簡易檢索 / 詳目顯示

研究生: 陳政光
Chen, Cheng-Kuang
論文名稱: 利用共振型超材料實踐多功性感測,細胞成像,及光調變
Toward multiplex sensing, intracellular imaging, and light manipulating via resonant-type metamaterials
指導教授: 嚴大任
Yen, Ta-Jen
口試委員: 潘犀靈
Pan, Ci-Ling
嚴大任
Yen, Ta-Jen
魏培坤
Wei, Pei-Kuen
張之威
Chang, Chih-Wei
江海邦
Chiang, Hai-Pang
李柏璁
Lee, Po-Tsung
學位類別: 博士
Doctor
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 206
中文關鍵詞: 電漿子共振介電質共振器超材料細胞影像二氧化釩耦合表面增強光譜慢光效應
外文關鍵詞: Plamonic resonance, Dielectric resonator, Metamaterial, Intracelluar imaging, Vanadium dioxide, Coupling mode, Surfaced enhanced spectroscopy, Slow light effect
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 超材料為一種人造材料,利用單位尺寸小於波長的結構製造等效性質改變整體電磁特性。因此,金屬超材料在最近得到矚目,因為金屬在光學頻率下的自由電子集體震盪,使得金屬表面產生表面電漿共振。由於表面電漿共振通常取決於金屬幾何形狀及光學常數。相對於其他偵測器適合感測表面環境的改變。在本論文中,我們設計了一種電漿子超材料可共振於近紅外頻段下,並感測其周圍環境的折射率變化。再利用陣列化的電漿子超材料,得到免耦合,免標定,可量化的折射率影像。最後,利用超保水高分子(羧甲基纖維素)及poly-l-lysine 混合物增加該超材料保水度及增加表面對於細胞的親和力,進而量測活體細胞折射率影像。另外,我們也設計一個多共振頻段的多功性超材料可同時用於折射率量測及表面增強震動光譜。同樣地,該陣列化的電漿子超材料也可用於影像上的觀測,並同時得到待測物的多功性影像。我們發現,利用低共振模數的光譜,適用於接近表面的淺層觀測,如觀測官能基訊號;而高共振模數的光譜則適合用於深層的觀測,如細胞內部折射率平均值。這些特性可以幫助未來電漿子超材料用於快速生化檢測及活體細胞影像應用。
    接下來,為了增強共振強度,我們嘗試利用介電質超材料作為研究主題。不同於金屬的自由電子形成表面電漿共振;介電質的表面增強效應來自於電磁場共振模的能量侷限作用。因此,我們設計一種Fano共振形式的介電質超材料,分別利用耦合相同/不同介電常數的介電質共振體對(dielectric resonator dimer),得到了Fano共振,表面電磁場增強效應,以及慢光效應。這個結論可以使我們在未來利用介電質超材料應用於表面增強光譜。最後,為了研究介電質內部於中紅外下的的共振行為,我們將介電質超材料放置於二氧化釩表面上。利用溫度控制二氧化釩的介電常數,我們控制了介電質超材料的共振反應,並發現其共振反應會隨著二氧化釩的導電率增加而改變,類似一個RLC共振模型。利用這個方式,我們可以應用於光學感測,人造磁共振,負折率材料及隱形斗篷。


    Metamaterials are artificial structures made of the repetition of subwavelength elements, often used in controlling and engineering the electromagnetic behavior of light as effective media due to quasi-static approximation. Metallic metamaterials are objects of high interest due to their ability to show resonances in the optical response given by the collective behavior of the conduction electrons near the surface of the metal, the so-called surface plasmons. These resonances depend strongly on the optical properties and geometry of the structures, providing a versatile tool to sensing surrounding information beyond conventional sensors. In this dissertation, we design a four-cut split ring resonator (4CSRR) performing plasmonic resonance in near infrared (NIR) region, supporting the capability in detecting their surrounding refractive index changes. A 4CSRR array is further utilized in refractive-index imaging application with quantitative, label-free ability and coupler-free measurements. By modifying a hydrogel (Carboxymethyl Cellulose)-poly-l-lysine mixture on 4CSRR-array to increase the surface adhesion and water retention for culturing cell, an in vivo intracellular observation is demonstrated due to the extension of cellular survival time. In addition, a compact multi-resonant plasmonic split ring resonator (MPSRR) array that is designed, for utilizing in both multi-band plasmonic resonance-enhanced vibrational spectroscopy and refractive index probing within a bandwidth of several octaves. Such a single-element plasmonic metamaterial can be used as a multifunctional sensing pixel that enables mapping the distribution of targets in thin films and biological specimens by enhancing the signals of vibrational signatures and sensing refractive index contrast. The low-order resonant modes in MPSRR present short-range detecting depth but high localized field for demonstrating plasmon-enhanced vibrational spectroscopy on the interface between target and MPSRR; in contrast, the high-order resonant modes exhibit long-range detecting ability with refractive index sensitive for realizing intracellular refractive index contrast observation. These unique features enable the plasmonic metamaterials to function as a rapid and accurate diagnosis, facilitating bio-sensing and imaging capabilities.
    Next, to improve the resonant performance for the development in sensors, we apply dielectric-based metamaterial to provide control of the far-field radiation properties of nearby emitters due to the properties of coherent radiation of electric and magnetic modes. Unlike resonating plasmonic metamaterials are producing the oscillations of the free electron plasma, dielectric-based metamaterials rely on the fields and displacement currents induced in the resonator structure. In addition, we develop a Fano-resonant metamaterial by using dielectric-resonator dimers. By hybridizing two types of dielectric resonators, identical-dielectric-constant resonator dimer (IDR) and distinct-dielectric-constant resonator (DDR) dimer, respectively, we demonstrate Fano-resonance phenomena associated with a large group index (ng~354) and significant enhanced electromagnetic fields. Along this analysis, a comparison with metallic dimers has been carried out. This study opens new possibilities to perform field-enhanced spectroscopy and sensing with nanostructures made of suitable dielectric materials. Last, to control and investigate the resonant behaviors in dielectric-based metamaterial in mid infrared region, a highly symmetric dielectric metamtaterial is designed by germanium-based resonators array embedded with thermal-controlled functionality (vanadium dioxide, VO2). There are two distinct resonances respectively excited from particle and particle-substrate coupling. An enhanced reflectance change of resonant spectra occurs while raising temperature upto the VO2 phase-transition region, realizing the tunable resonances in mid infrared region. The tunibility significantly depends on the conductivity of vanadium dioxide layer, which agrees well to the simulation results. These results match to the model of an equivalent parallel RLC circuit, opening the feasibilities of optical sensing, artificial magnetism, perfect absorber and invisible cloak.

    摘要 1 Abstract 3 Acknowledgement 6 Content 7 List of Figures 11 List of abbreviations 19 CHAPTER 1 INTRODUCTION 20 1.1 Plasmonic metamaterials 22 1.2 Dielectric metamaterials 27 1.3 Dissertation organization 31 CHAPTER 2 SAMPLE DESIGN, FABRICATION PROCESS, AND TESTING METHOD 33 2.1 Design with Finite Integral Technique Solver 33 2.2 Electron Beam Lithography and Lift-off Processing 36 2.3 Electron Beam Evaporator 37 2.4 Preparation of Indium Tin Oxide via Rapid Thermal Process 40 2.5 Preparation of Vanadium Oxide (VOx) via Furnace Processing 41 2.6 Preparation of High Dielectric Constant Ceramic Resonantors 44 2.7 Facilities and Setups of Microwave Measurement 46 2.8 Fourier Transform Infrared Spectroscopy and Focal Plane Array 50 2.9 Cell Cultured on Metamaterial Surface 52 CHAPTER 3 THEORETICAL BACKGROUND 53 3.1 Standing-wave Plasmonic Resonance in Metamaterial 53 3.2 Artificial Magnetism 57 3.3 Mie Resonance of All-dielectric Based Resonator 65 3.4 Maxwell Equations and Left Handed Phenomenon 68 3.5 Classical Analogue of Fano-resonant Metamaterial 69 CHAPTER 4 MULTIFUNCTIONAL PLASMONIC METAMATERIAL FOR BIOSENSOR AND BIO-IMAGING 73 4.1 Introduction: Label-free Refractive Index Bioimaging Using Plasmonic Metamaterials 73 4.2 Demonstration of in vivo Cellular Imaging with Subcellular Resolution Utilizing 4CSRR Plasmonic Resonator 80 4.2.1 Motivation 80 4.2.2 Design of four-cut split ring resonator (4CSRR) 81 4.2.3 Results and discussion 84 4.2.4 Demonstration of in-vivo cell imaging by hybridizing a biocompatible hydrogel on 4CSRR array 92 4.2.5 Summary 96 4.3 Multi-mode Refractive Index Imaging 97 4.3.1 Motivation 97 4.3.2 Design of multi-mode plasmonic split ring resonator (MPSRR) 98 4.3.3 Results and discussion 101 4.3.4 Summary 111 4.4 Plasmon-resonance-enhanced Vibrational Spectroscopy 112 4.4.1 Motivation 112 4.4.2 A tailor-made MPSRR for meeting target's multiple vibrational modes 115 4.4.3 Results and discussions 118 4.4.4 Summary 136 CHAPTER 5 FANO-REOSONANT METAMATERIAL ENHANCED MAGNETIC RESPONSES AND THERMO-CONTROLLED RESONANT METAMATERIAL 137 5.1 Introduction: 137 5.2 Strong Magnetic Response and Inducing Transparency via Coupled Dielectric Resonators 139 5.2.1 Motivation: All-dielectric Based Metamaterial-induced Transparency 139 5.2.2 Theoretical design of dielectric resonators 140 5.2.3 Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials 144 5.2.4 Simulation and measurement methods 145 5.2.5 Measured results and simulated analysis 148 5.2.6 Metamaterial induced transparency phenomenonbythe hybrid dielectric resonators 149 5.2.7 Strong magnetic field at the coherent coupling frequency 153 5.2.8 Large group index caused by the strong magnetic response due to the coherent resonance between two dielectric resonators. 157 5.2.9 Summary 161 5.3 Thermal-active Surface Dressing Dielectric-Based Metamaterial for Realizing Tunable Resonance in Optical Edge 162 5.3.1 Motivation 162 5.3.2 Sample Fabrications and Design 165 5.3.3 Result and Discussion 168 5.3.4 Summary 175 CHAPTER 6 CONCLUSION 176 CHAPTER 7 PUBLICATIONS 179 REFERENCES 181 Appendix: Committees' comments and our responses 194

    1. Pendry JB, Holden AJ, Stewart WJ, Youngs I. Extremely low frequency plasmons in metallic mesostructures. Physical Review Letters 1996;76(25):4773-4776.
    2. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Low frequency plasmons in thin-wire structures. Journal of Physics-Condensed Matter 1998;10(22):4785-4809.
    3. Pendry JB, Holden AJ, Robbins DJ, Stewart WJ. Magnetism from conductors and enhanced nonlinear phenomena. Ieee Transactions on Microwave Theory and Techniques 1999;47(11):2075-2084.
    4. Pendry JB. Negative refraction makes a perfect lens. Physical Review Letters 2000;85(18):3966-3969.
    5. Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science 2004;305(5685):788-792.
    6. Pendry JB, Smith DR. Reversing light with negative refraction. Physics Today 2004;57(6):37-43.
    7. Shelby RA, Smith DR, Schultz S. Experimental verification of a negative index of refraction. Science 2001;292(5514):77-79.
    8. Zhang X, Yen T, Wu DM, Fang N. Tunable plasmonic wires at terahertz frequencies. Plasmonics: Metallic Nanostructures and Their Optical Properties Ii 2004;5512:100-106.
    9. Stancil DD, Henty BE, Cepni AG, Van't Hof JP. Observation of an inverse Doppler shift from left-handed dipolar spin waves. Physical Review B 2006;74(6).
    10. Wu BI, Lu J, Kong JA, Chen M. Left-handed metamaterial design for Cerenkov radiation. Journal of Applied Physics 2007;102(11).
    11. Zhang X, Fang N, Lee H, Sun C. Sub-diffraction-limited optical imaging with a silver superlens. Science 2005;308(5721):534-537.
    12. Zhang X, Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN. Terahertz magnetic response from artificial materials. Science 2004;303(5663):1494-1496.
    13. O'Brien S, Pendry JB. Photonic band-gap effects and magnetic activity in dielectric composites. Journal of Physics-Condensed Matter 2002;14(15):4035-4044.
    14. Ziolkowski RW. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Physical Review E 2004;70(4).
    15. Min B, Choi M, Lee SH, Kim Y, Kang SB, Shin J, Kwak MH, Kang KY, Lee YH, Park N. A terahertz metamaterial with unnaturally high refractive index. Nature 2011;470(7334):369-373.
    16. Smith DR, Pendry JB. Homogenization of metamaterials by field averaging (invited paper). Journal of the Optical Society of America B-Optical Physics 2006;23(3):391-403.
    17. Hu WQ, Liang EJ, Ding P, Cai GW, Xue QZ. Surface plasmon resonance and field enhancement in #-shaped gold wires metamaterial. Optics Express 2009;17(24):21843-21849.
    18. Cooper JM, Clark AW. Nanogap Ring Antennae as Plasmonically Coupled SERRS Substrates. Small 2011;7(1):119-125.
    19. Simovski CR. Surface-enhanced Raman scattering from silica core particles covered with silver nanoparticles. Physical Review B 2009;79(21).
    20. Liu XL, Starr T, Starr AF, Padilla WJ. Infrared Spatial and Frequency Selective Metamaterial with Near-Unity Absorbance. Physical Review Letters 2010;104(20).
    21. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect metamaterial absorber. Physical Review Letters 2008;100(20).
    22. Landy NI, Chen HT, Ohara JF, Zide JMO, Gossard AC, Highstrete C, Lee M, Taylor AJ, Averitt RD, Padilla WJ. Metamaterials for novel terahertz and millimeter wave devices. 2007 International Symposium on Signals, Systems and Electronics, Vols 1 and 2 2007:145-150.
    23. Maier T, Bruckl H. Wavelength-tunable microbolometers with metamaterial absorbers. Optics Letters 2009;34(19):3012-3014.
    24. Liu XM, Gong YK, Li ZY, Fu JX, Chen YH, Wang GX, Lu H, Wang LR. Highly flexible all-optical metamaterial absorption switching assisted by Kerr-nonlinear effect. Optics Express 2011;19(11):10193-10198.
    25. Zhu WR, Zhao XP. Metamaterial absorber with random dendritic cells. European Physical Journal-Applied Physics 2010;50(2).
    26. Landy NI, Bingham CM, Tyler T, Jokerst N, Smith DR, Padilla WJ. Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging. Physical Review B 2009;79(12).
    27. Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. Journal of Physical Chemistry B 2003;107(3):668-677.
    28. Miller MM, Lazarides AA. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. Journal of Physical Chemistry B 2005;109(46):21556-21565.
    29. Wartewig S, John Wiley & Sons. IR and Raman spectroscopy fundamental processing. Spectroscopic techniques. Weinheim: Wiley-VCH; 2003.
    30. Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Hong MK, Erramilli S, Altug H. Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proceedings of the National Academy of Sciences of the United States of America 2009;106(46):19227-19232.
    31. Shipway AN, Katz E, Willner I. Nanoparticle arrays on surfaces for electronic, optical, and sensor applications. Chemphyschem 2000;1(1):18-52.
    32. Cataldo S, Zhao J, Neubrech F, Frank B, Zhang CJ, Braun PV, Giessen H. Hole-Mask Colloidal Nano lithography for Large-Area Low-Cost Metamaterials and Antenna-Assisted Surface-Enhanced Infrared Absorption Substrates. Acs Nano 2012;6(1):979-985.
    33. Pryce IM, Kelaita YA, Aydin K, Atwater HA. Compliant Metamaterials for Resonantly Enhanced Infrared Absorption Spectroscopy and Refractive Index Sensing. Acs Nano 2011;5(10):8167-8174.
    34. Wokaun A. Surface Enhancement of Optical-Fields - Mechanism and Applications. Molecular Physics 1985;56(1):1-33.
    35. Dickson W, Wurtz GA, Evans P, O'Connor D, Atkinson R, Pollard R, Zayats AV. Dielectric-loaded plasmonic nanoantenna arrays: A metamaterial with tuneable optical properties. Physical Review B 2007;76(11).
    36. Ou JY, Plum E, Jiang L, Zheludev NI. Reconfigurable Photonic Metamaterials. Nano Letters 2011;11(5):2142-2144.
    37. Kabashin AV, Evans P, Pastkovsky S, Hendren W, Wurtz GA, Atkinson R, Pollard R, Podolskiy VA, Zayats AV. Plasmonic nanorod metamaterials for biosensing. Nature Materials 2009;8(11):867-871.
    38. Chen K, Adato R, Altug H. Dual-Band Perfect Absorber for Multispectral Plasmon-Enhanced Infrared Spectroscopy. Acs Nano 2012;6(9):7998-8006.
    39. Adato R, Artar A, Erramilli S, Altug H. Engineered Absorption Enhancement and Induced Transparency in Coupled Molecular and Plasmonic Resonator Systems. Nano Letters 2013;13(6):2584-2591.
    40. Pryce IM, Aydin K, Kelaita YA, Briggs RM, Atwater HA. Highly Strained Compliant Optical Metamaterials with Large Frequency Tunability. Nano Letters 2010;10(10):4222-4227.
    41. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annual Review of Physical Chemistry 2007;58:267-297.
    42. Shi L, Tuzer TU, Fenollosa R, Meseguer F. A New Dielectric Metamaterial Building Block with a Strong Magnetic Response in the Sub-1.5-Micrometer Region: Silicon Colloid Nanocavities. Advanced Materials 2012;24(44):5934-+.
    43. Zedler M, Caloz C, Russer P. A 3-D isotropic left-handed metamaterial based on the rotated transmission-line matrix (TLM) scheme. Ieee Transactions on Microwave Theory and Techniques 2007;55(12):2930-2941.
    44. Kuznetsov AI, Miroshnichenko AE, Fu YH, Zhang JB, Luk'yanchuk B. Magnetic light. Scientific Reports 2012;2.
    45. Zhao Q, Kang L, Du B, Zhao H, Xie Q, Huang X, Li B, Zhou J, Li L. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Physical Review Letters 2008;101(2).
    46. Fano U. Citation Classics - Effects of Configuration Interaction on Intensities and Phase-Shifts. Current Contents 1977(27):8-8.
    47. Ginn JC, Brener I, Peters DW, Wendt JR, Stevens JO, Hines PF, Basilio LI, Warne LK, Ihlefeld JF, Clem PG and others. Realizing Optical Magnetism from Dielectric Metamaterials. Physical Review Letters 2012;108(9).
    48. Clemens M, Weiland T. Discrete electromagnetism with the finite integration technique - Abstract. Journal of Electromagnetic Waves and Applications 2001;15(1):79-80.
    49. Ditlbacher H, Hohenau A, Wagner D, Kreibig U, Rogers M, Hofer F, Aussenegg FR, Krenn JR. Silver nanowires as surface plasmon resonators. Physical Review Letters 2005;95(25).
    50. Rockstuhl C, Lederer F, Etrich C, Zentgraf T, Kuhl J, Giessen H. On the reinterpretation of resonances in split-ring-resonators at normal incidence. Optics Express 2006;14(19):8827-8836.
    51. Chen CY, Wu SC, Yen TJ. Experimental verification of standing-wave plasmonic resonances in split-ring resonators. Applied Physics Letters 2008;93(3).
    52. Sabah C. Electric and magnetic excitations in anisotropic broadside-coupled triangular-split-ring resonators. Applied Physics a-Materials Science & Processing 2012;108(2):457-463.
    53. Camley RE, Mills DL. Surface-Polaritons on Uniaxial Antiferromagnets. Physical Review B 1982;26(3):1280-1287.
    54. Pimenov A, Loidl A, Gehrke K, Moshnyaga V, Samwer K. Negative refraction observed in a metallic ferromagnet in the gigahertz frequency range. Physical Review Letters 2007;98(19).
    55. Rachford FJ, Armstead DN, Harris VG, Vittoria C. Simulations of ferrite-dielectric-wire composite negative index materials. Physical Review Letters 2007;99(5).
    56. Falcone F, Lopetegi T, Laso MAG, Baena JD, Bonache J, Beruete M, Marques R, Martin F, Sorolla M. Babinet principle applied to the design of metasurfaces and metamaterials. Physical Review Letters 2004;93(19).
    57. Li TQ, Liu H, Li T, Wang SM, Wang FM, Wu RX, Chen P, Zhu SN, Zhang X. Magnetic resonance hybridization and optical activity of microwaves in a chiral metamaterial. Applied Physics Letters 2008;92(13).
    58. Bitzer A, Merbold H, Thoman A, Feurer T, Helm H, Walther M. Terahertz near-field imaging of electric and magnetic resonances of a planar metamaterial. Optics Express 2009;17(5):3826-3834.
    59. Minowa Y, Fujii T, Nagai M, Ochiai T, Sakoda K, Hirao K, Tanaka K. Evaluation of effective electric permittivity and magnetic permeability in metamaterial slabs by terahertz time-domain spectroscopy. Optics Express 2008;16(7):4785-4796.
    60. Dong ZG, Xu MX, Liu H, Li T, Zhu SN. Omnidirectional magnetic-resonance transmission and its elimination in a metallic metamaterial comprising rings and plates. Physical Review E 2008;78(6).
    61. Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S. Composite medium with simultaneously negative permeability and permittivity. Physical Review Letters 2000;84(18):4184-4187.
    62. Katsarakis N, Koschny T, Kafesaki M, Economou EN, Soukoulis CM. Electric coupling to the magnetic resonance of split ring resonators. Applied Physics Letters 2004;84(15):2943-2945.
    63. Yen TJ, Padilla WJ, Fang N, Vier DC, Smith DR, Pendry JB, Basov DN, Zhang X. Terahertz magnetic response from artificial materials. Science 2004;303(5663):1494-1496.
    64. Linden S, Enkrich C, Wegener M, Zhou JF, Koschny T, Soukoulis CM. Magnetic response of metamaterials at 100 terahertz. Science 2004;306(5700):1351-1353.
    65. Klein MW, Enkrich C, Wegener M, Soukoulis CM, Linden S. Single-slit split-ring resonators at optical frequencies: limits of size scaling. Optics Letters 2006;31(9):1259-1261.
    66. Zhou J, Koschny T, Kafesaki M, Economou EN, Pendry JB, Soukoulis CM. Saturation of the magnetic response of split-ring resonators at optical frequencies. Physical Review Letters 2005;95(22).
    67. Chen WT, Chen CJ, Wu PC, Sun SL, Zhou L, Guo GY, Hsiao CT, Yang KY, Zheludev NI, Tsai DP. Optical magnetic response in three-dimensional metamaterial of upright plasmonic meta-molecules. Optics Express 2011;19(13):12837-12842.
    68. Penciu RS, Aydin K, Kafesaki M, Koschny T, Ozbay E, Economou EN, Soukoulis CM. Multi-gap individual and coupled split-ring resonator structures. Optics Express 2008;16(22):18131-18144.
    69. Zhang FL, Kang L, Zhao Q, Zhou J, Lippens D. Magnetic and electric coupling effects of dielectric metamaterial. New Journal of Physics 2012;14.
    70. Zhang F, Sadaune V, Kang L, Zhao Q, Zhou J, Lippens D. Coupling Effect for Dielectric Metamaterial Dimer. Progress in Electromagnetics Research-Pier 2012;132:587-601.
    71. Chiam SY, Singh R, Zhang WL, Bettiol AA. Controlling metamaterial resonances via dielectric and aspect ratio effects. Applied Physics Letters 2010;97(19).
    72. Lepetit T, Akmansoy E, Pate M, Ganne JP. Broadband negative magnetism from all-dielectric metamaterial. Electronics Letters 2008;44(19):1119-1120.
    73. Jackson JD. Classical electrodynamics. New York ; Chichester: Wiley; 1975. xxii, 848 p. p.
    74. Kittel C. Introduction to solid state physics. New York ; Chichester: Wiley; 1976. xiv, 608 p. p.
    75. Veselago VG. The electrodynamics of substances with simultaneously negative values of ε and μ. Soviet Physics Uspekhi 1968;10(4):509-514.
    76. Alzar CLG, Martinez MAG, Nussenzveig P. Classical analog of electromagnetically induced transparency. American Journal of Physics 2002;70(1):37-41.
    77. Barer R, Ross KFA, Tkaczyk S. Refractometry of Living Cells. Nature 1953;171(4356):720-724.
    78. Brunstin.A, Mullaney PF. Differential Light-Scattering from Spherical Mammalian-Cells. Biophysical Journal 1974;14(6):439-453.
    79. Lai YC, Lee HC, Kuo SW, Chen CK, Wu HT, Lee OK, Yen TJ. Label-Free, Coupler-Free, Scalable and Intracellular Bio-imaging by Multimode Plasmonic Resonances in Split-Ring Resonators. Advanced Materials 2012;24(23):Op148-Op152.
    80. Ota S, Wang S, Ryu J, Wang Y, Chen Y, Zhang X. Intracellular delivery of top-down fabricated tunable nano-plasmonic resonators. Nanoscale 2013;5(21):10179-10182.
    81. Gu Y, Li QZ, Xiao J, Wu KD, Wang GP. Plasmonic metamaterials for ultrasensitive refractive index sensing at near infrared. Journal of Applied Physics 2011;109(2).
    82. Achilefu S. The Insatiable Quest for Near-Infrared Fluorescent Probes for Molecular Imaging. Angewandte Chemie-International Edition 2010;49(51):9816-9818.
    83. Balanis CA. Antenna theory : analysis and design. New York: Wiley; 1997. 939 p. p.
    84. Lue N, Choi W, Popescu G, Yaqoob Z, Badizadegan K, Dasari RR, Feld MS. Live Cell Refractometry Using Hilbert Phase Microscopy and Confocal Reflectance Microscopy. Journal of Physical Chemistry A 2009;113(47):13327-13330.
    85. Liang XJ, Liu AQ, Lim CS, Ayi TC, Yap PH. Determining refractive index of single living cell using an integrated microchip. Sensors and Actuators a-Physical 2007;133(2):349-354.
    86. Bista RK, Uttam S, Wang P, Staton K, Choi S, Bakkenist CJ, Hartman DJ, Brand RE, Liu Y. Quantification of nanoscale nuclear refractive index changes during the cell cycle. Journal of Biomedical Optics 2011;16(7).
    87. Chinowsky TM, Grow MS, Johnston KS, Nelson K, Edwards T, Fu E, Yager P. Compact, high performance surface plasmon resonance imaging system. Biosensors & Bioelectronics 2007;22(9-10):2208-2215.
    88. Scarano S, Mascini M, Turner APF, Minunni M. Surface plasmon resonance imaging for affinity-based biosensors. Biosensors & Bioelectronics 2010;25(5):957-966.
    89. Hu WH, Liu YS, Lu ZS, Li CM. Poly[oligo(ethylene glycol) methacrylate-co-glycidyl methacrylate] Brush Substrate for Sensitive Surface Plasmon Resonance Imaging Protein Arrays. Advanced Functional Materials 2010;20(20):3497-3503.
    90. Steiner G. Surface plasmon resonance imaging. Analytical and Bioanalytical Chemistry 2004;379(3):328-331.
    91. Zalevsky Z, Abdulhalim I. Integrated nanophotonic devices. Burlington, MA ; Oxford: William Andrew/Elsevier; 2010. xiii, 259 p. p.
    92. Zhao D, Zhao YS. Applications of fiber optic surface plasmon resonance sensors: Review. Istm/2007: 7th International Symposium on Test and Measurement, Vols 1-7, Conference Proceedings 2007:3488-3490.
    93. Prieto F, Sepulveda B, Calle A, Llobera A, Dominguez C, Lechuga LM. Integrated Mach-Zehnder interferometer based on ARROW structures for biosensor applications. Sensors and Actuators B-Chemical 2003;92(1-2):151-158.
    94. Harris RD, Wilkinson JS. Wave-Guide Surface-Plasmon Resonance Sensors. Sensors and Actuators B-Chemical 1995;29(1-3):261-267.
    95. Alivisatos P. The use of nanocrystals in biological detection. Nature Biotechnology 2004;22(1):47-52.
    96. Chang YT, Lai YC, Li CT, Chen CK, Yen TJ. A multi-functional plasmonic biosensor. Optics Express 2010;18(9):9561-9569.
    97. Kasarova SN, Sultanova NG, Ivanov CD, Nikolov ID. Analysis of the dispersion of optical plastic materials. Optical Materials 2007;29(11):1481-1490.
    98. Fernandez DC, Bhargava R, Hewitt SM, Levin IW. Infrared spectroscopic imaging for histopathologic recognition. Nature Biotechnology 2005;23(4):469-474.
    99. Bonod N, Enoch S, SpringerLink (Online Service). Plasmonics from basics to advanced topics. Springer series in optical sciences v.167. Berlin ; New York: Springer; 2012. p 1 online resource.
    100. Kottmann JP, Martin OJF, Smith DR, Schultz S. Non-regularly shaped plasmon resonant nanoparticle as localized light source for near-field microscopy. Journal of Microscopy-Oxford 2001;202:60-65.
    101. Hao F, Nordlander P, Sonnefraud Y, Van Dorpe P, Maier SA. Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing. Acs Nano 2009;3(3):643-652.
    102. Ataka K, Kottke T, Heberle J. Thinner, Smaller, Faster: IR Techniques To Probe the Functionality of Biological and Biomimetic Systems. Angewandte Chemie-International Edition 2010;49(32):5416-5424.
    103. Osawa M, Ataka K, Yoshii K, Nishikawa Y. Surface-Enhanced Infrared-Spectroscopy - the Origin of the Absorption Enhancement and Band Selection Rule in the Infrared-Spectra of Molecules Adsorbed on Fine Metal Particles. Applied Spectroscopy 1993;47(9):1497-1502.
    104. Musick MD, Keating CD, Lyon LA, Botsko SL, Pena DJ, Holliway WD, McEvoy TM, Richardson JN, Natan MJ. Metal films prepared by stepwise assembly. 2. Construction and characterization of colloidal Au and Ag multilayers. Chemistry of Materials 2000;12(10):2869-2881.
    105. Hofmann HF, Kosako T, Kadoya Y. Design parameters for a nano-optical Yagi-Uda antenna. New Journal of Physics 2007;9.
    106. Kosako T, Kadoya Y, Hofmann HF. Directional control of light by a nano-optical Yagi-Uda antenna. Nature Photonics 2010;4(5):312-315.
    107. Merlein J, Kahl M, Zuschlag A, Sell A, Halm A, Boneberg J, Leiderer P, Leitenstorfer A, Bratschitsch R. Nanomechanical control of an optical antenna. Nature Photonics 2008;2(4):230-233.
    108. Curto AG, Volpe G, Taminiau TH, Kreuzer MP, Quidant R, van Hulst NF. Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna. Science 2010;329(5994):930-933.
    109. Aouani H, Itzhakov S, Gachet D, Devaux E, Ebbesen TW, Rigneault H, Oron D, Wenger J. Colloidal Quantum Dots as Probes of Excitation Field Enhancement in Photonic Antennas. Acs Nano 2010;4(8):4571-4578.
    110. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors. Nature Materials 2008;7(6):442-453.
    111. Cubukcu E, Zhang S, Park YS, Bartal G, Zhang X. Split ring resonator sensors for infrared detection of single molecular monolayers. Applied Physics Letters 2009;95(4).
    112. Wu J-K, Lyu L-M, Liao C-W, Wang Y-N, Huang MH. Fast Synthesis of PbS Nanocrystals in Aqueous Solution with Shape Evolution from Cubic to Octahedral Structures and Their Assembled Structures. Chemistry – A European Journal 2012;18(45):14473-14478.
    113. Neubrech F, Pucci A, Cornelius TW, Karim S, Garcia-Etxarri A, Aizpurua J. Resonant Plasmonic and Vibrational Coupling in a Tailored Nanoantenna for Infrared Detection. Physical Review Letters 2008;101(15).
    114. Aouani H, Sipova H, Rahmani M, Navarro-Cia M, Hegnerova K, Homola J, Hong MH, Maier SA. Ultrasensitive Broadband Probing of Molecular Vibrational Modes with Multifrequency Optical Antennas. Acs Nano 2013;7(1):669-675.
    115. Xu XJG, Rang M, Craig IM, Raschke MB. Pushing the Sample-Size Limit of Infrared Vibrational Nanospectroscopy: From Monolayer toward Single Molecule Sensitivity. Journal of Physical Chemistry Letters 2012;3(13):1836-1841.
    116. Anderson MS. Surface enhanced infrared absorption by coupling phonon and plasma resonance. Applied Physics Letters 2005;87(14).
    117. Osley EJ, Biris CG, Thompson PG, Jahromi RRF, Warburton PA, Panoiu NC. Fano Resonance Resulting from a Tunable Interaction between Molecular Vibrational Modes and a Double Continuum of a Plasmonic Metamolecule. Physical Review Letters 2013;110(8).
    118. Miroshnichenko AE, Flach S, Kivshar YS. Fano resonances in nanoscale structures. Reviews of Modern Physics 2010;82(3):2257-2298.
    119. Aravind PK, Metiu H. The Effects of the Interaction between Resonances in the Electromagnetic Response of a Sphere-Plane Structure - Applications to Surface Enhanced Spectroscopy. Surface Science 1983;124(2-3):506-528.
    120. Hillenbrand R, Taubner T, Keilmann F. Phonon-enhanced light-matter interaction at the nanometre scale. Nature 2002;418(6894):159-162.
    121. Alonso-Gonzalez P, Albella P, Schnell M, Chen J, Huth F, Garcia-Etxarri A, Casanova F, Golmar F, Arzubiaga L, Hueso LE and others. Resolving the electromagnetic mechanism of surface-enhanced light scattering at single hot spots. Nature Communications 2012;3.
    122. Adato R, Altug H. In-situ ultra-sensitive infrared absorption spectroscopy of biomolecule interactions in real time with plasmonic nanoantennas. Nature Communications 2013;4.
    123. Rommel CE, Dierker C, Schmidt L, Przibilla S, von Bally G, Kemper B, Schnekenburger J. Contrast-enhanced digital holographic imaging of cellular structures by manipulating the intracellular refractive index. Journal of Biomedical Optics 2010;15(4).
    124. Cunningham AJ. Introduction to bioanalytical sensors. New York ; Chichester: Wiley; 1998. xvii, 418 p p.
    125. Groner W, Winkelman JW, Harris AG, Ince C, Bouma GJ, Messmer K, Nadeau RG. Orthogonal polarization spectral imaging: A new method for study of the microcirculation. Nature Medicine 1999;5(10):1209-1213.
    126. Wang L, Li T, Guo RY, Xia W, Xu XG, Zhu SN. Active display and encoding by integrated plasmonic polarizer on light-emitting-diode. Scientific Reports 2013;3.
    127. Schubert O, Becker J, Carbone L, Khalavka Y, Provalska T, Zins I, Sonnichsen C. Mapping the polarization pattern of plasmon modes reveals nanoparticle symmetry. Nano Letters 2008;8(8):2345-2350.
    128. Mertens H, Biteen JS, Atwater HA, Polman A. Polarization-selective plasmon-enhanced silicon quantum-dot luminescence. Nano Letters 2006;6(11):2622-2625.
    129. Zhou JF, Koschny T, Soukoulis CM. Magnetic and electric excitations in split ring resonators. Optics Express 2007;15(26):17881-17890.
    130. Romeo M, Matthaus C, Miljkovic M, Diem M. Infrared microspectroscopy of individual human cervical cancer (HeLa) cells. Biopolymers 2004;74(1-2):168-171.
    131. Tamm LK, Tatulian SA. Infrared spectroscopy of proteins and peptides in lipid bilayers. Quarterly Reviews of Biophysics 1997;30(4):365-429.
    132. Lai YJ, Chen CK, Yen TJ. Creating negative refractive identity via single-dielectric resonators. Optics Express 2009;17(15):12960-12970.
    133. Lai YC, Chen CK, Yang YH, Yen TJ. Low-loss and high-symmetry negative refractive index media by hybrid dielectric resonators. Optics Express 2012;20(3):2876-2880.
    134. Lagos N, Sigalas MM. Single particle detection in a system of two microdisks. Sensors and Actuators B-Chemical 2011;153(1):252-255.
    135. Harris SE. Electromagnetically induced transparency. Physics Today 1997;50(7):36-42.
    136. Harris SE, Field JE, Imamoglu A. Nonlinear Optical Processes Using Electromagnetically Induced Transparency. Physical Review Letters 1990;64(10):1107-1110.
    137. Wu HB, Xiao M, Gea-Banacloche J. Evidence of lasing without inversion in a hot rubidium vapor under electromagnetically-induced-transparency conditions. Physical Review A 2008;78(4):-.
    138. Matsko AB, Kocharovskaya O, Rostovtsev Y, Welch GR, Zibrov AS, Scully MO. Slow, ultraslow, stored, and frozen light. Advances in Atomic, Molecular, and Optical Physics, Vol 46 2001;46:191-242.
    139. Longdell JJ, Fraval E, Sellars MJ, Manson NB. Stopped light with storage times greater than one second using electromagnetically induced transparency in a solid. Physical Review Letters 2005;95(6):-.
    140. Hau LV, Harris SE, Dutton Z, Behroozi CH. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 1999;397(6720):594-598.
    141. Turukhin AV, Sudarshanam VS, Shahriar MS, Musser JA, Ham BS, Hemmer PR. Observation of ultraslow and stored light pulses in a solid. Physical Review Letters 2002;88(2):-.
    142. Kim J, Chuang SL, Ku PC, Chang-Hasnain CJ. Slow light using semiconductor quantum dots. Journal of Physics-Condensed Matter 2004;16(35):S3727-S3735.
    143. Li ZY, Ma YF, Huang R, Singh RJ, Gu JQ, Tian Z, Han JG, Zhang WL. Manipulating the plasmon-induced transparency in terahertz metamaterials. Optics Express 2011;19(9):8912-8919.
    144. Fedotov VA, Rose M, Prosvirnin SL, Papasimakis N, Zheludev NI. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Physical Review Letters 2007;99(14):147401.
    145. Zhang S, Genov DA, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Physical Review Letters 2008;101(4).
    146. Papasimakis N, Fedotov VA, Zheludev NI, Prosvirnin SL. Metamaterial Analog of Electromagnetically Induced Transparency. Physical Review Letters 2008;101(25).
    147. Dong ZG, Liu H, Xu MX, Li T, Wang SM, Zhu SN, Zhang X. Plasmonically induced transparent magnetic resonance in a metallic metamaterial composed of asymmetric double bars. Optics Express 2010;18(17):18229-18234.
    148. Chen CY, Un IW, Tai NH, Yen TJ. Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance. Optics Express 2009;17(17):15372-15380.
    149. Mongia RK, Bhartia P. Dielectric Resonator Antennas - a Review and General Design Relations for Resonant-Frequency and Bandwidth. International Journal of Microwave and Millimeter-Wave Computer-Aided Engineering 1994;4(3):230-247.
    150. Mongia RK, Ittipiboon A. Theoretical and experimental investigations on rectangular dielectric resonator antennas. Ieee Transactions on Antennas and Propagation 1997;45(9):1348-1356.
    151. Lepetit T, Akmansoy E, Ganne JP, Lourtioz JM. Resonance continuum coupling in high-permittivity dielectric metamaterials. Physical Review B 2010;82(19).
    152. Wang J, Xu Z, Yu ZH, Wei XY, Yang YM, Wang JF, Qu SB. Experimental realization of all-dielectric composite cubes/rods left-handed metamaterial. Journal of Applied Physics 2011;109(8).
    153. Cummer SA, Popa BI. Compact dielectric particles as a building block for low-loss magnetic metamaterials. Physical Review Letters 2008;100(20).
    154. Halas NJ, Wang H, Wu YP, Lassiter B, Nehl CL, Hafner JH, Nordlander P. Symmetry breaking in individual plasmonic nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 2006;103(29):10856-10860.
    155. Christ A, Martin OJF, Ekinci Y, Gippius NA, Tikhodeev SG. Symmetry breaking in a plasmonic metamaterial at optical wavelength. Nano Letters 2008;8(8):2171-2175.
    156. Tang CJ, Zhan P, Cao ZS, Pan J, Chen Z, Wang ZL. Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials. Physical Review B 2011;83(4):-.
    157. Liu H, Genov DA, Wu DM, Liu YM, Liu ZW, Sun C, Zhu SN, Zhang X. Magnetic plasmon hybridization and optical activity at optical frequencies in metallic nanostructures. Physical Review B 2007;76(7):-.
    158. Liu N, Kaiser S, Giessen H. Magnetoinductive and Electroinductive Coupling in Plasmonic Metamaterial Molecules. Advanced Materials 2008;20(23):4521-4525.
    159. Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M, Sonnichsen C, Giessen H. Planar Metamaterial Analogue of Electromagnetically Induced Transparency for Plasmonic Sensing. Nano Letters 2010;10(4):1103-1107.
    160. Mosallaei H, Ahmadi A. Physical configuration and performance modeling of all-dielectric metamaterials. Physical Review B 2008;77(4).
    161. Burresi M, van Oosten D, Kampfrath T, Schoenmaker H, Heideman R, Leinse A, Kuipers L. Probing the Magnetic Field of Light at Optical Frequencies. Science 2009;326(5952):550-553.
    162. Klein MW, Enkrich C, Wegener M, Linden S. Second-harmonic generation from magnetic metamaterials. Science 2006;313(5786):502-504.
    163. Zhang S, Genov DA, Wang Y, Liu M, Zhang X. Plasmon-induced transparency in metamaterials. Physical Review Letters 2008;101(4):4.
    164. Krauss TF. Why do we need slow light? Nature Photonics 2008;2(8):448-450.
    165. Tassin P, Zhang L, Koschny T, Kurter C, Anlage SM, Soukoulis CM. Large group delay in a microwave metamaterial analog of electromagnetically induced transparency. Applied Physics Letters 2010;97(24).
    166. Soljacic M, Johnson SG, Fan SH, Ibanescu M, Ippen E, Joannopoulos JD. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. Journal of the Optical Society of America B-Optical Physics 2002;19(9):2052-2059.
    167. Boyd RW, Gauthier DJ. "Slow" and "fast" light. Progress in Optics, Volume 43 2002;43:497-530.
    168. Sales S, Ohman F, Capmany J. Applications of the slow and fast light effects in SOA-EA structures in the radio over fiber links. ICTON 2007: Proceedings of the 9th International Conference on Transparent Optical Networks, Vol 3 2007:269-272.
    169. Tobing LYM, Tjahjana L, Zhang DH, Zhang Q, Xiong QH. Sub-100-nm Sized Silver Split Ring Resonator Metamaterials with Fundamental Magnetic Resonance in the Middle Visible Spectrum. Advanced Optical Materials 2014;2(3):280-285.
    170. Moreau A, Ciraci C, Mock JJ, Hill RT, Wang Q, Wiley BJ, Chilkoti A, Smith DR. Controlled-reflectance surfaces with film-coupled colloidal nanoantennas. Nature 2012;492(7427):86-+.
    171. Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR. Metamaterial electromagnetic cloak at microwave frequencies. Science 2006;314(5801):977-980.
    172. Chen CK, Lai YC, Yang YH, Chen CY, Yen TJ. Inducing transparency with large magnetic response and group indices by hybrid dielectric metamaterials. Optics Express 2012;20(7):6952-6960.
    173. Qin L, Zhang K, Peng RW, Xiong X, Zhang W, Huang XR, Wang M. Optical-magnetism-induced transparency in a metamaterial. Physical Review B 2013;87(12).
    174. Francoeur M, Basu S, Petersen SJ. Electric and magnetic surface polariton mediated near-field radiative heat transfer between metamaterials made of silicon carbide particles. Optics Express 2011;19(20):18774-18788.
    175. Valentine J, Zhang S, Zentgraf T, Zhang X. Development of Bulk Optical Negative Index Fishnet Metamaterials: Achieving a Low-Loss and Broadband Response Through Coupling. Proceedings of the Ieee 2011;99(10):1682-1690.
    176. Zou LF, Withayachumnankul W, Shah CM, Mitchell A, Bhaskaran M, Sriram S, Fumeaux C. Dielectric resonator nanoantennas at visible frequencies. Optics Express 2013;21(1):1344-1352.
    177. Evlyukhin AB, Novikov SM, Zywietz U, Eriksen RL, Reinhardt C, Bozhevolnyi SI, Chichkov BN. Demonstration of Magnetic Dipole Resonances of Dielectric Nanospheres in the Visible Region. Nano Letters 2012;12(7):3749-3755.
    178. !!! INVALID CITATION !!!
    179. Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nature Materials 2012;11(11):917-924.
    180. Goldflam MD, Driscoll T, Chapler B, Khatib O, Jokerst NM, Palit S, Smith DR, Kim BJ, Seo G, Kim HT and others. Reconfigurable gradient index using VO2 memory metamaterials. Applied Physics Letters 2011;99(4).
    181. Driscoll T, Kim HT, Chae BG, Kim BJ, Lee YW, Jokerst NM, Palit S, Smith DR, Di Ventra M, Basov DN. Memory Metamaterials. Science 2009;325(5947):1518-1521.
    182. Wen QY, Zhang HW, Yang QH, Xie YS, Chen K, Liu YL. Terahertz metamaterials with VO2 cut-wires for thermal tunability. Applied Physics Letters 2010;97(2).
    183. Zhao Q, Kang L, Du B, Li B, Zhou J, Tang H, Liang X, Zhang BZ. Electrically tunable negative permeability metamaterials based on nematic liquid crystals. Applied Physics Letters 2007;90(1).
    184. Amin M, Farhat M, Bagci H. A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications. Scientific Reports 2013;3.
    185. Savinov V, Fedotov VA, Anlage SM, de Groot PAJ, Zheludev NI. Modulating Sub-THz Radiation with Current in Superconducting Metamaterial. Physical Review Letters 2012;109(24).
    186. Padilla WJ, Taylor AJ, Highstrete C, Lee M, Averitt RD. Dynamical electric and magnetic metamaterial response at terahertz frequencies. Physical Review Letters 2006;96(10).
    187. Qazilbash MM, Brehm M, Chae BG, Ho PC, Andreev GO, Kim BJ, Yun SJ, Balatsky AV, Maple MB, Keilmann F and others. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 2007;318(5857):1750-1753.
    188. Vishnu KG, Strachan A. Shape memory metamaterials with tunable thermo-mechanical response via hetero-epitaxial integration: A molecular dynamics study. Journal of Applied Physics 2013;113(10).
    189. Xu XF, He XF, Wang G, Yuan XL, Liu XX, Huang HY, Yao S, Xing HZ, Chen XS, Chu JH. The study of optimal oxidation time and different temperatures for high quality VO2 thin film based on the sputtering oxidation coupling method. Applied Surface Science 2011;257(21):8824-8827.
    190. Xu XF, Yin AY, Du XL, Wang JQ, Liu JD, He XF, Liu XX, Huan YL. A novel sputtering oxidation coupling (SOC) method to fabricate VO2 thin film. Applied Surface Science 2010;256(9):2750-2753.
    191. Shahzad M, Medhi G, Peale RE, Buchwald WR, Cleary JW, Soref R, Boreman GD, Edwards O. Infrared surface plasmons on heavily doped silicon. Journal of Applied Physics 2011;110(12).
    192. Spinelli P, Verschuuren MA, Polman A. Broadband omnidirectional antireflection coating based on subwavelength surface Mie resonators. Nature Communications 2012;3.
    193. Chen XD, Grzegorczyk TM, Wu BI, Pacheco J, Kong JA. Robust method to retrieve the constitutive effective parameters of metamaterials. Physical Review E 2004;70(1).
    194. Vernon KC, Funston AM, Novo C, Gomez DE, Mulvaney P, Davis TJ. Influence of Particle-Substrate Interaction on Localized Plasmon Resonances. Nano Letters 2010;10(6):2080-2086.
    195. Kana JBK, Ndjaka JM, Vignaud G, Gibaud A, Maaza M. Thermally tunable optical constants of vanadium dioxide thin films measured by spectroscopic ellipsometry. Optics Communications 2011;284(3):807-812.
    196. Ishikawa H, Tamaru H, Miyano K. Microsphere resonators strongly coupled to a plane dielectric substrate: coupling via the optical near field. Journal of the Optical Society of America a-Optics Image Science and Vision 2000;17(4):802-813.
    197. Lukosz W, Kunz RE. Light-Emission by Magnetic and Electric Dipoles Close to a Plane Interface .1. Total Radiated Power. Journal of the Optical Society of America 1977;67(12):1607-1615.
    198. Xiao MF, Bozhevolnyi S. Imaging with reflection near-field optical microscope: Contributions of middle and far fields. Optics Communications 1996;130(4-6):337-347.
    199. Evlyukhin AB, Bozhevolnyi SI. Point-dipole approximation for surface plasmon polariton scattering: Implications and limitations. Physical Review B 2005;71(13).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE