研究生: |
陳宣毓 |
---|---|
論文名稱: |
運用表列量化晶格正交輔助之半正定放寬多天線訊號偵測 Lattice Reduction with List Quantization for Semidefinite Relaxation MIMO Signal Detection |
指導教授: | 吳仁銘 |
口試委員: |
吳文榕
洪樂文 吳仁銘 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 43 |
中文關鍵詞: | 晶格正交 、半正定放寬 、表列量化 、多天線 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
此篇論文主要是基於觀察半正定放寬多天線系統,在低天線數的情形下,不能達成完全的分級增益(full diversity gain);而晶格正交輔助之偵測方法,在低天線數的情形下則可以達成完全分級增益,惟不同的量化方法亦會影響晶格正交輔助之偵測方法的錯誤率。這篇論文主要是將晶格正交輔助應用於半正定放寬多天線系統上,並採用表列量化降低晶格正交輔助的量化錯誤率。我們使用內點法(interior-point method)來實現半正定放寬系統,並利用提前終止(early termination)的條件,更進一步降低實現半正定放寬系統的複雜度。模擬與分析結果顯示,採用晶格正交輔助之半正定放寬多天線訊號偵測不但可以達成完全分級增益,更能減少內點法的反覆運算次數,因此可以減少半正定放寬的運算複雜度。此外,我們提出的近鄰取樣表列量化方法,也可在不犧牲錯誤率的情形下,有效的降低運算複雜度。
[1] M. O. Damen, H. E. Gamal, and G. Caire, “On maximum-likelihood detection and the search for the closest lattice point,” IEEE Trans. Inform. Theory, vol. 49, no. 10, pp. 2389-2402, 2003.
[2] J. Jalden and B. Ottersten, “On the complexity of sphere decoding in digital communications,” IEEE Trans. on Signal Processing, vol. 53, no. 4, pp. 1474-1484, April 2005.
[3] P. Tan and L. Rasmussen, “The application of semidenite programming for detection in cdma,” IEEE J. Select. Areas Commun, vol. 19, no. 4, pp. 1442-1449, April 2001.
[4] W.-K. Ma, T. Davidson, K. Wong, Z.-Q. Luo, and P. Ching, “Quasi-maximumlikelihood multiuser detection using semi-denite relaxation with application to synchronous CDMA," IEEE Trans. Signal Process, vol. 50, no. 4, pp. 912-922, April 2002.
[5] B. Steingrimsson, Z.-Q. Luo, and K. M. Wong, “Soft quasi-maximum-likelihood detection for multiple-antenna wireless channels,” IEEE Trans. Signal Process, vol. 51, no. 11, pp. 2710-2719, Nov. 2003.
[6] W.-K. Ma, T. N. Davidson, K. M. Wong, and P.-C. Ching, “A block alternating likelihood maximization approach to multiuser detection,” IEEE Trans. Signal Process., vol. 52, no. 9, pp. 2600-2611, Sept. 2004.
[7] A. Wiesel, Y. C. Eldar, and S. Shamai, “Semidenite relaxation for detection of 16-qam signaling in mimo channels,” IEEE Signal Process. Lett., vol. 12, no. 9, pp. 653-656, NOV. 2005.
[8] N. D. Sidiropoulous and Z.-Q. Luo, “A semidenite relaxation approach to mimo detection for higher-order constellations,” IEEE Signal Process. Lett., vol. 13, no. 9, pp. 525-528, Sep. 2006.
[9] Z. Mao, X. Wang, and X. Wang, “Semidenite programming relaxation approach for multiuser detection of QAM signals,” IEEE Trans. on Wireless Commun., vol. 6, no. 12, pp. 4275-4279, Dec. 2007.
[10] W.-K. Ma, C.-C. Su, J. Jalden, T.-H. Chang, and C.-Y. Chi, “The equivalence of
semidenite relaxation MIMO detectors for higher-order QAM,” IEEE J. of Select.
Topics in Signal Process., vol. 3, no. 6, pp. 1038-1051, Dec. 2009.
[11] J. Jalden and B. Ottersten, “The diversity order of the semidenite relaxation detector,” IEEE Trans. Inf. Theory, vol. 54, no. 4, pp. 1406-1422, April 2008.
[12] A. M.-C. So, “On the performance of semidenite relaxation MIMO detectors for QAM constellations,” in Proc. IEEE International Conference on Acoustics and Speech and Signal Processing (ICASSP), pp. 2449-2452, April. 2009.
[13] H. Yao and G. Wornell, “Lattice-reduction-aided algorthms for low complexity MIMO detection,” in IEEE Global Telecommunications Conf. (Globecom), Nov. 2002, pp. 424-428.
[14] M. Taherzadeh, A. Mobasher, and A. K. Khandani, “LLL reduction achieves the receive diversity in MIMO decoding,” IEEE Trans. Inform. Theory, vol. 53, no. 12, pp. 4801-4805, 2007.
[15] C. Windpassinger and R. F. H. Fischer, “Low-complexity near maximum-likelihood detection
and precoding for MIMO systems using lattice reduction," in IEEE Information
Theory Workshop (ITW), Mar. 31-Apr. 4 2003, pp. 345-348.
[16] D. Wubben, R. Bohnke, V. Kuhn, and K.-D. Kammeyer, “Nearmaximum-likelihood detection of MIMO systems using MMSE-based lattice reduction,” in Proc. IEEE International Conf. on Communications (ICC), vol. 2, pp. 798-802, June 2004.
[17] A. K. Lenstra, H. W. Lenstra, and L. Lovasz, “Factoring polynomials with rational coecients,” Mathematische Annalen, vol. 261, pp. 515-534, 1982.
[18] Y. H. Gan, C. Ling, and W. H. Mow, “Complex lattice reduction algorithm for low complexity full-diversity MIMO detection,” IEEE Trans. on Signal Processing, vol. 57, no. 7, pp. 2701-2710, July 2009.
[19] X. Ma and W. Zhang, “Performance analysis for MIMO systems with lattice-reduction aided linear equalization,” IEEE Trans. on Commun., vol. 56, no. 2, pp. 309-318, Feb. 2008.
[20] T. D. Nguyen, T. Fujino, and X. N. Tran, “An improved quantization scheme for lattice reduction aided mimo detection,” International Symposium on Communication and Information Technologies (ISCIT), 2007.
[21] C. Helmberg, F. Rendl, R. Vanderbei, and H. Wolkowicz, “An interior-point method for semidenite programming,” SIAM J. Optim., vol. 6, no. 2, pp. 342-361, 1996.
[22] J. Jalden and B. Ottersten, “Channel dependent termination of the semidenite relaxation detector,” IEEE International Conference on Acoustics, Speech and Signal
Processing, vol. 4, May 2006.
[23] C. P. Schnoor and M. Euchner, “Lattice basis reduction: Improved practical algorithms and solving subset sum problems,” Mathematical Programming, vol. 66, pp. 181-191, 1994.
[24] M. Seysen, “Simultaneous reduction of a lattice basis and its reciprocal basis,” Combinatorica, vol. 13, no. 3, pp. 363-376, 1993.
[25] A. Akhavi, “The optimal LLL algorithms is still polynomial in fixed dimension,” Theor. Comput. Sci., vol. 297, no. 1, pp. 3-23, Mar. 2003.
[26] D. Wubben and D. Seethaler, “On the performance of lattice reduction schemes for mimo data detection,” Asilomar Conference on Signals, Systems and Computers, pp. 1534-1538, Nov. 2007.
[27] D. Wubben, R. Bohnke, V. Kuhn, and K.-D. Kammeyer, “Nearmaximum-likelihood detection of MIMO systems using MMSE-based lattice reduction,” in Proc. IEEE International Conf. on Communications (ICC), vol. 2, pp. 798-802, June 2004.
[28] D. Wubben, R. Bohnke, J. Rinas, V. Kuhn, and K. D. Kammeyer, “Efficient algorithm for decoding layered space-time codes,” IEEE Electronics Letters, vol. 37, no. 22, pp. 1348-1350, October 2001.
[29] D. Wubben, R. Bohnke, , V. Kuhn, and K. D. Kammeyer, “MMSE extension of VBLAST based on sorted QR decomposition,” IEEE Proc. VTC-Fall, October 2003.
[30] X. Ma and W. Zhang, “Performance analysis for MIMO systems with lattice-reduction aided linear equalization,” IEEE Trans. Commun., vol. 56, no. 2, pp. 309-318, February 2008.
[31] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge: Cambridge university Press, 2004.
[32] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones,” Optimization Methods and Software, vol. 11-12, pp. 625-653, 1999.
[33] M. Grant, S. Boyd, and Y. Ye. CVX: MATLAB software for disciplined convex programming[Online].
[34] Z. Mao, X. Wang, and X. Wang, “Semidenite programming relaxation approach for multiuser detection of qam signals,” IEEE Trans. Wireless Commun., vol. 6, no. 12, pp. 4275-4279, Dec. 2007.
[35] W. K. Ma, P. Ching, and Z. Ding, “Semidenite relaxation based multiuser detection for m-ary psk multiuser systems,” IEEE Trans. Signal Process., vol. 52, no. 10, pp. 2862-2872, Oct. 2004.
[36] J. J. W.-K. Ma, C.-C Su and C.-Y. Chi, “Some results on 16-qam detection using
semidenite relaxation,” in Proc. IEEE International Conference on Acoustics and
Speech and Signal Processing (ICASSP), pp. 2673 - 2676, 2008.