簡易檢索 / 詳目顯示

研究生: 吳品逸
Wu, Pin Yi
論文名稱: 鈷添加對於銅鎳鈷矽合金強度和導電率的影響
Effect of Co on strength and electrical conductivity of Cu-Ni-Co-Si alloys
指導教授: 葉安洲
Yeh, An Chou
口試委員: 黃金川
蔡哲瑋
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 53
中文關鍵詞: 銅鎳矽合金析出強化導電率鈷添加
外文關鍵詞: Cu-Ni-Si alloys, precipitation strengthening, electrical conductivity, cobalt additon
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Cu-Ni-Si合金是近年來最受矚目的析出強化型銅合金,因其同時擁有優異的機械強度和導電性而廣泛應用於各種電子零件材料,例如電子彈簧、開關、導線框架等。許多文獻指出:不同元素的添加和熱機製程的改善可以更進一步提升Cu-Ni-Si合金的導電性和強度,以取代有毒的Cu-Be合金。
    本研究為闡明部分Ni被Co取代的影響,共設計三款不同Co/Ni比例的Cu-Ni(-Co)-Si合金:Cu-8Ni-4Si、Cu-6Ni-2Co-4Si和Cu-4Ni-4Co-4Si,經由電弧熔煉、固溶熱處理、冷滾軋和時效處理,以XRD、OM、SEM和TEM觀察各階段的微結構並測量室溫下導電率、硬度和拉伸強度。實驗結果顯示Co含量越高導電性也隨之增高,而硬度由高至低排列則是為:Cu-6Ni-2Co-4Si、Cu-8Ni-4Si、Cu-4Ni-4Co-4Si。經由以上結果和微結構觀察,我們可以推斷出2%的Co添加量最為合適,因其有最高的強度表現,和次高的導電性。造成此結果的原因為溶質固溶度在高溫與低溫間的差異會隨著Co添加量上升而增大,同時比較固溶後的二次相的面積分率,我們發現當Co添加量超過2%時二次相(樹枝間晶和針狀析出物)大量增加,微硬度測試顯示這些二次相無法提供強度,並且使得基地相溶質純度降低,後續時效能產生的奈米析出物強化相也減少,所以2%Co是最佳添加量。導電性主要取決於基地相的Cu純度,而Co比起Ni在Cu的固溶度更低,所以導電性會隨著Co的添加量上升而上升。


    Cu-Ni-Si alloys become the popular precipitation-hardening copper alloys recently. They are widely used for electrical applications such as electrical connectors, electrical springs and lead frames because of their high strength and high electrical conductivity. In order to substitute toxic Cu-Be alloys, many studies have suggested that the addition of other alloy elements and improvement of thermomechanical process can increase strength and electrical conductivity of Cu-Ni-Si alloys.
    The present report investigates the effect of Co replacing part of Ni atoms. We designed three kinds of Cu-Ni(-Co)-Si with different Co/Ni ratios: Cu-8Ni-4Si, Cu-6Ni-2Co-4Si, and Cu-4Ni-4Co-4Si. The samples after arc melting, solution heat treatment, cold rolling and aging process were conducted microstructure analysis and then examined the hardness, tensile strength and electrical conductivity. The experimental results show that the electrical conductivity increases with the increasing amount of Co addition. As for the hardness and tensile strength, listed from highest to lowest are Cu-6Ni-2Co-4Si、Cu-8Ni-4Si、Cu-4Ni-4Co-4Si.

    摘要 I Abstract II 誌謝 III 1 Introduction 1 2 Literature Review 3 2.1 Cu-Ni-Si system alloys 3 2.1.1 Precipitation mechanisms 4 2.1.2 Cu-Ni-Si with other alloy elements addition 8 2.1.3 Cu-Ni-Si with different Ni/Si ratio 12 2.2 Cu-Ni-Co-Si system alloys 13 2.2.1 Cu-Co-Si 13 2.2.2 Effect of Co on Cu-Ni-Co-Si 15 3 Material and Methods 19 3.1 Vacuum arc melting 20 3.2 Differential thermal analysis (DTA) 20 3.3 Solution heat treatment 20 3.4 Cold rolling 20 3.5 Aging process 20 3.6 Microstructure analysis 21 3.6.1 X-ray diffractometer 21 3.6.2 Optical microscopy 21 3.6.3 Scanning electron microscopy 21 3.6.4 Transmission electron microscope 21 3.7 Hardness test 22 3.8 Tensile test 22 3.9 Electrical conductivity test 22 4 Result and Discussion 24 4.1 Alloy design 24 4.2 Microstructure analysis 27 4.2.1 As-cast microstructure 27 4.2.2 Microstructure after solution heat treatment 30 4.2.3 Microstructure after aging process 34 4.3 Hardness and tensile strength 37 4.4 Electrical conductivity 42 5 Conclusion 45 6 Future work 46 7 Reference 47

    1. Suzuki, S., et al., Electrical and thermal conductivities in quenched and aged high-purity Cu–Ti alloys. Scripta materialia, 2003. 48(4): p. 431-435.
    2. Markandeya, R., S. Nagarjuna, and D. Sarma, Effect of prior cold work on age hardening of Cu–3Ti–1Cr alloy. Materials characterization, 2006. 57(4): p. 348-357.
    3. Plewes, J., High-strength Cu-Ni-Sn alloys by thermomechanical processing. Metallurgical Transactions A, 1975. 6(3): p. 537-544.
    4. Kratochvil, P., et al., The structure and low temperature strength of the age hardened Cu-Ni-Sn alloys. Acta Metallurgica, 1984. 32(9): p. 1493-1497.
    5. Sierpiński, Z. and J. Gryziecki, Phase transformations and strengthening during ageing of CuNi10Al3 alloy. Materials Science and Engineering: A, 1999. 264(1): p. 279-285.
    6. Stobrawa, J. and Z. Rdzawski, Precipitation process of the Ni 3 Al phase in copper-based alloys. Journal of Achievements in Materials and Manufacturing Engineering, 2006. 15(1-2).
    7. Ryu, H.J., H.K. Baik, and S.H. Hong, Effect of thermomechanical treatments on microstructure and properties of Cu-base leadframe alloy. Journal of Materials Science, 2000. 35(14): p. 3641-3646.
    8. Lockyer, S. and F. Noble, Precipitate structure in a Cu-Ni-Si alloy. Journal of Materials Science, 1994. 29(1): p. 218-226.
    9. Suzuki, S., et al., Improvement in strength and electrical conductivity of Cu–Ni–Si alloys by aging and cold rolling. Journal of Alloys and Compounds, 2006. 417(1): p. 116-120.
    10. Nagayoshi, H., et al., Bend formability and microstructure in a Cu-4 mass% Ni-1 mass% Si-0.02 mass% P alloy. Journal of the Japan Institute of Metals, 2006. 70(9): p. 750-755.
    11. Monzen, R. and C. Watanabe, Microstructure and mechanical properties of Cu–Ni–Si alloys. Materials Science and Engineering: A, 2008. 483: p. 117-119.
    12. Khereddine, A., et al., X-ray diffraction analysis of cold-worked Cu-Ni-Si and Cu-Ni-Si-Cr alloys by Rietveld method. Transactions of Nonferrous Metals Society of China, 2011. 21(3): p. 482-487.
    13. Cheng, J., et al., Evaluation of nanoscaled precipitates in a Cu–Ni–Si–Cr alloy during aging. Journal of Alloys and Compounds, 2014. 614: p. 189-195.
    14. Witusiewicz, V., et al., Enthalpy of mixing of liquid and undercooled liquid ternary and quaternary Cu–Ni–Si–Zr alloys. Journal of alloys and compounds, 2002. 337(1): p. 155-167.
    15. Lei, Q., et al., The transformation behavior of Cu–8.0 Ni–1.8 Si–0.6 Sn–0.15 Mg alloy during isothermal heat treatment. Materials Characterization, 2011. 62(9): p. 904-911.
    16. Kaufman, L., Coupled phase diagrams and thermochemical data for transition metal binary systems-III. Calphad, 1978. 2(2): p. 117-146.
    17. Xiao, X., et al., Suppressing spinodal decomposition by adding Co into Cu–Ni–Si alloy. Journal of Alloys and Compounds, 2016. 660: p. 178-183.
    18. Pan, Z., et al., Progress of study of super-high strength Cu-Ni-Si alloy. Heat Treatment of Metal, 2007. 32: p. 54.
    19. Li, Z., et al., Microstructure and properties of high-conductivity, super-high-strength Cu–8.0 Ni–1.8 Si–0.6 Sn–0.15 Mg alloy. Journal of Materials Research, 2009. 24(06): p. 2123-2129.
    20. Ozawa, A., C. Watanabe, and R. Monzen. Influence of Co on Strength of Cu-Ni-Co-Si Alloy. in Materials Science Forum. 2014. Trans Tech Publ.
    21. Murray, H., I.D. Harris, and J. Ratka. Development of a welding procedure for high conductivity, copper-beryllium alloy C17510. in Fusion Engineering, 1991. Proceedings., 14th IEEE/NPSS Symposium on. 1992. IEEE.
    22. Bowles, J. and W.M. Tegart, Crystallographic relationships in aged copper-beryllium alloys. Acta Metallurgica, 1955. 3(6): p. 590-597.
    23. Si, L., et al., Microstructure and property of Cu–2.7 Ti–0.15 Mg–0.1 Ce–0.1 Zr alloy treated with a combined aging process. Materials Science and Engineering: A, 2016. 650: p. 345-353.
    24. Miura, H., et al., Structure, conductivity and mechanical properties of non-equilibrium copper-based crystalline alloy nano-composites. Intermetallics, 2010. 18(10): p. 1860-1863.
    25. Kim, K.-H., et al., High-strength Cu–Zr binary alloy with an ultrafine eutectic microstructure. Journal of Materials Research, 2008. 23(07): p. 1987-1994.
    26. Batra, I., et al., Microstructure and properties of a Cu–Cr–Zr alloy. Journal of Nuclear Materials, 2001. 299(2): p. 91-100.
    27. Schwartz, L. and J. Plewes, Spinodal decomposition in Cu-9wt% Ni-6wt% Sn—II. A critical examination of mechanical strength of spinodal alloys. Acta Metallurgica, 1974. 22(7): p. 911-921.
    28. Corson, M., Copper Alloy Systems with Variable Alpha Range and Their Use in the Hardening of Copper. AIME TRANS, E 27, 435-450, 1927(8).
    29. Zhao, D., et al., Structure and strength of the age hardened Cu–Ni–Si alloy. Materials Chemistry and Physics, 2003. 79(1): p. 81-86.
    30. Azzeddine, H., et al., An in situ synchrotron X-ray diffraction study of precipitation kinetics in a severely deformed Cu–Ni–Si alloy. Materials Science and Engineering: A, 2014. 597: p. 288-294.
    31. Ditchek, B. and L.H. Schwartz, Applications of spinodal alloys. Annual Review of Materials Science, 1979. 9(1): p. 219-253.
    32. Pearson, W.B., Crystal chemistry and physics of metals and alloys. 1972.
    33. Jia, Y.-l., et al., Orientation and diffraction patterns of δ-Ni 2 Si precipitates in Cu–Ni–Si alloy. Journal of Alloys and Compounds, 2013. 557: p. 147-151.
    34. First Copper Technology Co., L., Alloy guide.
    35. Shen, L., et al., Effects of silicon and thermo-mechanical process on microstructure and properties of Cu–10Ni–3Al–0.8 Si alloy. Materials & Design, 2014. 62: p. 265-270.
    36. Shen, L., et al., Microstructure evolution and quench sensitivity of Cu–10Ni–3Al–0.8 Si alloy during isothermal treatment. Journal of Materials Research, 2015. 30(05): p. 736-744.
    37. Lei, Q., et al., Effect of aluminum on microstructure and property of Cu–Ni–Si alloys. Materials Science and Engineering: A, 2013. 572: p. 65-74.
    38. Liu, R., L. Peng, and X. Xiao. Research of microstructure and characteristics of aging treatment of Cu-20Ni-5Sn alloy. in Remote Sensing, Environment and Transportation Engineering (RSETE), 2011 International Conference on. 2011. IEEE.
    39. Rdzawski, Z. and J. Stobrawa, Thermomechanical processing of Cu–Ni–Si–Cr–Mg alloy. Materials Science and Technology, 1993. 9(2): p. 142-150.
    40. Deng, J., et al., Effect of Zr addition on the microstructure and properties of Cu–10Cr in situ composites. Materials & Design, 2009. 30(10): p. 4444-4449.
    41. Jingguo, L., et al., The effects of aging precipitation on the recrystallization of CuNiSiCr alloy. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2005. 20(1): p. 21-24.
    42. Heinrich, A. and R. Kirchheim, Investigation of the early stages of decomposition of Cu–0.7 at.% Fe with the tomographic atom probe. Materials Science and Engineering: A, 2003. 353(1): p. 92-98.
    43. Brauer, D.R., et al., Iron modified tin brass. 2000, Google Patents.
    44. Hu, T., et al., The crystallographic and morphological evolution of the strengthening precipitates in Cu–Ni–Si alloys. Acta Materialia, 2013. 61(4): p. 1210-1219.
    45. Semboshi, S., et al., Discontinuous precipitates in age-hardening Cu Ni Si alloys. Materials Characterization, 2016. 115: p. 39-45.
    46. Corson, M., Copper Alloy Systems with Phase and Variable Limits and their Application for the Copper Hardening, Fourth Part. Rev. Metall, 1930. 27: p. 265-281.
    47. Albert, B., Solubility and Precipitation Processes in Cu--Co--Si Alloys. I.--Determination of Solubility by In Situ Resistance Measurements. Z. Metallkd., 1985. 76(7): p. 475-478.
    48. Lendvai, J., et al., Precipitation Processes in Cu-Co-Si Alloys. Journal of materials science, 1988. 23(11): p. 4059-4065.
    49. Varschavsky, A. and E. Donoso, Energetic and kinetic evaluations in a quasi-binary Cu–1 at.% Co 2 Si alloy. Materials letters, 2003. 57(7): p. 1266-1271.
    50. Toda, T., The Critical Cooling Rates Determined by the Jominy Tests in the Age-Hardening Cu–Cr, Cu–Be and Cu–Co 2 Si Alloys. Transactions of the Japan Institute of Metals, 1970. 11(1): p. 24-29.
    51. 宋练鹏, 尹志民, and 李娜娜, 不同处理工艺对铜钴铬硅合金组织和性能的影响. 稀有金属材料与工程, 2006. 35(10): p. 1539-1543.
    52. Varschavsky, A. and E. Donoso, A microcalorimetric study of fatigue crack propagation in precipitation-hardened Cu-Co-Si alloys. Materials Letters, 1992. 15(3): p. 207-211.
    53. Albert, B., Solubility and Precipitation Processes in Cu--Co--Si Alloys. II.--Analysis of the Precipitation Processes. Z. Metallkd., 1985. 76(8): p. 528-531.
    54. Nash, P. and A. Nash, The Ni− Si (Nickel-Silicon) system. Bulletin of alloy phase diagrams, 1987. 8(1): p. 6-14.
    55. Van Beek, J., et al., Interactions in the Co–Ni–Si system at 800° C. Journal of alloys and compounds, 2000. 297(1): p. 137-143.
    56. Martin, J.W., Micromechanisms in particle-hardened alloys. 1980: CUP Archive.
    57. Bailey, J. and P. Hirsch, The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philosophical Magazine, 1960. 5(53): p. 485-497.
    58. Wang, Q.S., et al. The Precipitation and Strengthening Mechanism of Cu-Ni-Si-Co Alloy. in Materials Science Forum. 2013. Trans Tech Publ.
    59. Curiotto, S., et al., Thermodynamics and mechanism of demixing in undercooled Cu–Co–Ni alloys. Acta Materialia, 2007. 55(19): p. 6642-6650.
    60. Liu, X., et al., Experimental investigation of phase equilibria in the Cu–Ni–Si ternary system. Journal of Alloys and Compounds, 2013. 578: p. 439-447.
    61. Jia, L., et al., Experimental investigation on phase transformation of Cu–Ni–Si alloy melts during cooling. Materials Science and Technology, 2013.
    62. Lei, J., et al., Microstructure and Selection of Grain Boundary Phase of Cu-Ni-Si Ternary Alloys. Rare Metal Materials and Engineering, 2015. 44(12): p. 3050-3054.
    63. Gupta, K., The Co-Ni-Si (Cobalt-Nickel-Silicon) System. Journal of phase equilibria and diffusion, 2009. 30(6): p. 641-645.
    64. OZAWA, A., C. WATANABE, and R. MONZEN. Influence of Co on Strength of Cu-Ni-Co-Si Alloy. in Materials Science Forum. 2014.
    65. Lei, Q., et al., The evolution of microstructure in Cu–8.0 Ni–1.8 Si–0.15 Mg alloy during aging. Materials Science and Engineering: A, 2010. 527(24): p. 6728-6733.
    66. Lu, L., et al., Ultrahigh strength and high electrical conductivity in copper. Science, 2004. 304(5669): p. 422-426.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE