簡易檢索 / 詳目顯示

研究生: 林芳伊
Lin, Fang-Yi
論文名稱: 抗癌胜肽DI抑制人類大腸癌細胞株SW480增生並誘導細胞凋亡作用的探討
Anticancer peptide DI inhibits the proliferation and induces apoptosis of human colorectal cancer cell line SW480
指導教授: 林志侯
Lin, Thy-Hou
口試委員: 高茂傑
Kao, Mou-Chieh
張晃猷
Chang, Hwan-You
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 106
語文別: 英文
論文頁數: 50
中文關鍵詞: 乾酪乳桿菌抗癌胜肽結腸直腸腺癌細胞凋亡DNA 裂解
外文關鍵詞: Lactobacillus casei, Anticancer peptide, Colorectal adenocarcinoma, Apoptosis, DNA fragmentation
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 癌症是全球主要的公共衛生問題,而傳統治療癌症的方法具有一些有害的副作用,然而幸運的是,許多研究發現抗菌胜肽除了具有抗菌能力外,也具有促使癌細胞死亡的能力,因此這些發現使得抗菌胜肽相關的研究逐漸受到重視。近年來,本實驗室致力於原生益菌及其衍生物的相關研究,自Lactobacillus casei group資料庫中挑選出四種具有抗癌潛力之抗菌胜肽(DI, DII, EI and EII),在先前的實驗中發現DI胜肽具有最顯著的抑制人類大腸癌細胞株SW480的能力,因此,在本篇論文中,DI胜肽為主要的實驗材料。在細胞毒性測試中,SW480細胞在DI 加藥24小時後的IC50 = 28.04 μg/mL (4.67 μM),並發現在相同加藥時間下,其毒殺能力約是化療藥物5-氟尿嘧啶的540倍。另外,透過流式細胞儀、共軛焦顯微鏡、西方點墨法和末端脫氧核苷酸轉移酶脫氧尿苷三磷酸切口末端標記,針對DI胜肽對於SW480細胞加藥後的細胞型態、膜的通透性以及誘導的細胞死亡路徑這三個層面觀察細胞的變化。整體結果顯示DI胜肽不會造成細胞的細胞膜受損,並可能透過細胞凋亡路徑促使細胞死亡,但詳細的死亡機制仍有待日後的研究。


    Cancer is a major public health problem in the world. Traditional methods of cancer treatment have some deleterious side effects on normal cells. Fortunately, some studies indicated that some antimicrobial peptides not only have been discovered with antimicrobial activity but also with anticancer activity. Therefore, recent research has paid increasing attention to antimicrobial peptides. In recent years, our laboratory has been working on antimicrobial peptide that produced by lactic acid bacteria and found four potential anticancer peptides (DI, DII, EI and EII) form Lactobacillus casei group database. As a result of previous experiments found that the survival rate of human colorectal cancer cell lines SW480 dramatically decreasing with the concentration of DI peptide increasing. In this thesis, DI peptide was the experiment material. In cell cytotoxicity test, the IC50 value of DI peptide was 28.04 μg/mL (4.67 μM) after 24 hours treatment and it had the five hundred and forty times inhibitory effect than chemotherapy drugs (5-fluorouracil) on SW480 cell during the same time. On the other hand, SW480 cell changes after treated with DI peptide were observed in three aspects:cellular morphology, membrane permeability and possible cell death pathway by flow cytometer, western blot, laser scanning confocal microscopy and terminal transferase mediated DNA nick end labelling (TUNEL) assay. The results indicated that the cell membrane remains intact after DI peptide treatment and the concerning cell death pathway may be apoptosis. However, the underlying mechanism is not yet clear, and is still further investigation.

    中文摘要 ii English Abstract iii Acknowledgement iv Content v 1. Introduction 1 2. Materials and Methods 9 2.1 Cell culture 9 2.2 Cell counting 9 2.3 Peptides 10 2.4 Protein quantification 10 2.5 Freezing and thawing cultured cells 10 2.6 Circular dichroism spectroscopy 11 2.7 Cell proliferation assay 12 2.8 Flow cytometric analysis 12 2.9 Protein electrophoresis 13 2.10 Western blot analysis 14 2.11 TUNEL assay 15 2.12 Laser scanning confocal microscopy 16 2.13 Inhibition of apoptosis by pan-caspase inhibitor 17 2.14 Statistical analysis 17 3. Results 18 3.1 The solubility of DI peptide 18 3.2 Secondary structure of DI peptide 18 3.3 Cytotoxic activities of DI peptide in SW480 cell 19 3.4 Compared the cytotoxic activity between DI peptide and 5-FU 19 3.5 Apoptosis and membrane permability detection by flow cytometric analysis 20 3.6 Effect of caspase inhibitor on DI peptide induced apoptosis 21 3.7 Expression of apoptotic markers in SW480 cells after DI peptide treatment 21 3.8 Detection of DNA strand breaks after DI peptide treatment 22 3.9 Location of DI peptide and cellular morphology by laser scanning confocal microscopy 23 4. Discussion 25 5. Tables and Figures 29 Figure 1. Secondary structure analysis of DI peptide 29 Figure 2. Cytotoxicity test of DI peptide 30 Figure 3. Cytotoxicity test of 5-FU drug 31 Figure 4. Flow cytometry analysis of SW480 cells treated with different concentrations of DI peptide 32 Figure 5. Inhibition of apoptosis by pan-caspase inhibitor 33 Figure 6. Western blot analysis of apoptotic markers in SW480 cells 34 Figure 7. Western blot analysis of necrotic markers in SW480 cells 35 Figure 8. Western blot analysis of DNA fragmentation in SW480 cells 36 Figure 9. TUNEL assay on SW480 cells after treatment with different concentrations of DI peptide 37 Figure 10. Laser scanning confocal microscopy fluorescence images of DI peptide in different concentrations 39 6. References 40 7. Appendix 46 Appendix 1. HPLC analysis of DI peptide 46 Appendix 2. Mass spectroscopy analysis of DI peptide 47 Appendix 3. BCA standard curve 48 Appendix 4. Formula of solutions 49

    Alley, S. C., Okeley, N. M., & Senter, P. D. (2010). Antibody–drug conjugates: targeted drug delivery for cancer. Current opinion in chemical biology, 14(4), 529-537.
    Alnemri, E. S., & Litwack, G. (1990). Activation of internucleosomal DNA cleavage in human CEM lymphocytes by glucocorticoid and novobiocin. Evidence for a non-Ca2 (+)-requiring mechanism (s). Journal of Biological Chemistry, 265(28), 17323-17333.
    Andersen, C., Adamsen, L., Moeller, T., Midtgaard, J., Quist, M., Tveteraas, A., & Rorth, M. (2006). The effect of a multidimensional exercise programme on symptoms and side-effects in cancer patients undergoing chemotherapy—the use of semi-structured diaries. European Journal of Oncology Nursing, 10(4), 247-262.
    Berkowitz, B. A., Bevins, C. L., & Zasloff, M. A. (1990). Magainins: a new family of membrane-active host defense peptides. Biochemical pharmacology, 39(4), 625-629.
    Beyaert, R., Van Loo, G., Heyninck, K., & Vandenabeele, P. (2002). Signaling to gene activation and cell death by tumor necrosis factor receptors and Fas. International review of cytology, 214, 225-272.
    Boman, H. G. (2000). Innate immunity and the normal microflora. Immunological reviews, 173(1), 5-16.
    Bowdish, D. M., Davidson, D. J., & Hancock, R. (2005). A re-evaluation of the role of host defence peptides in mammalian immunity. Current Protein and Peptide Science, 6(1), 35-51.
    Burdick, M. D., Harris, A., Reid, C. J., Iwamura, T., & Hollingsworth, M. A. (1997). Oligosaccharides expressed on MUC1 produced by pancreatic and colon tumor cell lines. Journal of Biological Chemistry, 272(39), 24198-24202.
    Chen, Y., Xu, X., Hong, S., Chen, J., Liu, N., Underhill, C. B., . . . Zhang, L. (2001). RGD-Tachyplesin inhibits tumor growth. Cancer research, 61(6), 2434-2438.
    Cleveland, J., Montville, T. J., Nes, I. F., & Chikindas, M. L. (2001). Bacteriocins: safe, natural antimicrobials for food preservation. International journal of food microbiology, 71(1), 1-20.
    Cory, S., & Adams, J. M. (1998). Matters of life and death: programmed cell death at Cold Spring Harbor. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer, 1377(2), R25-R44.
    Cotter, P. D., Hill, C., & Ross, R. P. (2005). Bacteriocins: developing innate immunity for food. Nature Reviews Microbiology, 3(10), 777-788.
    Cruciani, R. A., Barker, J. L., Zasloff, M., Chen, H. C., & Colamonici, O. (1991). Antibiotic magainins exert cytolytic activity against transformed cell lines through channel formation. Proceedings of the National Academy of Sciences, 88(9), 3792-3796.
    Danial, N. N., & Korsmeyer, S. J. (2004). Cell death: critical control points. Cell, 116(2), 205-219.
    Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., . . . Yuan, J. (2005). Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nature chemical biology, 1(2), 112.
    Dennison, S. R., Whittaker, M., Harris, F., & Phoenix, D. A. (2006). Anticancer α-helical peptides and structure/function relationships underpinning their interactions with tumour cell membranes. Current Protein and Peptide Science, 7(6), 487-499.
    Didenko, V. V., & Hornsby, P. J. (1996). Presence of double-strand breaks with single-base 3'overhangs in cells undergoing apoptosis but not necrosis. The Journal of Cell Biology, 135(5), 1369-1376.
    Dobrzyńska, I., Szachowicz-Petelska, B., Sulkowski, S., & Figaszewski, Z. (2005). Changes in electric charge and phospholipids composition in human colorectal cancer cells. Molecular and cellular biochemistry, 276(1), 113-119.
    Edinger, A. L., & Thompson, C. B. (2004). Death by design: apoptosis, necrosis and autophagy. Current opinion in cell biology, 16(6), 663-669.
    Ellis, R. E., Yuan, J., & Horvitz, H. R. (1991). Mechanisms and functions of cell death. Annual review of cell biology, 7(1), 663-698.
    Ferlay, J., Shin, H. R., Bray, F., Forman, D., Mathers, C., & Parkin, D. M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International journal of cancer, 127(12), 2893-2917.
    Festjens, N., Berghe, T. V., & Vandenabeele, P. (2006). Necrosis, a well-orchestrated form of cell demise: signalling cascades, important mediators and concomitant immune response. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1757(9), 1371-1387.
    Festjens, N., van Gurp, M., van Loo, G., Saelens, X., & Vandenabeele, P. (2004). Bcl-2 family members as sentinels of cellular integrity and role of mitochondrial intermembrane space proteins in apoptotic cell death. Acta haematologica, 111(1-2), 7-27.
    Garneau, S., Martin, N. I., & Vederas, J. C. (2002). Two-peptide bacteriocins produced by lactic acid bacteria. Biochimie, 84(5), 577-592.
    Goldberg, R. M. (2004). Current approaches to first-line treatment of advanced colorectal cancer. Clinical colorectal cancer, 4, S9-S15.
    Golstein, P., & Kroemer, G. (2007). Cell death by necrosis: towards a molecular definition. Trends in biochemical sciences, 32(1), 37-43.
    Gorczyca, W., Gong, J., & Darzynkiewicz, Z. (1993). Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidyl transferase and nick translation assays. Cancer research, 53(8), 1945-1951.
    Hancock, R. E., & Sahl, H.-G. (2006). Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nature biotechnology, 24(12), 1551-1557.
    Hitomi, J., Christofferson, D. E., Ng, A., Yao, J., Degterev, A., Xavier, R. J., & Yuan, J. (2008). Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell, 135(7), 1311-1323.
    Hoskin, D. W., & Ramamoorthy, A. (2008). Studies on anticancer activities of antimicrobial peptides. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1778(2), 357-375.
    Huang, Y., Feng, Q., Yan, Q., Hao, X., & Chen, Y. (2015). Alpha-helical cationic anticancer peptides: a promising candidate for novel anticancer drugs. Mini reviews in medicinal chemistry, 15(1), 73-81.
    Huang, Y., Huang, J., & Chen, Y. (2010). Alpha-helical cationic antimicrobial peptides: relationships of structure and function. Protein & cell, 1(2), 143-152.
    Ishiyama, M., Tominaga, H., Shiga, M., Sasamoto, K., Ohkura, Y., & Keiyu, U. (1996). A Combined Assay of Cell Vability and in Vitro Cytotoxicity with a Highly Water-Soluble Tetrazolium Salt, Neutral Red and Crystal Violet. Biological and Pharmaceutical Bulletin, 19(11), 1518-1520.
    Izadpanah, A., & Gallo, R. L. (2005). Antimicrobial peptides. Journal of the American Academy of Dermatology, 52(3), 381-390.
    Joo, N. E., Ritchie, K., Kamarajan, P., Miao, D., & Kapila, Y. L. (2012). Nisin, an apoptogenic bacteriocin and food preservative, attenuates HNSCC tumorigenesis via CHAC1. Cancer medicine, 1(3), 295-305.
    Kaufmann, S. H., & Earnshaw, W. C. (2000). Induction of apoptosis by cancer chemotherapy. Experimental cell research, 256(1), 42-49.
    Kaur, S., & Kaur, S. (2015). Bacteriocins as potential anticancer agents. Frontiers in pharmacology, 6.
    Klaenhammer, T. R. (1993). Genetics of bacteriocins produced by lactic acid bacteria. FEMS microbiology reviews, 12(1-3), 39-85.
    Kyrylkova, K., Kyryachenko, S., Leid, M., & Kioussi, C. (2012). Detection of apoptosis by TUNEL assay. Odontogenesis: Methods and Protocols, 41-47.
    Laster, S. M., Wood, J., & Gooding, L. (1988). Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. The Journal of Immunology, 141(8), 2629-2634.
    Leader, B., Baca, Q. J., & Golan, D. E. (2008). Protein therapeutics: a summary and pharmacological classification. Nature reviews Drug discovery, 7(1), 21-39.
    Lehrer, R. I. (2004). Primate defensins. Nature Reviews Microbiology, 2(9), 727-738.
    Li, H., Kolluri, S. K., Gu, J., Dawson, M. I., Cao, X., Hobbs, P. D., . . . Lin, F. (2000). Cytochrome c release and apoptosis induced by mitochondrial targeting of nuclear orphan receptor TR3. Science, 289(5482), 1159-1164.
    Longley, D. B., Harkin, D. P., & Johnston, P. G. (2003). 5-fluorouracil: mechanisms of action and clinical strategies. Nature Reviews Cancer, 3(5), 330-338.
    Lu, Y., Yang, J., & Sega, E. (2006). Issues related to targeted delivery of proteins and peptides. The AAPS journal, 8(3), E466-E478.
    Mai, J. C., Mi, Z., Kim, S.-H., Ng, B., & Robbins, P. D. (2001). A proapoptotic peptide for the treatment of solid tumors. Cancer research, 61(21), 7709-7712.
    Marr, A. K., Gooderham, W. J., & Hancock, R. E. (2006). Antibacterial peptides for therapeutic use: obstacles and realistic outlook. Current opinion in pharmacology, 6(5), 468-472.
    Meyerhardt, J. A., & Mayer, R. J. (2005). Systemic therapy for colorectal cancer. New England Journal of Medicine, 352(5), 476-487.
    Mhaidat, N. M., Bouklihacene, M., & Thorne, R. F. (2014). 5‑Fluorouracil‑induced apoptosis in colorectal cancer cells is caspase‑9‑dependent and mediated by activation of protein kinase C‑δ. Oncology letters, 8(2), 699-704.
    Millard, M., Odde, S., & Neamati, N. (2011). Integrin targeted therapeutics. Theranostics, 1, 154.
    Napier, M., & Ledermann, J. (2000). EDUCATIONAL SECTION: Novel chemotherapeutic agents in colorectal cancer. European Journal of Surgical Oncology (EJSO), 26(6), 605-610.
    Nissen-Meyer, J., & Nes, I. F. (1997). Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Archives of microbiology, 167(2), 67-77.
    Papagianni, M. (2003). Ribosomally synthesized peptides with antimicrobial properties: biosynthesis, structure, function, and applications. Biotechnology advances, 21(6), 465-499.
    Papo, N., & Shai, Y. (2005). Host defense peptides as new weapons in cancer treatment. Cellular and Molecular life sciences, 62(7), 784-790.
    Park, N. G., Lee, S., Oishi, O., Aoyagi, H., Iwanaga, S., Yamashita, S., & Ohno, M. (1992). Conformation of tachyplesin I from Tachypleus tridentatus when interacting with lipid matrixes. Biochemistry, 31(48), 12241-12247.
    Parkin, D., Pisani, P., & Ferlay, J. (1993). Estimates of the worldwide incidence of eighteen major cancers in 1985. International journal of cancer, 54(4), 594-606.
    Pelley, R. J. (2001). Oxaliplatin: a new agent for colorectal cancer. Current oncology reports, 3(2), 147-155.
    Reichert, J. M. (2003). Trends in development and approval times for new therapeutics in the United States. Nature reviews Drug discovery, 2(9), 695-702.
    Riedl, S., Zweytick, D., & Lohner, K. (2011). Membrane-active host defense peptides–challenges and perspectives for the development of novel anticancer drugs. Chemistry and physics of lipids, 164(8), 766-781.
    Salvucci, E., Saavedra, L., & Sesma, F. (2007). Short peptides derived from the NH2-terminus of subclass IIa bacteriocin enterocin CRL35 show antimicrobial activity. Journal of antimicrobial chemotherapy, 59(6), 1102-1108.
    Saraste, A., & Pulkki, K. (2000). Morphologic and biochemical hallmarks of apoptosis. Cardiovascular research, 45(3), 528-537.
    Schweizer, F. (2009). Cationic amphiphilic peptides with cancer-selective toxicity. European journal of pharmacology, 625(1), 190-194.
    Sheng, H., Shao, J., Kirkland, S. C., Isakson, P., Coffey, R. J., Morrow, J., . . . DuBois, R. N. (1997). Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2. The Journal of clinical investigation, 99(9), 2254.
    Shi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Molecular cell, 9(3), 459-470.
    Suillerot, A., Gueye, C., Salerno, M., Loetchutinat, C., Fokt, I., Krawczyk, M., . . . Priebe, W. (2001). Analysis of drug transport kinetics in multidrug-resistant cells: implications for drug action. Current medicinal chemistry, 8(1), 51-64.
    Utsugi, T., Schroit, A. J., Connor, J., Bucana, C. D., & Fidler, I. J. (1991). Elevated expression of phosphatidylserine in the outer membrane leaflet of human tumor cells and recognition by activated human blood monocytes. Cancer research, 51(11), 3062-3066.
    Van Engeland, M., Nieland, L. J., Ramaekers, F. C., Schutte, B., & Reutelingsperger, C. P. (1998). Annexin V-affinity assay: a review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry, 31(1), 1-9.
    Vanhoefer, U., Harstrick, A., Achterrath, W., Cao, S., Seeber, S., & Rustum, Y. M. (2001). Irinotecan in the treatment of colorectal cancer: clinical overview. Journal of Clinical Oncology, 19(5), 1501-1518.
    Yang, C. Y., Dantzig, A. H., & Pidgeon, C. (1999). Intestinal peptide transport systems and oral drug availability. Pharmaceutical research, 16(9), 1331-1343.
    Yoon, W.-H., Park, H.-D., Lim, K., & Hwang, B.-D. (1996). Effect of O-glycosylated mucin on invasion and metastasis of HM7 human colon cancer cells. Biochemical and biophysical research communications, 222(3), 694-699.
    Zachowski, A. (1993). Phospholipids in animal eukaryotic membranes: transverse asymmetry and movement. Biochemical Journal, 294(Pt 1), 1.
    Zanetti, M. (2005). The role of cathelicidins in the innate host defenses of mammals. Current issues in molecular biology, 7(2), 179-196.
    Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. nature, 415(6870), 389-395.
    Zelezetsky, I., & Tossi, A. (2006). Alpha-helical antimicrobial peptides—using a sequence template to guide structure–activity relationship studies. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1758(9), 1436-1449.

    QR CODE