簡易檢索 / 詳目顯示

研究生: 黃泰霖
Huang, Tai-Lin
論文名稱: 探究頭頸癌生長、轉移的機轉與鼻咽癌病人放射治療後慢性副作用
Dissecting the growth and metastasis mechanism of head and neck cancer and the chronic side-effects after radiotherapy in patients with nasopharyngeal cancer
指導教授: 張壯榮
Chang, Chuang-Rung
口試委員: 陳令儀
Chen, Lin-Yi
陳昶翰
Chen, Chang-Han
張育嘉
Chang, Yu-Jia
林愷悌
Lin, Kai-Ti
學位類別: 博士
Doctor
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 151
中文關鍵詞: 頭頸癌Drp1FOXM1MMP12鼻咽癌放射治療動脈粥狀化心血管自主功能
外文關鍵詞: MMP12, cardiovascular autonomic function, baroreflex failure
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 探究頭頸癌生長、轉移的機轉
    第一部分: Drp1 的敲低表現經由抑制FOXM1和MMP12 的表達, 有助於抑制頭頸癌的生長和轉移
    Drp1的異常表達已在多種人類癌症中被發現,並可預測不良預後。Drp1在頭頸癌(HNC)發展中的病理特徵及機制尚不完全清楚。在本研究中,我們證明了頭頸癌組織中Drp1的表現顯著上升及其表現與頭頸癌患者較差的生存相關。在體外和體內模型中,Drp1的減少抑制了腫瘤的生長和轉移。此外,我們還探索了miR-575可以靶向Drp1 mRNA的3’UTR,並減弱Drp1蛋白的表達。機制研究表明,Drp1通過增加轉錄因子FOXM1與MMP12啓動子區域的特異性結合,在轉錄水平上調控MMP12。臨床結果顯示,Drp1的表達與FOXM1和MMP12在頭頸癌腫瘤組織中的表達呈正相關,提示其與頭頸癌發生過程中病理的相關性。總的來說,我們的研究為Drp1的作用提供了新的觀點,並強調了靶向miR-575/Drp1/FOXM1/MMP12軸作為中斷頭頸癌進展的新療法。
    II. 探究鼻咽癌病人放射治療後慢性副作用
    第二部分: 鼻咽癌病人接受放射治療後對頸動脈壁內膜厚度的長期影響
    血管異常是鼻咽癌病人接受放射治療後顯著的組織學變化。本篇研究是檢測放射治療後的時間長短是否與頸動脈壁厚度(IMT)的進展有關,同時研究其與發炎指標的相關性。收錄經放射治療後超過一年以上的一佰零五位鼻咽癌病人及二十五位健康的成人,利用B-mode超音波測量總頸動脈外壁(CCA)的頸動脈壁厚度。結果發現在所有鼻咽癌病人,總頸動脈外壁的頸動脈壁厚度的增加與放射治療後的時間長短是呈現正相關。總結來說: 因為放射治療的慢性副作用,放射治療引起的血管病變是一個動態且持續進展的過程。在年齡大於五十歲及放射治療後四十個月的鼻咽癌病人,顱外彩色都普勒超音波可以是正規追蹤檢查的一部份。
    第三部分: 放射治療後的鼻咽癌病人, 頸部放射治療對於心血管自主功能的長期影響
    壓力反射是鼻咽癌病人頸部放射治療後的慢性後遺症。本篇研究是檢測鼻咽癌病人放射治療後的心血管自主功能,以便檢測其相關結果與預測因子。收錄經放射治療後超過六個月以上的八十九位的鼻咽癌病人,與四十八位健康成人相比較其心血管自主功能,同時評估發炎因子與頸動脈壁厚度(IMT)。
    本篇研究顯示在鼻咽癌病人,心跳速率對於經深呼吸及瓦爾賽薩爾瓦(Valsalva)比率的反應,其自主功能的參數是顯著降低。心血管自主功能不足,普遍與心血管迷走神經傳輸相對不足有相關。此外,本篇研究也顯示放射治療後的時間及C-反應蛋白質的數值與心血管自主功能異常有顯著相關。總結來說: 放射治療引起的心血管自主功能的降低是放射治療後一個動態且持續進展的過程。慢性發炎反應在這過程扮演一個非常重要的角色。


    My dissertation includes three parts. The first part is focused on Drp1 knockdown contributes to the suppression of head and neck cancer growth and metastasis by inhibiting FOXM1 and MMP12 expression. The second part is focused on the long-term effects on carotid intima-media thickness after radiotherapy in patients with nasopharyngeal carcinoma. The third part is focused on the long-term effects of neck irradiation on cardiovascular autonomic function: a study in patients with NPC after radiotherapy.

    I. Dissecting the growth and metastasis mechanism of head and neck cancer (HNC)
    Section I: Drp1 knockdown contributes to the suppression of head and neck cancer growth and metastasis by inhibiting FOXM1 and MMP12 expression
    Abnormal Drp1 expression is usually disclosed in various human cancers and correlated to a poor prognosis. At the present, the clinical-pathological characteristics and underlying mechanism of Drp1 in the development of head and neck cancer (HNC) are not fully understood. Therefore, we demonstrated a significant overexpression of Drp1 in HNC tissues. Moreover, its overexpression correlated with poor survival in the patients with HNC. Silenced Drp1 suppressed tumor growth and metastasis in vitro and in vivo. In addition, we found that miR-575 could target the 3’UTR of Drp1 messenger ribonucleic acid (mRNA) and reduce Drp1 protein expression. By increasing the specific binding of the transcription factor FOXM1 to the MMP12 promoter region, MMP12 was upregulated by Drp1 at a transcriptional level in the mechanistic research. Clinical pathologic tissues stains demonstrated that Drp1 expression positively related to FOXM1 and MMP12 expression in HNC tumor tissues, suggesting its pathological results in the connection of HNC development. In conclusion, our research offers mechanistic perception into the role of Drp1 and demonstrates the potential of targeting the miR-575/Drp1/FOXM1/MMP12 axis as a novel therapy for the discontinuation of HNC progression.
    II. Exploring the chronic side-effects after radiotherapy in patients with nasopharyngeal cancer
    Section II: Long-term effects on carotid intima-media thickness after radiotherapy in patients with nasopharyngeal carcinoma
    Vasculopathy is the most noticeable histologic change associated with nasopharyngeal carcinoma (NPC) after radiotherapy. In the present study, we demonstrated that the duration after radiotherapy correlates with the progression of carotid intima-media thickness (IMT) and explored its relationship with inflammatory markers. We
    examined one hundred and five patients with NPC after radiotherapy for over a year and 25 healthy control subjects were examined by B-mode ultrasound for IMT measurement at the far wall of the common carotid artery (CCA). We found that increased IMT was associated with the duration after radiotherapy in a linear manner. In conclusion, radiation-induced vasculopathy is a dynamic and progressive process caused by late radiation effects. Extracranial color-coded duplex sonography should be arranged to the part of routine follow-up in patients with NPC aged ≥50 years at 40 months post-radiotherapy.
    Section III: Long-term effects of neck irradiation on cardiovascular autonomic function: a study in patients with NPC after radiotherapy
    Baroreflex was explored as a late sequela of neck radiotherapy in patients with NPC.
    In the present study, we demonstrated the cardiovascular autonomic function in patients with NPC after radiotherapy to examine the predictive factors associated with the outcome. We evaluated 89 patients with NPC more than six months after radiotherapy for cardiovascular autonomic function and compared with 48 control healthy subjects. Inflammatory markers and carotid IMT were also evaluated.
    The studies showed that the autonomic parameters including heart rate response to deep breathing and the Valsalva ratio were significantly lower in the patient group compared to the control group. Cardiovascular autonomic impairment was generally mild with relative sparing of the efferent cardiovagal pathway. We also found that the time after radiotherapy and C-reactive protein level were significantly associated with the degree of cardiovascular autonomic dysfunction. Collectively, our study demonstrated that radiation-induced cardiovascular autonomic impairment is a dynamic and progressive process that occurs in patients with NPC long after radiotherapy. Chronic inflammation also plays a predominant role in this course.

    致謝..............................................................2 Abstract….........................................................4 中文摘要…..........................................................8 Contents..........................................................11 Section I: Drp1 knockdown contributes to the suppression of head and neck cancer growth and metastasis by inhibiting FOXM1 and MMP12 expression Chapter 1. Introduction...........................................21 1.1 Introduction of head and neck cancer (HNC)……….............21 1.2 Role of Drp1 in human cancers……………………………………………............22 1.3 Purpose of this study………………………………………………………................23 Chapter 2. Materials and Methods...........................................................24 2.1 Patient samples ……………………………………………………………...................24 2.2 Cell lines and cultures………………………………………………………..............25 2.3 Ribonucleic acid (RNA) extraction and quantitative real-time polymerase. chain reaction (RT-PCR) assay……………………………………………........25 2.4 Cell transfection……………………………………………………………..................26 2.5 Western blot assay…………………………………………….......................27 2.6 Dual-luciferase reporter assay………………………………………………..........28 2.7 Cell growth assay…………………………………………………………...................29 2.8 Migration and invasion assay………………………………………………............29 2.9 Immunohistochemical (IHC) staining……………………………………….........29 2.10 Chromatin immunoprecipitation (ChIP) assay……………………………....30 2.11 Enzyme-linked immunosorbent assay (ELISA)…………………………......31 2.12 Animal study……………………………………………………………….....................31 2.13 Statistical analysis…………………………………………………………...............32 Chapter 3. Results................................................32 3.1 Drp1 expression was correlated with poor outcomes in HNC..32 3.2 Drp1 inhibition reduced cell growth in HNC…………………………….........33 3.3 Drp1 suppression prevented cell migration and invasion in HNC...............................................................35 3.4 Drp1 was targeted by miR-545 in HNC…………………………………..........35 3.5 Identification of downstream targets of Drp1 in HNC……………………...37 3.6 FOXM1 was responsible for Drp1 upregulation of MMP12 transcription…....................................................38 Chapter 4. Conclusion.............................................40 Chapter 5. Discussion.............................................40 Chapter 6. Perspective............................................46 List of Figures...................................................48 Section II: Long-term effects on carotid intima-media thickness (IMT) after radiotherapy in patients with nasopharyngeal carcinoma (NPC) Chapter 1. Introduction...........................................72 1.1 Incidence of NPC…………………………………………………………....................72 1.2 Treatment of NPC…………………………………………………………....................73 1.3 Chronic tissue damage induced by the radiation…………………………….73 1.4 Oxidative damage from ionizing radiation …………………………………....74 1.5 Vascular abnormalities post-irradiation ……………………………………....75 1.6 Vasculopathy after radiotherapy for NPC…………………………………….....76 1.7 Effects of carotid intima media thickness (IMT) in patients with NPC……........................................................77 1.8 Study hypothesis …………………………………………………………...................77 Chapter 2. Materials and Methods..................................78 2.1 Study design ……………………………………………………………..…...................78 2.2 Inclusion criteria…………………………………………………………….................78 2.3 Exclusion criteria…………………………………………………………….................78 2.4 Diagnostic criteria of NPC………………………………………………….............79 2.5 Therapeutic guidelines of NPC……………………………………………............79 2.6 Therapeutic strategies of NPC………………………………………………...........80 2.7 Patient distributions…………………………………………………………...............80 2.8 Radiotherapy regimens…………………………………………………….................80 2.9 Chemotherapy regimens…………………………………………………….................80 2.10 Clinical assessment……………………………………………………….................81 2.11 Assessment of atherosclerosis……………………………………………...........81 2.12 Biochemical analysis………………………………………………………................82 2.13 Statistical analysis…………………………………………………………...............83 Chapter 3. Results................................................84 3.1 Baseline characteristics of the study patients…………………………….84 3.2 Carotid plaques and vascular risk factors………………………..………...85 3.3 Correlation analysis of the effects of vascular risk factors on CCA IMT….......................................................86 3.4 Duration of radiotherapy was significantly associated with CCA IMT…….............................................................86 Chapter 4. Discussion.............................................87 4.1 Little clinical research on the vasculopathy of post-radiotherapy patients with. NPC………………………………………………………………….......................87 4.2 Prevalence between vasculopathy and post-irradiation for the head and neck. Cancers……………………………………………………………………..................88 4.3 Positive correlation between risk factors and CCA IMT in patients with NPC. post-radiotherapy…………………………………………………………….......89 4.4 Limitation of this clinical study……………………………………………........89 Chapter 5. Conclusion.............................................90 Chapter 6. Perspective............................................90 List of Figures and Tables………………………………………………………................…..92 Section III: Long-term effects of neck irradiation on cardiovascular autonomic function: a study in patients with NPC after radiotherapy Chapter 1. Introduction……………………………………………...................……………….97 1.1 Incidence of NPC……………………………………………………………...................97 1.2 Effect of baroreflex failure after neck irradiation………………………….97 1.3 Purpose of this study………………………………………………………....................98 Chapter 2. Materials and Methods..................................98 2.1 Study design………………………………………………………………….....................98 2.2 Diagnostic criteria and therapeutic regimens of NPC………………………..99 2.3 Inclusion criteria…………………………………………………………….....................99 2.4 Exclusion criteria…………………………………………………………......................100 2.5 Study protocol…………………………………………………………….........................101 2.6 Assessment of cardiovascular autonomic function………………………......102 2.7 Data and Statistical Analyses ……………………………………………...............103 Chapter 3. Results................................................104 3.1 Characteristics of the study patients………………………….........…………….104 3.2 Hemodynamic and cardiovascular autonomic function…………………......105 3.3 Significant factors affecting adrenergic baroreflex outcome……………......................................................105 Chapter 4. Discussion……………………………………………………………......................106 4.1 Effects of baroreflex in patients after neck radiotherapy......................................................106 4.2 Relationship between baroreflex and the cardiovagal efferent pathway…..........................................................107 4.3 Difference in cardiovascular autonomic function………………………….109 4.4 Relationship between cardiovascular autonomic function and the duration after radiotherapy………………………………………………………….................110 4.5 Interpretation of the cardiovascular autonomic function…….111 4.6 Rare condition of the cardiovascular autonomic dysfunction condition in. patients with NPC……………………………………………………….............…112 Chapter 5. Conclusion........................................................113 Chapter 6. Perspective.......................................................113 List of Figures...........................................................114 References:…………………………………………………………………………...........................120 Section I: Drp1 knockdown contributes to the suppression of head and neck cancer growth and metastasis by inhibiting FOXM1 and MMP12 expression….......................................................120 Section II: Long-term effects on carotid intima-media thickness after radiotherapy in patients with nasopharyngeal carcinoma………………………...132 Section III: Long-term effects of neck irradiation on cardiovascular autonomic function: a study in patients with NPC after radiotherapy……………………….............................................137

    Section I: Drp1 knockdown contributes to the suppression of head and neck cancer growth and metastasis by inhibiting FOXM1 and MMP12 expression
    Cancer Registry Annual Report, 2017 Taiwan.https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269&pid=12235
    Abdeljaoued, S., Bettaieb, I., Nasri, M., Adouni, O., Goucha, A., El Amine, O., Boussen, H., Rahal, K., and Gamoudi, A. (2017). Overexpression of FOXM1 Is a Potential Prognostic Marker in Male Breast Cancer. Oncol Res Treat 40, 167-172.
    Anderson, G.R., Wardell, S.E., Cakir, M., Yip, C., Ahn, Y.R., Ali, M., Yllanes, A.P., Chao, C.A., McDonnell, D.P., and Wood, K.C. (2018). Dysregulation of mitochondrial dynamics proteins are a targetable feature of human tumors. Nat Commun 9, 1677.
    Borhani, S., and Gartel, A.L. (2020). FOXM1: a potential therapeutic target in human solid cancers. Expert Opin Ther Targets 24, 205-217.
    Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians 68, 394-424.
    Chen, C.H., Chien, C.Y., Huang, C.C., Hwang, C.F., Chuang, H.C., Fang, F.M., Huang, H.Y., Chen, C.M., Liu, H.L., and Huang, C.Y. (2009). Expression of FLJ10540 is correlated with aggressiveness of oral cavity squamous cell carcinoma by stimulating cell migration and invasion through increased FOXM1 and MMP-2 activity. Oncogene 28, 2723-2737.
    Chen, Y., Liu, Y., Ni, H., Ding, C., Zhang, X., and Zhang, Z. (2017). FoxM1 overexpression promotes cell proliferation and migration and inhibits apoptosis in hypopharyngeal squamous cell carcinoma resulting in poor clinical prognosis. Int J Oncol 51, 1045-1054.
    Chiang, Y.Y., Chen, S.L., Hsiao, Y.T., Huang, C.H., Lin, T.Y., Chiang, I.P., Hsu, W.H., and Chow, K.C. (2009). Nuclear expression of dynamin-related protein 1 in lung adenocarcinomas. Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc 22, 1139-1150.
    Chow, L.Q.M. (2020). Head and Neck Cancer. The New England journal of medicine 382, 60-72.
    Deng, X., Liu, J., Liu, L., Sun, X., Huang, J., and Dong, J. (2020). Drp1-mediated mitochondrial fission contributes to baicalein-induced apoptosis and autophagy in lung cancer via activation of AMPK signaling pathway. Int J Biol Sci 16, 1403-1416.
    DeRycke, M.S., Andersen, J.D., Harrington, K.M., Pambuccian, S.E., Kalloger, S.E., Boylan, K.L., Argenta, P.A., and Skubitz, A.P. (2009). S100A1 expression in ovarian and endometrial endometrioid carcinomas is a prognostic indicator of relapse-free survival. American journal of clinical pathology 132, 846-856.
    Ella, E., Harel, Y., Abraham, M., Wald, H., Benny, O., Karsch-Bluman, A., Vincent, D., Laurent, D., Amir, G., Izhar, U., et al. (2018). Matrix metalloproteinase 12 promotes tumor propagation in the lung. J Thorac Cardiovasc Surg 155, 2164-2175 e2161.
    Friedman, J.R., and Nunnari, J. (2014). Mitochondrial form and function. Nature 505, 335-343.
    Hagenbuchner, J., Kuznetsov, A.V., Obexer, P., and Ausserlechner, M.J. (2013). BIRC5/Survivin enhances aerobic glycolysis and drug resistance by altered regulation of the mitochondrial fusion/fission machinery. Oncogene 32, 4748-4757.
    Hedegaard, J., Lamy, P., Nordentoft, I., Algaba, F., Hoyer, S., Ulhoi, B.P., Vang, S., Reinert, T., Hermann, G.G., Mogensen, K., et al. (2016). Comprehensive Transcriptional Analysis of Early-Stage Urothelial Carcinoma. Cancer Cell 30, 27-42.
    Inoue-Yamauchi, A., and Oda, H. (2012). Depletion of mitochondrial fission factor DRP1 causes increased apoptosis in human colon cancer cells. Biochemical and biophysical research communications 421, 81-85.
    Iwamoto, H., Kanda, Y., Sejima, T., Osaki, M., Okada, F., and Takenaka, A. (2014). Serum miR-210 as a potential biomarker of early clear cell renal cell carcinoma. Int J Oncol 44, 53-58.
    Jiang, L., Wu, X., Wang, P., Wen, T., Yu, C., Wei, L., and Chen, H. (2015). Targeting FoxM1 by thiostrepton inhibits growth and induces apoptosis of laryngeal squamous cell carcinoma. J Cancer Res Clin Oncol 141, 971-981.
    Kashatus, J.A., Nascimento, A., Myers, L.J., Sher, A., Byrne, F.L., Hoehn, K.L., Counter, C.M., and Kashatus, D.F. (2015). Erk2 phosphorylation of Drp1 promotes mitochondrial fission and MAPK-driven tumor growth. Mol Cell 57, 537-551.
    Kerkela, E., Ala-Aho, R., Jeskanen, L., Rechardt, O., Grenman, R., Shapiro, S.D., Kahari, V.M., and Saarialho-Kere, U. (2000). Expression of human macrophage metalloelastase (MMP-12) by tumor cells in skin cancer. J Invest Dermatol 114, 1113-1119.
    Khan, I., Halasi, M., Zia, M.F., Gann, P., Gaitonde, S., Mahmud, N., and Gartel, A.L. (2017). Nuclear FOXM1 drives chemoresistance in AML. Leukemia 31, 251-255.
    Kitamura, S., Yanagi, T., Maeda, T., and Shimizu, H. (2020). Drp1 expression levels correlate with clinical stage in extramammary Paget's disease. J Eur Acad Dermatol Venereol.
    Klupp, F., Neumann, L., Kahlert, C., Diers, J., Halama, N., Franz, C., Schmidt, T., Koch, M., Weitz, J., Schneider, M., et al. (2016). Serum MMP7, MMP10 and MMP12 level as negative prognostic markers in colon cancer patients. BMC Cancer 16, 494.
    Koo, C.Y., Muir, K.W., and Lam, E.W. (2012). FOXM1: From cancer initiation to progression and treatment. Biochim Biophys Acta 1819, 28-37.
    Lv, F.Z., Wang, J.L., Wu, Y., Chen, H.F., and Shen, X.Y. (2015). Knockdown of MMP12 inhibits the growth and invasion of lung adenocarcinoma cells. Int J Immunopathol Pharmacol 28, 77-84.
    Lv, X., Huang, H., Feng, H., and Wei, Z. (2020). Circ-MMP2 (circ-0039411) induced by FOXM1 promotes the proliferation and migration of lung adenocarcinoma cells in vitro and in vivo. Cell Death Dis 11, 426.
    Marchant, D.J., Bellac, C.L., Moraes, T.J., Wadsworth, S.J., Dufour, A., Butler, G.S., Bilawchuk, L.M., Hendry, R.G., Robertson, A.G., Cheung, C.T., et al. (2014). A new transcriptional role for matrix metalloproteinase-12 in antiviral immunity. Nat Med 20, 493-502.
    Martinez-Santibanez, G., Singer, K., Cho, K.W., DelProposto, J.L., Mergian, T., and Lumeng, C.N. (2015). Obesity-induced remodeling of the adipose tissue elastin network is independent of the metalloelastase MMP-12. Adipocyte 4, 264-272.
    Nakamura, S., Hirano, I., Okinaka, K., Takemura, T., Yokota, D., Ono, T., Shigeno, K., Shibata, K., Fujisawa, S., and Ohnishi, K. (2010). The FOXM1 transcriptional factor promotes the proliferation of leukemia cells through modulation of cell cycle progression in acute myeloid leukemia. Carcinogenesis 31, 2012-2021.
    Ng, K.T., Qi, X., Kong, K.L., Cheung, B.Y., Lo, C.M., Poon, R.T., Fan, S.T., and Man, K. (2011). Overexpression of matrix metalloproteinase-12 (MMP-12) correlates with poor prognosis of hepatocellular carcinoma. Eur J Cancer 47, 2299-2305.
    Noh, K.H., Kang, H.M., Yoo, W., Min, Y., Kim, D., Kim, M., Wang, S., Lim, J.H., and Jung, C.R. (2020). Ubiquitination of PPAR-gamma by pVHL inhibits ACLY expression and lipid metabolism, is implicated in tumor progression. Metabolism 110, 154302.
    Pu, M., Chen, J., Tao, Z., Miao, L., Qi, X., Wang, Y., and Ren, J. (2019). Regulatory network of miRNA on its target: coordination between transcriptional and post-transcriptional regulation of gene expression. Cell Mol Life Sci 76, 441-451.
    Qian, W., Choi, S., Gibson, G.A., Watkins, S.C., Bakkenist, C.J., and Van Houten, B. (2012). Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress. Journal of cell science 125, 5745-5757.
    Qin, Y., Mi, W., Huang, C., Li, J., Zhang, Y., and Fu, Y. (2020). Downregulation of miR-575 Inhibits the Tumorigenesis of Gallbladder Cancer via Targeting p27 Kip1. Onco Targets Ther 13, 3667-3676.
    Rehman, J., Zhang, H.J., Toth, P.T., Zhang, Y., Marsboom, G., Hong, Z., Salgia, R., Husain, A.N., Wietholt, C., and Archer, S.L. (2012). Inhibition of mitochondrial fission prevents cell cycle progression in lung cancer. FASEB J 26, 2175-2186.
    Rizzardi, A.E., Johnson, A.T., Vogel, R.I., Pambuccian, S.E., Henriksen, J., Skubitz, A.P., Metzger, G.J., and Schmechel, S.C. (2012). Quantitative comparison of immunohistochemical staining measured by digital image analysis versus pathologist visual scoring. Diagnostic pathology 7, 42.
    Roman, J. (2017). On the "TRAIL" of a Killer: MMP12 in Lung Cancer. Am J Respir Crit Care Med 196, 262-264.
    Rosdah, A.A., Smiles, W.J., Oakhill, J.S., Scott, J.W., Langendorf, C.G., Delbridge, L.M.D., Holien, J.K., and Lim, S.Y. (2020). New perspectives on the role of Drp1 isoforms in regulating mitochondrial pathophysiology. Pharmacology & therapeutics 213, 107594.
    Serasinghe, M.N., Wieder, S.Y., Renault, T.T., Elkholi, R., Asciolla, J.J., Yao, J.L., Jabado, O., Hoehn, K., Kageyama, Y., Sesaki, H., et al. (2015). Mitochondrial division is requisite to RAS-induced transformation and targeted by oncogenic MAPK pathway inhibitors. Mol Cell 57, 521-536.
    Sheng, Y., Yu, C., Liu, Y., Hu, C., Ma, R., Lu, X., Ji, P., Chen, J., Mizukawa, B., Huang, Y., et al. (2020). FOXM1 regulates leukemia stem cell quiescence and survival in MLL-rearranged AML. Nat Commun 11, 928.
    Siegel, R.L., Miller, K.D., and Jemal, A. (2018). Cancer statistics, 2018. CA: a cancer journal for clinicians 68, 7-30.
    Song, L., Wang, X., and Feng, Z. (2018). Overexpression of FOXM1 as a target for malignant progression of esophageal squamous cell carcinoma. Oncol Lett 15, 5910-5914.
    Sun, H.L., Men, J.R., Liu, H.Y., Liu, M.Y., and Zhang, H.S. (2020). FOXM1 facilitates breast cancer cell stemness and migration in YAP1-dependent manner. Arch Biochem Biophys 685, 108349.
    Trotta, A.P., and Chipuk, J.E. (2017). Mitochondrial dynamics as regulators of cancer biology. Cell Mol Life Sci 74, 1999-2017.
    Tsuyoshi, H., Orisaka, M., Fujita, Y., Asare-Werehene, M., Tsang, B.K., and Yoshida, Y. (2020). Prognostic impact of Dynamin related protein 1 (Drp1) in epithelial ovarian cancer. BMC Cancer 20, 467.
    Wang, H., Yan, C., Shi, X., Zheng, J., Deng, L., Yang, L., Yu, F., Yang, Y., and Shao, Y. (2015a). MicroRNA-575 targets BLID to promote growth and invasion of non-small cell lung cancer cells. FEBS Lett 589, 805-811.
    Wang, H.C., Chan, L.P., and Cho, S.F. (2019). Targeting the Immune Microenvironment in the Treatment of Head and Neck Squamous Cell Carcinoma. Front Oncol 9, 1084.
    Wang, P., Chen, S.H., Hung, W.C., Paul, C., Zhu, F., Guan, P.P., Huso, D.L., Kontrogianni-Konstantopoulos, A., and Konstantopoulos, K. (2015b). Fluid shear promotes chondrosarcoma cell invasion by activating matrix metalloproteinase 12 via IGF-2 and VEGF signaling pathways. Oncogene 34, 4558-4569.
    Wang, W., Fernandez-Sanz, C., and Sheu, S.S. (2018). Regulation of mitochondrial bioenergetics by the non-canonical roles of mitochondrial dynamics proteins in the heart. Biochimica et biophysica acta. Molecular basis of disease 1864, 1991-2001.
    Wieder, S.Y., Serasinghe, M.N., Sung, J.C., Choi, D.C., Birge, M.B., Yao, J.L., Bernstein, E., Celebi, J.T., and Chipuk, J.E. (2015). Activation of the Mitochondrial Fragmentation Protein DRP1 Correlates with BRAF(V600E) Melanoma. J Invest Dermatol 135, 2544-2547.
    Xie, Q., Wu, Q., Horbinski, C.M., Flavahan, W.A., Yang, K., Zhou, W., Dombrowski, S.M., Huang, Z., Fang, X., Shi, Y., et al. (2015). Mitochondrial control by DRP1 in brain tumor initiating cells. Nat Neurosci 18, 501-510.
    Yan, S., Tang, Z., Chen, K., Liu, Y., Yu, G., Chen, Q., Dang, H., Chen, F., Ling, J., Zhu, L., et al. (2018). Long noncoding RNA MIR31HG inhibits hepatocellular carcinoma proliferation and metastasis by sponging microRNA-575 to modulate ST7L expression. J Exp Clin Cancer Res 37, 214.
    Yang, C., Chen, H., Tan, G., Gao, W., Cheng, L., Jiang, X., Yu, L., and Tan, Y. (2013). FOXM1 promotes the epithelial to mesenchymal transition by stimulating the transcription of Slug in human breast cancer. Cancer Lett 340, 104-112.
    Yang, M., Zhang, X., Liu, Q., Niu, T., Jiang, L., Li, H., Kuang, J., Qi, C., Zhang, Q., He, X., et al. (2020). Knocking out matrix metalloproteinase 12 causes the accumulation of M2 macrophages in intestinal tumor microenvironment of mice. Cancer Immunol Immunother 69, 1409-1421.
    Yang, X., Dong, Y., Zhao, J., Sun, H., Deng, Y., Fan, J., and Yan, Q. (2007). Increased expression of human macrophage metalloelastase (MMP-12) is associated with the invasion of endometrial adenocarcinoma. Pathol Res Pract 203, 499-505.
    Zhang, L., Gulses, A., Purcz, N., Weimer, J., Wiltfang, J., and Acil, Y. (2019). A comparative assessment of the effects of integrin inhibitor cilengitide on primary culture of head and neck squamous cell carcinoma (HNSCC) and HNSCC cell lines. Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico 21, 1052-1060.
    Zhang, N., and Pati, D. (2018). Separase Inhibitor Sepin-1 Inhibits Foxm1 Expression and Breast Cancer Cell Growth. J Cancer Sci Ther 10.
    Zhang, Y., Zhang, N., Dai, B., Liu, M., Sawaya, R., Xie, K., and Huang, S. (2008). FoxM1B transcriptionally regulates vascular endothelial growth factor expression and promotes the angiogenesis and growth of glioma cells. Cancer Res 68, 8733-8742.
    Zhao, J., Zhang, J., Yu, M., Xie, Y., Huang, Y., Wolff, D.W., Abel, P.W., and Tu, Y. (2013). Mitochondrial dynamics regulates migration and invasion of breast cancer cells. Oncogene 32, 4814-4824.
    Zhao, X., Xu, M., Cai, Z., Yuan, W., Cui, W., and Li, M.D. (2019a). Identification of LIFR, PIK3R1, and MMP12 as Novel Prognostic Signatures in Gallbladder Cancer Using Network-Based Module Analysis. Front Oncol 9, 325.
    Zhao, X., Yi, Y., Meng, C., and Fang, N. (2019b). MiRNA-575 suppresses angiogenesis by targeting Rab5-MEK-ERK pathway in endothelial cells. Biosci Rep 39.
    Zhou, J.S., Li, Z.Y., Xu, X.C., Zhao, Y., Wang, Y., Chen, H.P., Zhang, M., Wu, Y.F., Lai, T.W., Di, C.H., et al. (2020). Cigarette smoke-initiated autoimmunity facilitates sensitisation to elastin-induced COPD-like pathologies in mice. Eur Respir J.
    Section II: Long-term effects on carotid intima-media thickness after radiotherapy in patients with nasopharyngeal carcinoma
    Atkinson JL, Sundt TM Jr, Dale AJ, Cascino TL, Nichols DA (1989) Radiation- associated atheromatous disease of the cervical carotid artery: report of seven cases and review of the literature. Neurosurgery 24:171–178.
    Baker DG, Krochak RJ. (1989) The response of the microvascular system to radiation: a review. Cancer Invest. 7, 287–294.
    Blanchard P., Lee A., Marguet S., Leclercq J., Ng W.T., Ma J., Chan A.T.C., Huang P.Y, Benhamou E., Zhu G., Chua D.T.T., Chen Y., Mai H.O., Kwong D.L.W., Cheah S.L., Moon J., Tung Y., Chi K.H., Fountzilas G.,
Zhang L., Hui E.P., Lu T.X., Bourhis J., Pignon J.P., on behalf of the MAC-NPC Collaborative Group.(2015)
    Chemotherapy and radiotherapy in nasopharyngeal carcinoma: an update of the MAC-NPC meta-analysis. http://dx.doi.org/10.1016/S1470-2045(15)70126-9
    Bots M.L., Hoes A.W., Koudstaal P.J., Hofman A., Grobbee D.E. (1997) Common carotid intima-media thickness and risk of stroke and myocardial infarction: the Rotterdam Study. Circulation 96:1432–1437. 

    Chan A.T.C., Grégoire V., Lefebvre J.L., L. Licitra L., Felip E. On behalf of the EHNS–ESMO–ESTRO Guidelines Working Group. (2010) Nasopharyngeal cancer: EHNS–ESMO–ESTRO Clinical Practice Guidelines for diagnosis, treatment and follow-up Annals of Oncology 21 (Supplement 5): v187–v189.
    Chen M.C., Feng I.J, Lu C.H., Chen C.C., Lin J.T., Huang S.H., Lee K.D. (2008). The incidence and risk of second primary cancers in patients with nasopharyngeal carcinoma:
a population-based study in Taiwan over a 25-year period (1979–2003) Annals of Oncology 19, 1180–1186.
    Crossen J.R., Garwood D., Glatstein E., Neuwelt E.A. (1994) Neuro-behavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol 12:627–642.
    de Groot E, Hovingh G.K., Wiegman A., Duriez P., Smit A.J., Fruchart J.C,. Kastelein J.J. (2004) Measurement of arterial wall thickness as a surrogate marker for atherosclerosis. Circulation 109(Suppl 1):III33–III38. 

    Eisenberg RL, Hedgcock MW, Wara WM, Jeffrey RB (1978) Radiation-induced disease of the carotid artery. West J Med 129:500–503. 

    Elerding S.C., Fernandez R.N., Grotta J.C., Lindberg R.D., Causay L.C., McMurtrey M.J. (1981) Carotid artery disease following external cervical irradiation. Ann Surg 194:609–615. 

    Fang F.M., Chien C.Y., Tsai W.L., Chen H.C., Hsu HC, Lui C.C., Huang T.L., Huang H.Y. (2008) Quality of life and survival outcome for patients with nasopharyngeal carcinoma receiving three-dimensional conformal radio- therapy vs. intensity-modulated radiotherapy: a longitudinal study. Int J Radiat Oncol Biol Phys 72:356–364. 

    Health Promotion Administration, Ministry of Health and Welfare, Taiwan.
    Cancer Registry Annual Report, 2017 Taiwan.https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=269&pid=12235
    Lam W..W, Leung S.F., So N.M., Wong K.S., Liu K.H., Ku P.K., Yuen H.Y., Metreweli C. (2001) 
Incidence of carotid stenosis in nasopharyngeal carcinoma patients after 
radiotherapy. Cancer 92:2357–2363. 

    Lam W.W., Yuen H.Y., Wong K.S., Leung S.F., Liu K.H., Metreweli C. (2001) Clinically 
under-detected asymptomatic and symptomatic carotid stenosis as a late complication of radiotherapy in Chinese nasopharyngeal carcinoma patients. Head Neck 23:780–784. 

    Mehnati P., Baradaran B., Vahidian F., Nadiriazam S.(2020) Functional response difference between diabetic/normal cancerous patients to inflammatory cytokines and oxidative stresses after radiotherapy. Reports of Practical Oncology and Radiotherapy 25, 730–737.
    Reed R, Sadiq S (1994) Acute carotid artery thrombosis after neck irradiation. J Ultrasound Med 13:641–644.
    Robbins M.E.C., Zhao W. (2004) Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol 80, 251–259. 

    Schreiber DP, Kapp DS (1986) Axillary-subclavian vein thrombosis following combination chemotherapy and radiation therapy in lymphoma. Int J Radiat Oncol Biol Phys 12:391–395.
    Shariat M., Alias N.A., Biswal B.M. (2008) Radiation effects on the intima-media thickness of the common carotid artery in post-radiotherapy patients with head and neck malignancy. Postgrad Med J 84:609–612. 

    So N.M., Lam W.W., Chook P, Woo K.S., Liu K.H., Leung S.F., Wong K.S., Metreweli C.(2002) 
Carotid intima-media thickness in patients with head and neck irradiation for the treatment of nasopharyngeal carcinoma.
Clin Radiol 57:600–603.
    Tan T.Y., Lu C.H., Lin T.K., Liou C.W., Chuang Y.C., Schminke U. (2009) Factors associated with gender difference in the intima-media thickness of the common carotid artery. Clin Radiol 64:1097–1103. 

    Yahyapour R., Motevaseli E., Rezaeyan A., Abdollahi H., Farhood B., Cheki M., Rezapoor S., Shabeeb D., Musa A.E., Najafi M., Villal V.(2018) Reduction–oxidation (redox) system in radiation‐induced normal tissue injury: molecular mechanisms and implications in radiation therapeutics. Clinical and Translational Oncology
    20:975–988.

    Zhao W, Robbins M.E.(2009) Inflammation and chronic oxidative stress in radiation-induced late normal tissue injury: therapeutic implications. Curr Med Chem 6,130–143. 

    Section III: Long-term effects of neck irradiation on cardiovascular autonomic function: a study in patients with NPC after radiotherapy
    Armstrong T, Almadrones L, Gilbert M.R. (2005) Chemotherapy-induced peripheral neuropathy. Oncol Nurs Forum 32:305–311.
    Brant-Zawadzki M, Anderson M, DeArmond S.J., Conley F.K., Jahnke R.W. (1980) Radiation-induced large intracranial vessel occlusive vasculop- athy. AJR Am J Roentgenol 134:51–55.
    Cao S.M., Simons M.J., Qian C.N. (2011) The prevalence and prevention of nasopharyngeal carcinoma in China. Chin J Cancer 30:114–119. 

    Chan A.T., Gregoire V, Lefebvre J.L., Licitra L, Felip E. (2010) Nasopharyngeal cancer: EHNS-ESMO-ESTRO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 21(suppl 5): v187–189. 

    Cheng S.W., Wu L.L., Ting A.C., Lau H., Lam L.K., Wei W.I. (1999) Irradiation- induced extra-cranial carotid stenosis in patients with head and neck malignancies. Am J Surg 178:323–328.
    Chong V.F., Fan Y.F.(2000) Meningeal infiltration in recurrent nasopharyngeal carcinoma. Australasian Radiol 44:23–27.
    Conomy J.P., Kellermeyer R.W. (1975) Delayed cerebrovascular consequences of therapeutic radiation. A clinico-pathologic study of a stroke associated with radiation-related carotid arteriopathy. Cancer 36: 1702–1708.
    Dyck P.J., O’Brien P.C., Litchy W.J., Harper C.M., Daube J.R. (2001) Use of per- centiles and normal deviates to express nerve conduction and other test abnormalities. Muscle Nerve 24:307–310.
    Huang C.C., Sandroni P, Sletten D.M., Weigand S.D., Low P.A. (2007) Effect of age on adrenergic and vagal baroreflex sensitivity in normal subjects. Muscle Nerve 36:637–642.
    Hudson J.I., Pope H.G. Jr, Glynn R.J. (2005) The cross-sectional cohort study: an underutilized design. Epidemiology 16:355–359.
    Laitinen T, Hartikainen J, Vanninen E, Niskanen L, Geelen G, Lansimies E. (1998) Age and gender dependency of baroreflex sensitivity in 
healthy subjects. J Appl Physiol 84:576–583.
    Lam W.W., Leung S.F., So N.M., Wong K.S., Liu K.H., Ku P.K. et al. (2001) Incidence of carotid stenosis in nasopharyngeal carcinoma patients after radiotherapy. Cancer 92:2357–2363.
    Lam W.W., Yuen H.Y., Wong K.S., Leung S.F., Liu K.H., Metreweli C. (2001) Clinically under-detected asymptomatic and symptomatic carotid stenosis as a late complication of radiotherapy in Chinese nasopharyngeal carcinoma patients. Head Neck 23:780–784.
    Lee O., Cromwell L.D., Weider D.J. (2005) Carcinomatous meningitis arising from primary nasopharyngeal carcinoma. Am J Otolaryngol 26: 193–197.
    Levy M.N., DeGeest H, Zieske H. (1996) Effects of respiratory center activity 
on the heart. Circ Res 18:67–78. 

    Low P.A. (1993) Composite autonomic scoring scale for laboratory quantification of generalized autonomic failure. Mayo Clin Proc 68:748–752.
    Low P.A. (2003) Testing the autonomic nervous system. Semin Neurol 23:407–421. 

    Robbins M.E., Zhao W. (2004) Chronic oxidative stress and radiation-induced late normal tissue injury: a review. Int J Radiat Biol 80:251–259.
    Low P.A., Opfer-Gehrking T.L., Proper C.J., Zimmerman I. (1990) The effect of aging on cardiac autonomic and postganglionic sudomotor function. Muscle Nerve 13:152–157.
    Pavlidis N. (2004) The diagnostic and therapeutic management of leptomeningeal carcinomatosis. Ann Oncol 15(suppl 4):iv285–291.
    Quasthoff S, Hartung H.P. (2002) Chemotherapy-induced peripheral neuropathy. J Neurol 249:9–17.
    Redman B.G., Tapazoglou E., Al-Sarraf M. (1986) Meningeal carcinomatosis in head and neck cancer. Report of six cases and review of the literature. Cancer 58:2656–2661.
    Richardson P, Cantwell B.M. (1990) Autonomic neuropathy after cisplatin based chemotherapy. BMJ 300:1466–1467.
    Roca E., Bruera E., Politi P.M., Barugel M., Cedaro L., Carraro S. et al (1985) Vinca alkaloid-induced cardiovascular autonomic neuropathy. Cancer Treat Rep 69:149–151.
    Sharabi Y, Dendi R, Holmes C, Goldstein D.S. (2003) Baroreflex failure as a 
late sequela of neck irradiation. Hypertension 42:110–116. 

    Singer W, Kumar N, Low P.A. Radiation-induced baroreflex failure. In: Dyck PJ, Dyck PJB, Engelstad JK, et al., editors. (2010) Companion to peripheral neuropathy: illustrated cases and new developments. Philadelphia: Saunders; p 299–302. 

    So N.M., Lam W.W., Chook P., Woo K.S., Liu K.H., Leung S.F. et al. (2002) Carotid intima–media thickness in patients with head and neck irradiation for the treatment of nasopharyngeal carcinoma. Clin Radiol 57:600–603.
    Timmers H.J., Karemaker J.M., Lenders J.W., Wieling W. (1999) Baroreflex failure following radiation therapy for nasopharyngeal carcinoma. Clin Auton Res 9:317–324.
    Timmers H.J., Karemaker J.M., Wieling W, Kaanders J.H., Folgering H.T., 
Marres H.A., et al. (2002) Arterial baroreflex and peripheral chemoreflex function after radiotherapy for laryngeal or pharyngeal cancer. Int J Radiat Oncol Biol Phys 53:1203–1210. 

    Tan T.Y., Lu C.H., Lin T.K., Liou C.W., Chuang Y.C., Schminke U. (2009) Factors associated with gender difference in the intima–media thickness of the common carotid artery. Clin Radiol 64:1097–1103. 




    Tank J, Jordan J, Diedrich A, Stoffels M, Franke G, Faulhaber H.D., 
et al. (2001) Genetic influences on baroreflex function in normal twins. Hypertension 37:907–910.
    Wang C.J., Wang C.Y. (2000) Nasopharyngeal carcinoma with leptomeningeal dissemination: case report. Chang Gung Med J 23:118–122.

    Zhao W., Robbins M.E. (2009) Inflammation and chronic oxidative stress in 
radiation-induced late normal tissue injury: therapeutic implications. 
Curr Med Chem 16:130–143.
    Zidar N., Ferluga D., Hvala A., Popovic M., Soba E. (1997) Contribution to the pathogenesis of radiation-induced injury to large arteries. J Lar- yngol Otol 111:988–990.

    QR CODE