簡易檢索 / 詳目顯示

研究生: 凌志騰
Ling, Chih-Teng
論文名稱: 星系數數兒:由JWST捕捉到的首道中紅外光所揭示的宇宙歷史
Counting galaxies: Cosmic history revealed by the first mid-IR light captured by JWST
指導教授: 後藤友嗣
Goto, Tomotsugu
口試委員: 大山陽一
Oyama, Youichi
張雨晏
Chang, Yu-Yen
學位類別: 碩士
Master
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 51
中文關鍵詞: 星系光度函數星系演化活躍星系紅外星系觀測宇宙學
外文關鍵詞: galaxies: luminosity function, galaxies: evolution, galaxies: active, infrared: galaxies, cosmology: observations
相關次數: 點閱:57下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 計算星系的數量可以告訴我們宇宙的歷史。

    在這篇論文中,我們以源計數和光度函數這兩種方法來估算宇宙裡中紅外星系的數量密度,並討論了它們對於宇宙歷史的解釋。來自星系的中紅外光對被塵埃遮蔽的恆星形成活動非常敏感,因為它可以追蹤被年輕、大質量恆星加熱的塵埃所產生的特徵發射譜線。
    因此,構築中紅外源計數與光度函數,可以讓我們量化整體的塵埃恆星形成歷史以及星系的演化。

    在這篇論文的第一部分,我們使用詹姆斯·韋伯太空望遠鏡(James Webb Space Telescope,JWST)在中紅外成像儀(MIRI)的7.7、10和15微米波段觀測所獲得的第一批影像,給出了首個JWST的中紅外星系源計數。
    憑藉著JWST空前的靈敏度,我們在7.7微米、10微米和15微米波段的80%完整性極限分別達到了0.32、0.79和2.0微揚斯基,即比先前的紅外太空望遠鏡(如Spitzer或AKARI)深了約100倍。這些新的觀測數據與文獻驚人地一致。

    在這篇論文的第二部分,我們透過JWST早期發布宇宙演化科學調查(CEERS),得出了第一個在靜止參考系下的7.7、10、12.8、15、18和21微米的中紅外光度函數,以及總紅外光度函數。
    我們在CEERS調查中確定了在z=0-5.1之間具有來自哈伯太空望遠鏡的可見光光度測量的507個星系。
    我們探測了光度函數在z=0-1的最暗端,其低至L* ~ 10^7 L⊙,這比過去的紅外太空望遠鏡可得的光度暗了約兩個數量級。我們的發現與過去研究中最深的觀測所獲得的紅外光度函數的暗端相吻合,並且將其延續了下去。基於中紅外的光度密度演化,作為恆星形成歷史的指標,現在已經被我們拓展到了z≃4.0。這是在中紅外波段裡首次探測到的早期宇宙。


    Counting the number of galaxies can tell us the history of the universe.

    In this thesis, we demonstrate the two approaches, source count and luminosity function (LF), to estimate the number density of mid-infrared (MIR) galaxies in the universe and discuss their interpretation of cosmic history.
    MIR light from galaxies is sensitive to dust-obscured star-formation activities because it traces the characteristic emission of dust heated by young, massive stars. Constructing the MIR source counts and subsequent LFs thus allows us to quantify the overall dusty star formation history and the evolution of galaxies.

    In the first part of the thesis, we present the first MIR galaxy number counts based on the Early Release Observations obtained by the James Webb Space Telescope (JWST) at 7.7-, 10- and 15-μm bands of the Mid-Infrared Instrument (MIRI).
    With the unprecedented sensitivity of JWST, the 80 per cent completeness limits reach 0.32, 0.79 and 2.0 μJy in 7.7-, 10- and 15-μm bands, respectively, i.e., ~100 times deeper than previous IR space telescopes such as Spitzer or AKARI. The new data agree amazingly well with the literature.

    In the second part of this thesis, we report the first rest-frame MIR LFs at 7.7, 10, 12.8, 15, 18, and 21 μm as well as the total IR LF from the JWST Cosmic Evolution Early Release Science (CEERS) survey. We identify 507 galaxies at z=0-5.1 in the CEERS survey that have optical photometry from the Hubble Space Telescope. We probe the faintest end of the LFs at z=0-1 down to L* ~ 10^7 L⊙, which are ~2 orders of magnitude fainter than those from previous IR space telescopes as well.
    Our findings connect well with and continue the faint end of IR LFs from the deepest observations in past works. As a proxy of star formation history, the MIR-based luminosity density evolution is now explored up to z≃4.0, which is the first detection of such an early Universe in the MIR.

    Abstract (Chinese) I Acknowledgements (Chinese) II Abstract IV Acknowledgements V Contents VII List of Figures IX List of Tables XI 1 Introduction 1 2 Galaxy source counts at 7.7, 10, and 15 μm with JWST 5 2.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Source extraction . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Completeness . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.3 Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3 Exploring the faintest end of mid-infrared luminosity functions up to z ≃ 5 with the JWST CEERS survey 19 3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.1 MIRI observations . . . . . . . . . . . . . . . . . . . . . . . 19 3.1.2 Multi-wavelength merged catalogue . . . . . . . . . . . . . . 20 3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.2.1 SED fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.2.2 K-correction . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.2.3 Luminosity function . . . . . . . . . . . . . . . . . . . . . . 27 3.3 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1 Monochromatic LFs . . . . . . . . . . . . . . . . . . . . . . 31 3.3.1.1 LFs of all galaxy populations . . . . . . . . . . . . 33 3.3.1.2 LFs of SF and AGN galaxies . . . . . . . . . . . . 34 3.3.2 TIR LF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 3.3.3 Luminosity density evolution . . . . . . . . . . . . . . . . . . 42 4 Summary 45 Bibliography 47

    Ashby M. L. N., et al., 2015, ApJS, 218, 33
    Babbedge T. S. R., et al., 2006, MNRAS, 370, 1159
    Baugh C. M., et al., 2019, MNRAS, 483, 4922
    Bavouzet N., Dole H., Le Floc’h E., Caputi K. I., Lagache G., Kochanek C. S.,
    2008, A&A, 479, 83
    Bertin E., Arnouts S., 1996, A&AS, 117, 393
    Bielby R., et al., 2012, A&A, 545, A23
    Boquien M., Burgarella D., Roehlly Y., Buat V., Ciesla L., Corre D., Inoue A. K.,
    Salas H., 2019, A&A, 622, A103
    Bouchet P., et al., 2015, PASP, 127, 612
    Bradley L., et al., 2022, astropy/photutils: 1.5.0, doi:10.5281/zenodo.6825092,
    https://doi.org/10.5281/zenodo.6825092
    Calzetti D., et al., 2005, ApJ, 633, 871
    Calzetti D., et al., 2007, ApJ, 666, 870
    Caputi K. I., et al., 2007, ApJ, 660, 97
    Cole S., Lacey C. G., Baugh C. M., Frenk C. S., 2000, MNRAS, 319, 168
    Cowley W. I., Baugh C. M., Cole S., Frenk C. S., Lacey C. G., 2018, MNRAS,
    474, 2352
    Donnan C. T., et al., 2023, MNRAS, 518, 6011
    Elbaz D., et al., 1999, A&A, 351, L37
    Fazio G. G., et al., 2004, ApJS, 154, 39
    Finkelstein S. L., et al., 2017, The Cosmic Evolution Early Release Science
    (CEERS) Survey, JWST Proposal ID 1345. Cycle 0 Early Release Science
    Gardner J. P., et al., 2006, Space Sci. Rev., 123, 485
    Gehrels N., 1986, ApJ, 303, 336
    Goto T., et al., 2010, A&A, 514, A6
    Goto T., et al., 2011, MNRAS, 410, 573
    Goto T., et al., 2017, Publication of Korean Astronomical Society, 32, 225
    Goto T., et al., 2019, PASJ, 71, 30
    Grogin N. A., et al., 2011, ApJS, 197, 35
    Gruppioni C., Lari C., Pozzi F., Zamorani G., Franceschini A., Oliver S., Rowan-
    Robinson M., Serjeant S., 2002, MNRAS, 335, 831
    Gruppioni C., et al., 2010, A&A, 518, L27
    Gruppioni C., Pozzi F., Zamorani G., Vignali C., 2011, MNRAS, 416, 70
    Gruppioni C., et al., 2013, MNRAS, 432, 23
    Gwyn S. D. J., 2012, AJ, 143, 38
    Harikane Y., et al., 2023, ApJS, 265, 5
    Ho S. C. C., et al., 2021, MNRAS, 502, 140
    Holwerda B. W., 2005, arXiv e-prints, pp astro–ph/0512139
    Hopkins A. M., Connolly A. J., Haarsma D. B., Cram L. E., 2001, AJ, 122, 288
    Kalirai J., 2018, Contemporary Physics, 59, 251
    Kennicutt Robert C. J., 1998, ARA&A, 36, 189
    Kessler M. F., et al., 1996, A&A, 315, L27
    Kim S. J., et al., 2012, A&A, 548, A29
    Kim S. J., et al., 2015, MNRAS, 454, 1573
    Kim S. J., et al., 2021, MNRAS, 500, 4078
    Kim S. J., et al., 2023, MNRAS, submitted
    Kodra D., et al., 2023, ApJ, 942, 36
    Koekemoer A. M., et al., 2011, ApJS, 197, 36
    Le Floc’h E., et al., 2005, ApJ, 632, 169
    Madau P., Pozzetti L., Dickinson M., 1998, ApJ, 498, 106
    Magnelli B., et al., 2013, A&A, 553, A132
    Murakami H., et al., 2007, PASJ, 59, S369
    Neugebauer G., et al., 1984, ApJ, 278, L1
    Oke J. B., Sandage A., 1968, ApJ, 154, 21
    Pearson C., 2005, MNRAS, 358, 1417
    Pearson C. P., et al., 2010, A&A, 514, A8
    Pearson C. P., et al., 2014, MNRAS, 444, 846
    P ́erez-Gonz ́alez P. G., et al., 2005, ApJ, 630, 82
    Perrin M. D., Sivaramakrishnan A., Lajoie C.-P., Elliott E., Pueyo L., Ravin-
    dranath S., Albert L., 2014, in Oschmann Jacobus M. J., Clampin M., Fazio
    G. G., MacEwen H. A., eds, Society of Photo-Optical Instrumentation Engineers
    (SPIE) Conference Series Vol. 9143, Space Telescopes and Instrumentation 2014:
    Optical, Infrared, and Millimeter Wave. p. 91433X, doi:10.1117/12.2056689
    Pilbratt G. L., et al., 2010, A&A, 518, L1
    Planck Collaboration et al., 2016, A&A, 594, A13
    Planck Collaboration et al., 2020, A&A, 641, A6
    Rieke G. H., et al., 2015, PASP, 127, 584
    Rieke G., Alberts S., Lyu J., Morrison J., Shivaei I., 2017, MIRI in the Hubble
    Ultra-Deep Field, JWST Proposal. Cycle 1, ID. #1207
    Rodighiero G., et al., 2010, A&A, 515, A8
    Rowan-Robinson M., et al., 1997, MNRAS, 289, 490
    Salpeter E. E., 1955, ApJ, 121, 161
    Saunders W., Rowan-Robinson M., Lawrence A., Efstathiou G., Kaiser N., Ellis
    R. S., Frenk C. S., 1990, MNRAS, 242, 318
    Schmidt M., 1968, ApJ, 151, 393
    Shen X., Vogelsberger M., Nelson D., Tacchella S., Hernquist L., Springel V.,
    Marinacci F., Torrey P., 2022, MNRAS, 510, 5560
    Silva L., Granato G. L., Bressan A., Danese L., 1998, ApJ, 509, 103
    Skelton R. E., et al., 2014, ApJS, 214, 24
    Stefanon M., et al., 2017, ApJS, 229, 32
    Takagi T., et al., 2012, A&A, 537, A24
    Wada T., et al., 2008, PASJ, 60, S517
    Wang T.-W., et al., 2020, MNRAS, 499, 4068
    Werner M. W., et al., 2004, ApJS, 154, 1
    Wu H., Cao C., Hao C.-N., Liu F.-S., Wang J.-L., Xia X.-Y., Deng Z.-G., Young
    C. K.-S., 2005, ApJ, 632, L79
    Wu C. K.-W., et al., 2023, MNRAS, 523, 518
    Yang G., et al., 2023, ApJ, 950, L5

    QR CODE