研究生: |
沈義翔 Shen, Yi-Hsiang |
---|---|
論文名稱: |
適用於人體呼吸特徵萃取的超寬頻雷達系統訊號處理平台 Human Respiratory Feature Extraction on A UWB Radar Signal Processing Platform |
指導教授: |
黃元豪
Huang, Yuan-Hao |
口試委員: |
蔡佩芸
楊家驤 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2012 |
畢業學年度: | 101 |
語文別: | 英文 |
論文頁數: | 51 |
中文關鍵詞: | 超寬頻雷達 、呼吸訊號 、呼吸特徵 |
外文關鍵詞: | UWB radar, respiratory signal, respiratory feature |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此論文提出了可在超寬頻雷達系統擷取的人體呼吸訊號中,分析且萃取出呼吸訊號特徵之演算法,並實作在訊號處理系統之平台上。在傳統的雷達訊號偵測演算法中,目標大多是以偵測出常用在醫療診斷中的呼吸頻率為主。然而在雷達偵測出的人體呼吸訊號中,除了呼吸頻率之外,含有更多可以提供醫護人員診斷的有用資訊。因此,我們提出了改良過的raised cosine的訊號模型來模擬呼吸的波型,並使用迭代式correlation的方法來萃取呼吸波型的特徵,例如呼吸的強度、吸氣狀態、呼氣狀態以及吸呼氣間停止的狀態。這些特徵的資訊也能視為壓縮後的呼吸訊號,可用在遠端照護監視系統中當作傳輸標的,進而取代一個週期至少上千個取樣資料。而使用此方式更可以減少傳輸的頻寬,以及節省傳送的電力消耗。最後,我們將此演算法以及系統架構實現在一軟硬體可共同運作的訊號處理系統平台上,此平台含有ARM系統之中央處理器以及FPGA邏輯晶片。此裝置可適用於呼吸頻率在0.1赫茲到1赫茲間的呼吸訊號,對於每個呼吸週期分析及萃取其中的特徵。
This paper presents a ultra-wideband (UWB) impulse-radio radar signal processing platform. This platform is integrated with a front-end radar chip for human respiratory feature extraction and signal compression. The conventional radar detection algorithms only extract the respiration rate for medical diagnosis. However, there is more information in the radar-detected respiratory signals which can be useful for medical diagnosis. Thus, this study proposed a modified raised cosine model and an iterative correlation algorithm to extract more respiratory features, such as inspiration and expiration speed, respiration intensity, and respiration holding ratio. Moreover, the extracted features are useful in remote medical monitoring system since they can be seen as compressed respiratory signals. Transmission bandwidth can be saved by transmitting the extracted features instead of lots of sampled data. The proposed algorithm and architecture is designed and implemented on a radar signal processing platform with the ARM processor and FPGA logic array. Human respiratory signals of 0.1 to 1 Hz rate are detected and analyzed along with other information at each period.
[1] S. Chang, M. Wolf, and J. Burdick, “Human detection and tracking via ultra-wideband (uwb) radar,” in Proc. IEEE Robot. Autom. Conf., May 2010, pp. 452–457.
[2] T.-S. Chu, J. Roderick, S. Chang, T. Mercer, C. Du, and H. Hashemi, “A short-range uwb impulse-radio cmos sensor for human feature detection,” in ISSCC Dig. Tech. Papers, Feb. 2011, pp. 294–296.
[3] G. S. Chung, B. H. Choi, K. K. Kim, Y. G. Lim, J. W. Choi, D.-U. Jeong, and K. S. Park, “Rem sleep classification with respiration rates,” in Proc. 6th Int. Special Topic Conf. Inf. Tech. Applicat. Biomedicine, Nov. 2007, pp. 194–197.
[4] S. I. Ivashov, V. V. Razevig, A. P. Sheyko, and I. A. Vasilyev, “Detection of human breathing and heartbeat by remote radar,” in Proc. Progress Electromagnetics Research Symp., Pisa, Italy, Mar. 2004.
[5] Z. Yong-Shun, K. Lingjiang, C. Guo-Long, and Y. Jian-Yu, “Remote sensing of human body by stepped-frequency continuous-wave,” in Conf. Rec. 3rd Int. Conf. Bioinformatics Biomedical Eng., June 2009, pp. 1–4.
[6] A. Lazaro, D. Girbau, R. Villarino, and A. Ramos, “Vital signs monitoring using impulse based uwb signal,” in Conf. Rec. 41th EuMC, Oct. 2011, pp. 135–138.
[7] M. Chia, S. Leong, C. Sim, and K. Chan, “Through-wall uwb radar operating within fcc’s mask for sensing heart beat and breathing rate,” in Proc. European Microw. Conf., vol. 3, Oct. 2005, pp. 267–270.
[8] M. Baboli, S. Ghorashi, N. Saniei, and A. Ahmadian, “A new wavelet based algorithm for estimating respiratory motion rate using uwb radar,” in Proc. ICBPE, Dec. 2009, pp. 1–3.
[9] M. Leib, W. Menzel, B. Schleicher, and H. Schumacher, “Vital signs monitoring with a uwb radar based on a correlation receiver,” in Proc. Rec. 4th EuCAP, April 2010, pp. 1–5.
[10] M. Baboli, A. Sharafi, A. Ahmadian, and M. Nambakhsh, “An accurate and robust algorithm for detection of heart and respiration rates using an impulse based uwb signal,” in Proc. ICBPE, Dec. 2009, pp. 1–4.
[11] B. Oneda, K. C. Ortega, J. L. Gusmao, T. G. Araujo, and D. M. Jr., “Sympathetic nerve activity is decreased during device-guided slow breathing,” in Hypertens Research, 2010, pp. 708–712.
[12] P. A. Derchak, A. W. Sheel, B. J. Morgan, D. F. Pegelow, and J. A. Dempsey, “Effects of expiratory muscle work on muscle sympathetic nerve activity,” in J. Applied Physiology, 2002.
[13] X. Chen and S. Kiaei, “Monocycle shapes for ultra wideband system,” in Proc. Int. Symp. Circuits Syst., May 2002, pp. I–597–I–600.
[14] L. Rabiner, R. Schafer, and C. Rader, “The chirp z-transform algorithm,” IEEE Trans. Audio Electroacoustics, vol. 17, no. 2, pp. 86–92, Jun 1969.
[15] A. Lazaro, D. Girbau, and R. Villarino, “Analysis of vital signs monitoring using an ir-uwb radar,” in Proc. Int. Electromagnetics Research, vol. 100, 2010, pp. 265–284. BIBLIOGRAPHY 51
[16] W. Cochran, J. Cooley, D. Favin, H. Helms, R. Kaenel, W. Lang, J. Maling, G., D. Nelson, C. Rader, and P. Welch, “What is the fast fourier transform?” IEEE Trans. Audio Electroacoustics, vol. 15, no. 2, pp. 45–55, Jun 1967.
[17] T. G. Stockham, Jr., “High-speed convolution and correlation,” in Proc. Spring Joint Comput Conf., Washington, D.C., 1966, pp. 229–233.
[18] M. Brandstein and H. Silverman, “A robust method for speech signal time-delay estimation in reverberant rooms,” in Proc. ICASSP, vol. 1, Apr 1997, pp. 375 –378.
[19] S. H. Chang, R. Sharan, M.Wolf, N. Mitsumoto, and J. Burdick, “Uwb radar-based human target tracking,” in Proc. IEEE Radar Conf., May 2009, pp. 1–6.
[20] P. Meher, J. Valls, T.-B. Juang, K. Sridharan, and K. Maharatna, “50 years of cordic: Algorithms, architectures, and applications,” IEEE Trans. Circuits Syst., vol. 56, no. 9, pp. 1893–1907, Sep. 2009.