研究生: |
陳麗晴 Chen, Li-Qing. |
---|---|
論文名稱: |
溫度對環形磁性編碼器系統誤差的影響 Temperature Effect on System Errors of a Rotary Magnetic Encoder |
指導教授: |
宋震國
Sung, Cheng-Kuo |
口試委員: |
張禎元
Chang, Jen-Yuan 成維華 Cheng, Wei-Hua |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2017 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 79 |
中文關鍵詞: | 磁性編碼器 、溫度影響 、安裝誤差 、定位精度 |
外文關鍵詞: | Magnetic encoder, temperature effect, assembly error, accuracy |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文探討溫度對環形磁性編碼器系統誤差的影響,分成三個研究方向:第一為溫度造成磁環本體的尺寸與材料影響;第二為磁環安裝於產品或是實驗平台上時,磁環偏心量與感測間隙因溫度變化而影響系統精度能力;第三為讀頭受溫度影響分析,探討讀頭內之磁阻陣列間距膨脹後所造成的精度誤差。本文研究的溫度變化範圍設定為 10℃ ~ 75℃,並且利用模擬軟體做各項影響因子分析,再建立環境溫度實驗平台,用於驗證理論模型並量化誤差,釐清溫度作用下,影響環形磁性編碼器精度誤差的來源,致力於在不同溫度下使其保有室溫的精度品質,並可將分析結果作為未來產品化設計的參考準則。
The purpose of this study is to investigate the temperature effect on system errors of a rotary magnetic encoder, such as pole-pitch error, magnetic field error, assembly error and AMR elements detecting error. An accuracy analysis in various aspects, including thermal expansion in 1mm pole-pitch, distance expansion between AMR array, and magnetic field changes due to the physical characteristics of encoder material. In consideration with the above requirement, an environmental test platform was constructed to conduct experiments and to measure system errors in the range of 10 to 75℃.
Experiments were planned to check assembly errors occurring in various temperatures and verify the correctness of the mathematical model. The results indicated that the concentricity of the rotary encoder and measuring gap were relatively sensitive to this system when temperature was not in a standard condition.
Finally, a relationship was established between temperature and encoder precision. It also provides advices for how to reduce the system errors of a rotary magnetic encoder in industrial applications.
[1] "GARDNER Research," http://www.gardnerweb.com/articles/2016-world-machine-tool-survey.
[2] K. Miyashita, T. Takahashi, and M. Yamanaka, “Features of a magnetic rotary encoder,” IEEE Trans. Magn, vol. 23, pp. 2182 - 2184, 1987.
[3] Y. J. Luo, E. T. Hwang, and S. M. Huang, “Multi-pole magnetization of high resolution magnetic encoder,” Proceedings of EEIC/ICWA Exposition, pp. 237 - 242, Oct. 4-7, 1993.
[4] J. Lopez, M. Artes, and I. Alejandre, “Analysis of optical linear encoders errors under vibration at different mounting conditions,” Measurement, vol. 44, pp. 1367-1380, 2011.
[5] 東洋磁器工業株式會社. http://www.magnix.com/.
[6] KOHDEN. http://www.hkd.co.jp/english/.
[7] "NVE-GMR sensor catalog," http://www.nve.com/index.php.
[8] 林振湋, “巨磁阻感測元件的製作與量測,” 動力機械工程研究所碩士論文, 國立清華大學, 2009.
[9] 洪惠君, “增進巨磁阻感測元件在微磁場下靈敏度研究,” 動力機械工程研究所碩士論文, 國立清華大學, 2010.
[10] 張容韶, “以巨磁阻感測元件應用於磁性尺之訊號量測研究,” 動力機械工程研究所碩士論文, 國立清華大學, 2010.
[11] SENSiTEC. https://www.sensitec.com/.
[12] P. L. M. Heydemann, “Determination and correction of quadrature fringe measurement errors in interferometers,” Applied optics vol. 20, no. 19 1 October 1981.
[13] K. P. Birch, “Optical fringe subdivision with nanometric accuracy,” Precision Eng, vol. 12, pp. 4, Oct, 1990.
[14] S. Wang, J. Jin, T. Li et al., “High-Accuracy Magnetic Rotary Encoder,” ICSC/CCIS 326, pp. 74-82, 2012.
[15] 楊景榮, “應用於定位系統之相位對數位轉換器,” 電機資訊學院碩士論文, 國立交通大學, 2003.
[16] N. C. Cheung, “An innovative method to increase the resolution of optical encoders in motion servo systems,” in IEEE Int. Conf. on Power Electronics and Driver Systems. (PEDS), 1999, pp. 797-802.
[17] 费业泰, and 李光珂, “精密技术中热变形误差理论研究与探讨 ” 中国机械工程, no. 19卷第15期, Oct., 2008.
[18] 陳佳妤, “磁性量測系統之磁化與精度分析,” 動力機械所碩士論文, 國立清華大學, 2015.
[19] ADAMS. https://www.adamsmagnetic.com/.
[20] 金重勳, 磁性技術手冊: 中華民國磁性技術協會, 2002.
[21] 陳昱廷, “磁性旋轉編碼器系統誤差分析與校準,” 動力機械所碩士論文, 國立清華大學, 2016.
[22] 顏. 吳隆庸, 機構學, 台北市: 台灣東華書局, 民95.
[23] 中興大學普通物理教學網. http://ezphysics.nchu.edu.tw/ccp/.
[24] Honeywell, "Applications of magnetic position sensors " S. S. E. Center, ed., pp. 1-8.
[25] M.J.Caruso, T.Bratland, C.H.Smith et al., "A New Perspective on Magnetic Field Sensing." pp. 195-213.
[26] Arepoc_s.r.o.; http://www.arepoc.sk/.