簡易檢索 / 詳目顯示

研究生: 陳育歆
Chen, Yu-Shin
論文名稱: 應用於生醫植入裝置電源管理之直流 -直流升降壓轉換器
A DC-DC Buck-Boost Converter for Power Management of a Biomedical Implant
指導教授: 陳新
Chen, Hsin
口試委員: 廖育德
Liao, Yu-Te
謝秉璇
Hsieh, Ping-Hsuan
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 51
中文關鍵詞: 直流-直流轉換器升降壓轉換器
外文關鍵詞: DC-DC converter, buck-boost converter
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技不斷的進步,造就了生醫植入式裝置誕生,對人類醫學帶來了重大改變。傳統植入式裝置是以電池供電,因為植入在體內,電池壽命到了就必須動手術更換,增加許多術後風險,所以將植入式裝置結合無線能量傳輸方式提供電源,一般無線能量傳輸方式線圈之間距離是固定,但當線圈距離過遠或過近,接收端的線圈會產生過小或過大的能量使得後方電路無法正常操作,所以需要一個能將不同大小的輸入電壓轉換為一個穩定輸出電壓的電路。
    本論文採用直流-直流升降壓轉換器,來將不同的輸入電壓轉換為後方電路所需要的電壓1V,透過PWM控制方式即時調節各個開關開啟時間,使電路操作在正確的模式來達到穩壓效果。此晶片使用UMC 0.18um 混合訊號製程,總面積為2.97 × 1.53mm2。在輸入電壓為0.7~1.8V,頻率800k的情況下產生1V的直流電壓以及20mA最大輸出電流。


    The continuing advancement of electronic technologies gives rise to a variety of implantable medical devices, which has become a great advance for medicine. In tradition, an implant device is powered by a battery. When the battery is running out of energy, it must be replaced by surgery, which increases many risks. Integrating wireless power transfer system with an implantable device not only avoids battery replacement but also becomes easy to use. However, most wireless power design presumes the separation between inductively - coupled coils is constant. If the separation distance increases or decreases, the received power voltage change accordingly. This change could easily causes system failure. Therefore, this thesis aims to design a DC-DC Buck-Boost converter for wireless power transmission. The converter is expected to supply a constant output of 1V, regardless the input voltages ranging from 0.7V-1.8V. The main advantage is that PWM control is able to adjust conduction time of power transistors immediately and automatically. The die area of the chip is 2.97 × 1.53mm2, which is designed and fabricated with UMC 0.18um 1P6M mixed-mode signal process. The input voltage range is between 0.7-1.8V, the switching frequency is 800 kHz, and the maximum output current is 20 mA.

    Abstract I 摘要 II 表目錄 V 圖目錄 VI 第一章 緒論 1 1.1 背景介紹 1 1.2 各章節簡介 3 第二章 文獻回顧 4 2.1 切換式穩壓器控制方法 4 2.1.1 脈波頻率調變(Pulse Frequency Modulation, PFM) 4 2.1.2 脈波寬度調變(Pulse Width Modulation, PWM) 5 (1)電壓模式控制脈波寬度調變 5 (2)電流模式控制脈波寬度調變 7 2.2 同步整流技術 8 2.3 非反相升降壓轉換器介紹 9 2.4 不同的模式選擇電路比較 12 2.5 小信號轉移模型與輸入電壓關係 14 2.5.1 小信號轉移模型參數 15 2.5.2 control-to-output 轉移曲線與輸入電壓關係 16 2.6 Type Ⅲ補償器 18 第三章 全電路架構與模擬 20 3.1 整體電路架構介紹 20 3.2 系統功率電晶體(Power Transistor) 21 3.3 帶差參考電壓電路(Bandgap Reference Voltage Circuit) 22 3.4 同步鋸齒波與時脈產生器 25 3.5 模式選擇及脈衝寬度調變電路 28 3.6 停滯時間電路 29 3.7 零電流偵測及反震盪電路 31 3.8 全系統電路模擬結果 33 3.8.1 升壓模式暫態響應 34 3.8.2 升降壓模式暫態響應 37 3.8.3 降壓模式暫態響應 40 3.9 電路佈局 43 3.10 整體電路規格 43 第四章 量測結果 44 4.1 量測儀器 44 4.2 量測結果 45 4.2.1帶差參考電壓電路 45 4.2.2 同步鋸齒波與時脈產生器 46 4.2.3 停滯時間電路 47 4.2.4 模式選擇及脈衝寬度調變電路 48 第五章 結論與未來改善方向 49 參考文獻 50

    1. Liu, J.-Y., Wireless Power Transmission and Power Feedback Control Function Circuitfor a Biomedical Implantable Device. 2013.
    2. 電源設計技術資訊網站, https://micro.rohm.com/tw/techweb/knowledge/dcdc/.
    3. 梁適安, 交換式電源供應器之理論與實務設計. 全華圖書股份有限公司. 2008.
    4. Chen, J.-J., P.-N. Shen, and Y.-S. Hwang, A High-Efficiency Positive Buck–Boost Converter With Mode-Select Circuit and Feed-Forward Techniques. IEEE Transactions on Power Electronics, 2013. 28(9): p. 4240-4247.
    5. Choi, J.-S.K.J.-Y.L.B.-D., High-Efficiency Peak-Current-Control Non-inverting Buck-Boost Converter UsingMode Selection for Single Ni-MH Cell Battery Operation, in 2015 Nordic Circuits and Systems Conference (NORCAS): NORCHIP & International Symposium on System-on-Chip (SoC). 2015, IEEE: Oslo, Norway. p. 1-4.
    6. Sahu, B. and G.A. Rincon-Mora, A Low Voltage, Dynamic, Noninverting, Synchronous Buck-Boost Converter for Portable Applications. IEEE Transactions on Power Electronics, 2004. 19(2): p. 443-452.
    7. Wei, C.-L., et al., Design of an Average-Current-Mode Noninverting Buck–Boost DC–DC Converter With Reduced Switching and Conduction Losses. IEEE Transactions on Power Electronics, 2012. 27(12): p. 4934-4943.
    8. Wei, C.-W.C.C.-L., Single-Inductor Four-Switch Non-Inverting Buck-Boost DC-DC Converter, in IEEE Conferences. 2011, IEEE: Hsinchu, Taiwan. p. 4.
    9. Jiang-Xiu, Dynamic Tuning Studies on Battery Powered DC-DC converter. 2008.
    10. K. Ueno, T.H., T. Asai and Y. Amemiya, A 300 nW, 7 ppm/˚C CMOS Voltage Reference Circuit based on Subthreshold MOSFETs. 2009.
    11. Dutton, L.S.K.a.R.W., Metastability of CMOS latch/flip-flop. IEEE Journal of Solid-State Circuits, Aug.1990. 25(4): p. 942-951.
    12. W. A. M. Van Noije, W.T.L., and J. Navarro, Metastability behavior of mismatched CMOS flip-flops using state diagram analysis. IEEE Custom Integrated Circuits Conference May 1993: p. 27.7.1 - 27.7.4.
    13. Baker, R.J., CMOS circuit design, layout, and simulation, 2nd ed, ed. I. A John Wiley &Sons. 2005.

    QR CODE