簡易檢索 / 詳目顯示

研究生: 盧俊龍
論文名稱: 以非競爭和非核甘酸型抑制劑為基礎透過虛擬高速藥物分子對接尋找C型肝炎病毒NS5B之抑制劑
指導教授: 林志侯
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 59
中文關鍵詞: C型肝炎病毒複製酶虛擬藥物篩選電腦輔助藥物篩選分子對接藥物篩選
外文關鍵詞: HCV NS5B, HCV RNA-dependent RNA polymerase, Non-structure protein NS5B, virtual docking, CADD, PScore, DOCK
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 據估計全球約有2%~3%的人口感染C型肝炎病毒,感染C型肝炎病毒患者,在感染該病毒的二十年間,大約有4%~5%的患者會演變成肝硬化和肝癌而死亡1,2,3。目前治療C型肝炎是使用interferon結合ribavirin,雖然對非基因型1的病患有較好的療效3,但是嚴重的副作用加上價格昂貴使得治療上有一定的瓶頸,因此,發展擁有價格低、副作用少的全新藥物來改善藥效與這些治療上的限制。
    C型肝炎病毒之非結構型5B是一RNA依賴RNA複製酶4,它擔任病毒RNA複製的重任,因此,我們選擇C型肝炎病毒基因型1b NS5B為藥物標靶,以分子對接藥物篩選分別對非競爭型與非核甘酸型抑制劑作用部位找出新的前導化合物。針對非競爭型抑制劑的部份,我們已經完成了藥物篩選工作,並篩選出一百個作用向量與位置相異或不盡相異於原配體的化合物,並以能量評分與藥效基團多寡作降冪排列,選出計算結果最好的前五十名與次佳的五十名,目前該部分已經在做活性測試。另一部份非核甘酸型抑制劑,我們也篩選出一百個在作用走向與原子相異或不盡相異於原配體的化合物,並將這些做活性測試。
    據估計全球約有2%~3%的人口感染C型肝炎病毒,感染C型肝炎病毒患者,在感染該病毒的二十年間,大約有4%~5%的患者會演變成肝硬化和肝癌而死亡1,2,3。目前治療C型肝炎是使用interferon結合ribavirin,雖然對非基因型1的病患有較好的療效3,但是嚴重的副作用加上價格昂貴使得治療上有一定的瓶頸,因此,發展擁有價格低、副作用少的全新藥物來改善藥效與這些治療上的限制。
    C型肝炎病毒之非結構型5B是一RNA依賴RNA複製酶4,它擔任病毒RNA複製的重任,因此,我們選擇C型肝炎病毒基因型1b NS5B為藥物標靶,以分子對接藥物篩選分別對非競爭型與非核甘酸型抑制劑作用部位找出新的前導化合物。針對非競爭型抑制劑的部份,我們已經完成了藥物篩選工作,並篩選出一百個作用向量與位置相異或不盡相異於原配體的化合物,並以能量評分與藥效基團多寡作降冪排列,選出計算結果最好的前五十名與次佳的五十名,目前該部分已經在做活性測試。另一部份非核甘酸型抑制劑,我們也篩選出一百個在作用走向與原子相異或不盡相異於原配體的化合物,並將這些做活性測試。


    It is estimated that there are 170 million chronically infected HCV carriers worldwide(2%~3% of the global population). Within 20 years of infection, about 4~5% of them will develop cirrhosis and hepatocellular carcinoma, often resulting in death. Current HCV therapy consists of injectable, α-interferon used alone or in combination with ribavirin. Although effective in certain patient populations, interferon therapy has several limitations including high cost and significant side effects that often require does adjustment or discontinuation of therapy. Moreover, while not will understood, interferon therapy has been shown to be most effective against genotype 2 and 3 HCV infections and least effective against genotype 1 infections. The lack of an effective and well-tolerated treatment has therefore spurred intense research efforts to develop affordable, oral and novel anti-HCV agents.
    We chose HCV genome type 1b as a drug target using the approach of virtual docking screening to find the potential drug candidates both of noncompetitive and nonnucleoside inhibitor binding site. According to the dimension of noncompetitive inhibitor, we had finished the task of drug screening, and screened out one hundred compounds whose ligands were different or not exactly different on orientation and binding site. Besides, we sorted those compounds from the best to the worst by the method of energy score and the numbers of pharmacophore to select the first fifty good ones and secondary fifty good ones by the calculating result. All above as we had mentioned are in the procedure of biotest. In another portion,the dimension of nonnucleoside inhibitor, we had also chosen one hundred compounds whose ligands were different or not exactly different on orientation and binding site to perform the biotest.

    誌謝-----------------------------------------------------2 中文摘要-------------------------------------------------3 英文摘要-------------------------------------------------4 研究動機與實驗目的---------------------------------------6 第一章 文獻探討-----------------------------------------7 第一節 C型肝炎病毒簡介-------------------------------7 1-1-1 C型肝炎病毒---------------------------------7 1-1-2 HCV的生命週期------------------------------10 1-1-3 HCV治療現況--------------------------------12 第二節 NS5B RNA-Dependent RNA polymerase-------------14 第二章 實驗材料與方法--------------------------------16 第一節 實驗方法------------------------------------16 2-1-1 電腦輔助藥物設計-------------------------16 2-1-2 DOCK 程式簡介----------------------------18 2-1-3 X-Score 程式簡介-------------------------20 2-1-4 IDEA 軟體簡介----------------------------21 第二節 實驗材料------------------------------------23 2-2-1 1OS5與1YVF 作用力探討-------------------23 第三章 實驗結果與討論----------------------------------29 第一節 實驗共同流程-------------------------------29 第二節 1OS5 實驗結果與討論------------------------31 3-2-1 Docking參數的決定-----------------------31 3-2-2 1OS5實驗結果討論------------------------38 第三節 1YVF 實驗結果與討論------------------------44 3-3-1 1YVF實驗結果----------------------------44 3-3-2 1YVF實驗結果討論------------------------48 第四章 總結與未來工作----------------------------------53 第五章 參考文獻與附錄----------------------------------54

    1.(a)Memon,M.I.;Memon,M.A.J.Viral.Hepat.2002,9,84(b)Moradpour,D.;Cerny,A.;Heim,M.H.;Blum,H.E. Swiss Med Weekly 2001,131,291
    2.For a review of HCV epidemiology, pathogenesis, and clinical treatment, see:(a)Lauer, G. M.;Walker, B. D. N. Engl. J.Med. 2001,345,41;(b)Di Bisceglie, A. M. Lancet 1998, 351,351
    3.For a clinical overview of HCV, see:Strader, D. B.;Seeff, L. B. ILAR J. 2001,42,107
    4.Shirota, Y. et al. Hepatitis C virus (HCV) NS5A binds RNAdependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. J. Biol. Chem. 277, 11149–11155 (2002)
    5. Tan SL, Pause A, Shi Y, Sonenberg N. Hepatitis C therapeutics: current status and emerging strategies. Nat Rev Drug Discov. 2002 Nov;1(11):867-81
    6. Friebe, P., Lohmann, V., Krieger, N. & Bartenschlager, R. Sequences in the 5′□nontranslated region of hepatitis C virus required for RNA replication. J. Virol. 2001 75, 12047–12057 7. Reed, K. E. & Rice, C. M. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Hep. C Viruses 2000 242, 55–84
    7.Reed, K. E. & Rice, C. M. Overview of hepatitis C virus genome structure, polyprotein processing, and protein properties. Hep. C Viruses 2000 242, 55–84
    8. Shirota, Y. et al. Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. J. Biol. Chem. 2002 277, 11149–11155
    9. Pileri, P. et al. Binding of hepatitis C virus to CD81. Science 1998 282, 938–941 Monazahian, M. et al. Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J. Med. Virol. 1999 57,223–229
    10. Monazahian, M. et al. Low density lipoprotein receptor as a candidate receptor for hepatitis C virus. J. Med. Virol. 1999 57,223–229
    11. Agnello, V., Abel, G., Elfahal, M., Knight, G. B. & Zhang, Q. X. Hepatitis C virus and other Flaviviridae viruses enter cells via low density lipoprotein receptor. Proc. Natl Acad. Sci. USA 1999 96, 12766–12771
    12. Bartenschlager, R. & Lohmann, V. Replication of hepatitis C virus. J. Gen. Virol. 2000 81, 1631–1648
    13. Bukh, J., Miller, R. H. & Purcell, R. H. Genetic heterogeneity of hepatitis C virus — quasispecies and genotypes. Semin.Liv. Dis. 1995 15, 41–63
    14.www.prn.org/.../models/ img_pgs/hcv.3d.med.htm
    15.www.genelabs.com/ research/antiviral.html
    16. http://www.hopkins-gi.org/pages/latin/templates/index.cfm
    17.Kolykhalov, A. A., Mihalik, K., Feinstone, S. M. & Rice, C. M.Hepatitis C virus-encoded enzymatic activities and conserved RNA elements in the 3′ nontranslated region are essential for virus replication in vivo. J. Virol. 74, 2046–2051 (2000)
    18.Kolykhalov, A. A. et al. Transmission of hepatitis C by intrahepatic inoculation with transcribed RNA. Science 277, 570–574 (1997).
    19. Leveque, V. J.-P. & Wang, Q. M. RNA-dependent RNA polymerase encoded by hepatitis C virus: biomedical applications. Cell. Mol. Life Sci. 59, 909–919 (2002).
    20. http://dock.compbio.ucsf.edu/DOCK_5/index.htm
    21. http://sw16.im.med.umich.edu/software/xtool/manual/trouble.html
    22. http://www.rcsb.org/pdb/
    23. 3-(4-AMINO-2-TERT-BUTYL-5-METHYL-PHENYLSULFANYL)-
    6-CYCLOPENTYL-4-HYDROXY-6-[2-(4-HYDROXY-PHENYL)-
    ETHYL]-5,6-DIHYDRO-PYRAN-2-ONE
    24. Pfizer Global Research and Development, La Jolla Laboratories, San Diego, California 92121 Received 14 January 2003/Accepted 2 April 2003
    25. Ago, H., T. Adachi, A. Yoshida, M. Yamamoto, N. Habuka, K. Yatsunami, and M. Miyano. 1999. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure 7:1417–1426.
    26. Bressanelli, S., L. Tomei, A. Roussel, I. Incitti, R. L. Vitale, M. Mathieu, R. De Francesco, and F. A. Rey. 1999. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc. Natl. Acad. Sci. USA 96:13034–13039.
    27. Lesburg, C. A., M. B. Cable, E. Ferrari, Z. Hong, A. F. Mannarino, and P. C. Weber. 1999. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat. Struct. Biol. 6:937–943.
    28. Labonte, P., V. Axelrod, A. Agarwal, A. Aulabaugh, A. Amin, and P. Mak. 2002. Modulation of hepatitis C virus RNA-dependent RNA polymerase activity by structure-based site-directed mutagenesis. J. Biol. Chem. 277:38838–38846.
    29. Qin, W., H. Luo, T. Nomura, N. Hayashi, T. Yamashita, and S. Murakami. 2002. Oligomeric interaction of hepatitis C virus NS5B is critical for catalytic activity of RNA-dependent RNA polymerase. J. Biol. Chem. 277:2132–2137.
    30. Wang, Q. M., M. A. Hockman, K. Staschke, R. B. Johnson, K. A. Case, J. Lu, S. Parsons, F. Zhang, R. Rathnachalam, K. Kirkegaard, and J. M. Colacino. 2002. Oligomerization and cooperative RNA synthesis activity of hepatitis C virus RNA-dependent RNA polymerase. J. Virol. 76:3865–3872.
    31. Yamashita, T., S. Kaneko, Y. Shirota, W. Qin, T. Nomura, K. Kobayashi, and S. Murakami. 1998. RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the Cterminal region. J. Biol. Chem. 273:15479–15486.
    32. Bressanelli, S., L. Tomei, F. A. Rey, and R. De Francesco. 2002. Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J. Virol. 76:3482–3492.
    33. (2Z)-2-(BENZOYLAMINO)-3-[4-(2-BROMOPHENOXY)PHENYL]-
    2-PROPENOIC ACID
    34. Jeffrey A. Pfefferkorn, Meredith L. Greene, Richard A. Nugent, Rebecca J. Gross, Mark A. Mitchell, Barry C. Finzel, Melissa S. Harris, Peter A. Wells, John A. Shelly, Robert A. Anstadt, Robert E. Kilkuskie, Laurice A. Kopta and Francis J. Schwende . Inhibitors of HCV NS5B polymerase. Part 1: Evaluation of the southern region of (2Z)-2-(benzoylamino)-3-(5-phenyl-2-furyl)acrylic acid. Bioorganic & Medicinal Chemistry Letters 15 (2005) 2481–2486.
    35. (a) Jacob-Molina, A.; Ding, J.; Nanni, R. G.; Clark, A. D.; Lu, X.; Tantillo, C.; Williams, R. L.; Kamer, G.; Ferris, A. L.; Clark, P.; Hizi, A.; Hughes, S. H.; Arnold, E. Proc. Natl. Acad. Sci. U.S.A. 1993, 90, 6320; (b) Huang, H.; Chopra, R.; Verdine, G. L.; Harrison, S. C. Science 1998, 282, 1669.
    36. Jeffrey A. Pfefferkorn, Richard Nugent, Rebecca J. Gross, Meredith Greene,
    Mark A. Mitchell, Matthew T. Reding, Lee A. Funk, Rebecca Anderson, Peter A. Wells, John A. Shelly, Robert Anstadt, Barry C. Finzel, Melissa S. Harris,
    Robert E. Kilkuskie, Laurice A. Kopta and Francis J. Schwendea.Inhibitors of HCV NS5B polymerase. Part 2:Evaluation of the northern region of (2Z)-2-benzoylamino-3-(4-phenoxy-phenyl)-acrylic acid. Bioorganic & Medicinal Chemistry Letters 15 (2005) 2812–2818.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE