗……………………………………………………………….25 3-1 實驗裝置…………………………………………..………………25 3-2 實驗材料…………………………………………..………………27 3-3 實驗設計………………………………………….……………….28 3-4 實驗步驟…………………………………………………………..31 四、 結果與討論……………………………………….………………32 4-1追蹤劑濃度變化曲線……………….…………….……………….32 4-2網目之影響………………………………………….……………..37 4-3表面氣體流速之影響………………….……………………………41 4-4內管直徑之影響………………………….………………………..43 4-5內管長度之影響……………………………………….……………47 4-6頂部液體高度之影響…………………………………….…………51 4-7反應器高度的影響……………………………………….…………55 4-8固體負荷量之影響……………………………………….…………59 4-9黏度之影響……………………………………………….…………63 4-10 經驗方程式……………………………………………………….66 五、結論…………………………………………………………………71 六、符號說明……………………………………………………………73 七、參考文獻……………………………………………………………75 圖目錄 頁次 圖1. 網狀內管氣舉式反應器內部之流動行為[鍾,1994]….…………7 圖2. 不同反應器混合效益之比較[Bello et al., 1984]…….……10 圖3. 分散模式之解析解((8)式)作圖[鍾,1994].…………………..22 圖4. 實驗裝置………………………………………………………….26 圖5. 追蹤劑濃度變化曲線圖[(a)、(b)、(c)]………………………35 圖5. 追蹤劑濃度變化曲線圖[(d)、(e)、(f)]………………………36 圖6. 網目與表面氣體流速對混合時間之影響……………………….39 圖7. 網目與表面氣體流速對軸向分散係數之影響………………….40 圖8. 內管直徑與表面氣體流速對混合時間之影響………………….45 圖9. 內管直徑與表面氣體流速對軸向分散係數之影響………….…46 圖10. 內管長度與表面氣體流速對混合時間之影響………………..49 圖11. 內管長度與表面氣體流速對軸向分散係數之影響…………..50 圖12. 頂部液體高度與氣體表面流速對混合時間之影響…………..53 圖13. 頂部液體高度與氣體表面流速對軸向分散係數之影響…..…54 圖14. 反應器高度與氣體表面流速對混合時間之影響……………..56 圖15. 反應器高度與氣體表面流速對軸向分散係數之影響……..…57 圖16. 反應器高度與氣體表面流速對比混合時間之影響…………..58 圖17. 固體負荷量與氣體表面流速對混合時間之影響…………..…61 圖18. 固體負荷量與氣體表面流速對軸向分散係數之影響………..62 圖19. 黏度與表面氣體流速對混合時間之影響……………………..64 圖20. 黏度與表面氣體流速對軸向分散係數之影響………………..65 圖21. 軸向分散係數實驗值與預測值之比較(低氣速)………………67 圖22. 軸向分散係數實驗值與預測值之比較(高氣速)………………68 圖23. 軸向分散係數經驗式之比較…………………………………..69 圖24. 混合時間實驗值與預測值之比較……………………………..70 表目錄 頁次 表1. 生化反應器之比較…………………………………………..…..2 表2. 氣舉式反應器的比較..……………………………………………5 表3. 氣舉式反應器之應用……………………………………………..8 表4. Bodenstein number的比較[Gavrilescu and Tudose (1997)]16 表5. 各種操作條件之軸向分散模式…………………………..…….19 表6. 氣舉式反應器軸向分散係數經驗方程式……………………….23 表7. 氣泡床軸向分散係數經驗方程式……………………………….24 表8. 網狀內管氣舉式反應器實驗裝置之週邊設備…………...……27 表9. 聚苯乙烯之物理性質……………………………………...……27 表10. 網目之影響……………………………………………..………28 表11. 內管直徑之影響………………………………………..………29 表12. 內管長度之影響…………………………………………..……29 表13. 頂部液體高度之影響…………………………………………..29 表14. 反應器高度之影響……………………………………………..30 表15. 固體負荷量之影響………………………………………..……30 表16. 液體性質之影響…………………………………………….….30

    Abraham, M. and Sawant, S. B., 1990, “Hydrodynamics and mass transfer characteristics of packed bubble columns,” Chem. Eng. J., 43, .95-105.
    Baird, M. H. I. and Rice, R. G., 1975, “Axial dispersion in large unbaffled columns,” Chem. Eng. J., 9, 171-174.
    Bello, R. A., Robinson, C. W. and Moo-Young, M., 1984, “Liquid circulation and mixing characteristics of airlift contactors,” Can. J. Chem. Eng., 62, 573-577.
    Bojana, O., Aleksandar, D. and Gordana, V. N., 1994, “Local and overall mixing characteristics of the gas-liquid-solid airlift reactor,” Ind. Eng. Chem. Res., 33, 698-702.
    Botton, R. and Cosserat, D., 1978, “Influence of column diameter and high gas throughputs on the operation of a bubble column,” Chem. Eng. J., 16, 107-115.
    Chisti, M. Y., 1989, “Airlift bioreactor,” Elsevier Publishers, New York.
    Couillard, D. and Mercier, G., 1991, “Optimum residence time (in CSTR and airlift reactor) for bacterial leaching of metals from anaerobic sewage sludge,” Wat. Res., 25, 211-218.
    Deckwer, W. D., Burckhart, R. and Zoll, G., 1974, “Mixing and mass transfer in tall bubble columns,” Chem. Eng. Sci., 29, 2177-2188.
    Deckwer, W. D., Graeser, U., Langemann, H. and Serpemen, Y., 1973, “Zones of different mixing in the liquid phase of bubble columns,” Chem. Eng. Sci., 28, 1223-1225.
    Deckwer, W. D., Nguyen-Tien, K., Schumpe, A. and Serpemen, Y., 1982, “Oxygen mass transfer into aerated CMC solutions in a bubble column,” Biotechnol. Bioeng., 24, 461-481.
    El-Sayed, A.-H. M. M., Mahmoud, W. M., and Couhlin, R. W., 1990, “Production of dextransucrase by Leuconostoc mesenteroides immobilized in calcium-alginate beads: 1. Batch and fed-batch fermentations,” Biotechnol. Bioeng., 36, 338-345.
    El-Temtamy, S. A., Khalil, S. A., Nour El-Din, A. A. and Gaber, A., 1985, “Liquid-phase axial mixing in a bubble column bioreactor conaining yeast suspensions,” Appl. Microbiol. Bioechnol., 21, 65-68.
    Fields, P. R. and Slater, N. K., 1983, “Tracer dispersion in a laboratory airlift reactor,” Chem. Eng. Sci., 38, 647-653.
    Fields, P. R., Mitchell, F. R. G. and Slater, N. K. H., 1984, “Studies of mixing in a concentric tube air-lift reactor containing xanthan gum by means of an improved follower,” Chem. Eng. Commum., 25, 93-104.
    Freitas, C. and Teixeira, J. A., 1998, “Hydrodynamic studies in an airlift reactor with an enlarged degassing zone,” Bioproc. Eng., 18, 267-279.
    Garrido, J. M., Campos, J. L., Méndez, R. and Lema, J. M., 1997, “Nitrous Oxide Production by Nitrifying Biofilms in A Biofilm Airlift Suspension Reactor,” Wat. Sci. Tech., 36 (1), 157-163.
    Gavrilescu, M. and Tudose, R. Z., 1997, “Mixing studies in external-loop airlift reactors,” Chem. Eng. J., 66, 97-104.
    Godó, Š., Klein, J., Báleš, V. and Annus, J., 1999, “Mixing time in airlift reactors during citric acid fermentation,” Bioproc. Eng., 21, 245-248.
    Hebrard, G., Bastoul, D., Roustan, M., Comte, M. P. and Beck, C., 1999, “Characterization of axial liquid dispersion in gas-liquid and gas-liquid-solid reactors,” Chem. Eng. J., 72, 109-116.
    Heijnen, J. J. and Van’t Riet, K., 1984, “Mass transfer, mixing and heat transfer phenomena in low viscosity bubble column reactors,” Chem. Eng. J., 28, B21-B42.
    Hopf, N. W., Yonsel, S. and Deckwer, W.-D., 1990, “Ambruticin S production in air-lift and sitrred-tank bioreactors,” Appl. Microbiol. Biotechnol., 34, 350-353.
    Katsumi, N., Kiefner, A., Furumoto, K. and Harada, T., 1997, “Production of gluconic acid with immobilized glucose oxidase in airlift reactors,” Chem. Eng. Sci., 52, 4127-4133.
    Kawase, Y. and Moo-Young, M., 1986, “Liquid phase mixing in bubble columns with Newtonian and non-Newtonian fluids,” Chem. Eng. Sci., 41, 1969-1977.
    Khang, S. J. and Kothari, S. P., 1980, “Experimental determination of axial dispersion coefficient in bubble column,” Chem. Eng. Sci., 35, 2203-2205.
    Konig, B., Buchholz, R., Lucke, J. and Schugerl, K., 1978, “Longitudinal mixing of liquid phase in bubble columns,” Ger. Chem. Eng., 1, 199-205.
    Kossen, N. W. F. and Oosterhuis, N. M. G., 1985, “Modeling and scaling-up of bioreactor,” Biotechnol., 2, 571-605.
    Kracke-Helm, H. A., Rinas, U., Hitzmann, B. and Schügerl, K., 1991, “Cultivation of recombinant E. coli and production of fusion protein in 60-L bubble column and airlift tower loop reactors,” Enzyme Microb. Technol., 13, 554-564.
    Miyauchi, T., Furusaki, S., Morooka, S. and Ikeda, Y., 1981, “Transport phenomena and reaction in fluidized catalyst beds,” Adv. Chem. Eng., 11, 276-448.
    Murakami, Y., Hirose, T., Ono, S. and Nishijma, T., 1982, “Mixing properties in loop reactor,” J. Chem. Eng. Japan, 15, 121-125,.
    Pandit, A. B. and Joshi, J. B., 1983, “Mixing mechanically agitated gas-liquid contractors, bubble column and modified bubble columns,” Chem. Eng. Sci., 38, 1189-1215.
    Penka, A. and Ludmila P., 2000, “Investigation of acid proteinase biosynthesis by the fungus Humicola lutea 120-5 in an airlift bioreactor,” Enzyme and Microbial Technology, 26, 402-405.
    Propovic, M. and Robinson, C. W., 1988, “External circulation loop airlift bioreactors: Study of the liquid circulating velocity in highly viscous non-Newtonian liquids,” Biotechnol. Bioeng., 32, 301-312.
    Rousseau, I. and BúLock, J. D., 1980, “Mixing characteristics of a simple airlift,” Biotechnol. Letters, 2, 475-480.
    Russell, A. B., Thomas, C. R. and Lilly, M. D., 1994, “The influence of vessel height ad top-section size on the hydrodynamic characteristics of a airlift fermentors,” Biotechnol. Bioeng., 43, 69-76.
    Shah, Y. T., Stiegel, G. J. and Sharma, M. M., 1978, “Backmixing in gas-liquid reactors,” AIChE J., 24, 369-400.
    Siegel, M. H., Merchuk, I. C. and Schugerl, K., 1986, “Airlift reactor analysis: interrelationships between riser, downcomer and gas-liquid separator behavior, including gas recirculation effect,” AIChE J., 32, 1585-1596.
    Stasinopoulos, S. J. and Seviour, R. J., 1992, “Exopolysaccharide production by Acremonium persicinum in stirred-tank and air-lift fermentors,” Appl. Microbiol. Biotechnol., 36, 465-468.
    Todt, J., Lucke, J., Schugerl, K. and Renken, A., 1977, “Gas holdup and longitudinal dispersion in different types of multiphase reactors and their possible application for microbial process,” Chem. Eng. Sci., 32, 369-375.
    van Benthum, W. A. J., van Loosdrecht, M. C. M. and Heijnen, J. J., 1997, “Process Design for Nitrogen Removal Using Nitrifying Biofilm and Denitrifying Suspended Growth in A Biofilm Airlift Suspension Reactor,” Wat. Sci. Tech., 36 (1), 119-128.
    van Sonsbeek, H. M., van Der Tuin, S. P. and Tramper, J., 1992, “Mixing in liquid-impelled loop reactors,” Biotechnol. Bioeng., 39, 707-716.
    Velan, M. and Ramanuiam, T. K., 1995, “Mixing time in down-flow jet loop bioreactor,” Biopro. Eng., 12, 81-86.
    Verlaan, P., Van Eijs, A. M. M., Tramper, J., Van’t Riet, K. and Luyben, K. Ch. A. M., 1989a, “Estimation of axial dispersion of axial dispersion in individual sections of an airlift-loop reactor,” Chem. Eng. Sci., 44, 1139-1146.
    Verlaan, P., Vos, J. C. and Van’t Riet, K., 1989b, “Axial dispersion and oxygen transfer in the transition from bubble column to airlift-loop reactor,” J. Chem. Technol. Biotechnol., 45, 181-190,.
    Warnecke, H. J. 1989, “Marcromixing characteristics of gas-liquid jet loop reactors,” ACTA Biotechnol., 9, 111-121.
    Warnecke, H. J., Pruss, J. and Langemamm, J., 1985a, “On a mathematical model for loop reactors-I Residence time distribution, moments and engenvalues,” Chem. Eng. Sci., 40, 2321-2326.
    Warnecke, H. J., Pruss, J., Leber, L. and Langemamm, J., 1986b, “On a mathematical model for loop reactors-II Estimation of parameters,” Chem. Eng. Sci., 40, 2327-2331.
    Weiland, P. and Onken, U., 1981, “Fluid dynamics and mass transfer in an airlift fermenter with external loop,” Ger. Chem. Eng., 4, 42-50.
    Weiland, P., 1984, “Influence of draft tube diameter on operation behavior of airlift loop reactors,” Ger. Chem. Eng., 7, 374-385.
    Wu, J. Y. and Wu, W. T., 1991, “Fed-batch culture of Saccharomyces cerevisiae in an airlift reactor with net draft tube,” Biotechnol. Prog., 7, 230-233.
    Wu, J. Y. and Wu, W. T., 1992, “Glutamic acid production in an airlift reactor with net tube,” Bioproc. Eng., 8, 183-187.
    Wu, W. T. and Wu, J. Y., 1990, “Airlift reactor with net draught tube,” J. Ferment. Bioeng., 70, 359-361.
    Yamashita, F., 1987, “Effect of shape of baffle plates and mesh and cross sectional area of wire gauzes on gas holdup and pressure drop in a bubble column,” J. Chem. Eng. Japan, 20, 201-203.
    Yoshida, F., 1982, “Aeration and mixing in fermentation,” Ann. Rep. Ferment. Pro., 5, 1-34.
    Zheng, Y., Wang Z. and Chen X., 1999, “Citric acid production from the mash of dried sweet potato with its dregs by Aspergillus niger in en external-loop airlift bioreactor,” Proc. Biochem., 35, 237-242.
    Zheng, Y., Wang, Z. and Chen, X., 2000, “α-Amylase production by Bacillus subtilis with dregs in an external-loop airlift bioreactor,” Biochem. Eng. J., 5, 115-121.
    吳奕禎, 1998, “應用氣舉式生物反應器處理含甲苯、丙酮廢氣之研究,” 國立清華大學化學工程學系碩士論文.
    翁谷松, 1992, “三相氣舉式反應器之流動特性,” 國立清華大學化學工程學系碩士論文.
    陳文祥, 1999, “利用固定化微生物在氣舉式反應器處理含酚廢水之操作特性研究,” 國立清華大學化學工程學系碩士論文.
    盧文章, 1994, “氣舉式反應器中之流動、混合及氣-液間質量傳送,” 國立清華大學化學工程學系博士論文.
    鍾建中, 1994, “網狀內管氣舉式反應器在蘇力菌素生產之應用,” 國立清華大學化學工程學系博士論文.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE