簡易檢索 / 詳目顯示

研究生: 洪興隆
Hong, Xing-Long
論文名稱: 運動物件追蹤方法之研發
The Development of a Object Tracking Method
指導教授: 雷衛台
Lei, Wei-Tai
口試委員: 徐永源
吳隆庸
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 38
中文關鍵詞: 機械視覺物件追蹤
外文關鍵詞: Machine vision, Object tracking
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文之目標旨在實作運動物件追蹤之方法。透過物件狀態估測器之實作,針對簡單幾何外形之移動物件進行狀態估測。利用工業用CCD相機,針對特定區域進行影像取樣分析,獲取關於物件之狀態資訊,
    首先,本文將針對關於機械視覺、物件輪廓追蹤與辨識以及視覺系統於自動化應用之相關研究進行文獻回顧。相關之基本影像處理方法、影像校正原理則隨後闡述,接著並說明物件狀態估測法之整體架構與流程。在系統配置中,則主要說明完整之系統方塊圖,CCD相機可視範圍估算以及影像座標系與機械座標系間座標之轉換關係。最後則針對狀態估測結果與相關之影響因素進行實驗以及數據分析,以驗證本狀態估測流程之準確性。


    The procedure of object motion states estimation is developed in the paper. For moving objects with simple geometry, the information about motion states can be obtained via the implementation of object state estimator module. Using industrial CCD camera, the sampled images of the specified viewing area in the scene are analysed and the information about objects is extracted.
    First, paper review on machine vision, object contour tracking and recognition, related study about machine vision application in industrial automation is shown. Basic image processing method, calibration, the framework of object state estimation and procedure are explained later. In the topic of system configuration, the block diagram of whole system, the estimation of field of view of CCD and the transformation between image coordinate system and machine coordinate system are shown. Finally, the accuracy and viability of the module are verified experimentally.

    摘要 II 目次 V 圖目錄 VII 表目錄 IX 1. 緒論 1 1.1. 研究動機與目的 1 2. 文獻回顧 2 2.1. 機械視覺 2 2.2. 輪廓偵測追蹤與物件識別 3 2.3. 晚近視覺系統應用於自動化之研究 4 3. 影像處理方法 5 3.1. 影像二值化(IMAGE THRESHOLDING) 5 3.2. 數學形態學(MATHEMATICAL MORPHOLOGY) 6 3.3. 外型表示與描述(SHAPE REPRESENTATION AND DESCRIPTION) 7 4. 影像校正步驟及原理 8 4.1. 影像反畸變(IMAGE UNDISTORT) 8 4.2. 像素解析度(PIXEL RESOLUTION)計算 9 5. 物件狀態估測法 10 5.1. 基本架構 10 5.2. 狀態估測流程 11 6. 系統配置 13 6.1. 系統架構 13 6.2. CCD相機可視範圍估算 16 6.3. 影像座標系及機械座標系之關係 19 7. 實驗流程 20 7.1. 系統運作流程 20 7.2. 座標關係建立 21 8. 實驗結果 22 8.1. 真實像素解析度隨影像位置之變化 22 8.2. 環境變化對估測結果之影響 24 8.3. 物件特徵向量於暫態區之變化 27 8.4. 濾波器長度之選擇 29 8.5. 取樣時間間隔準確性之影響 33 9. 結論 36 參考文獻 37

    參考文獻
    [1] “影像圖形辨識法則與相關產品市場動態”, Image Processing Magazine, 1999.
    [2] N. Ayache and O.D. Faugeras, “HYPER: A New Approach for the Recognition and Positioning of Two-Dimensional Objects”, IEEE Trans. on Pattern Analysis and Machine Intelligence, 1986.
    [3] S. Suzuki and K. Abe, “Topological Structural Analysis of Digitized Binary Images by Border Following”, Computer Vision, Graphics, and Image Processing 30, 32-46, 1985.
    [4] H. Dang, Y. Hong, X. Fang and F. Qiang, “Initial Contour Automatic Selection of Geometric Active Contour Model”, Intelligent Computation Technology and Automation, 2009.
    [5] J. Xu, D. Bi and Z. Wei, “A Novel Robust Contour Tracking Algorithm”, ISME International Conference, 2010.
    [6] J. Rao, J. Lin, S. Xu and S. Lin, “A New Intelligent Contour Tracking Algorithm in Binary Image”, ICDH 4th International Conference, 2012.
    [7] W. Li, X. Zhang and W. Hu, “Contour Tracking with Abrupt Motion”, Image Processing(ICP), 16th IEEE International Conference, 2009.
    [8] M. K. Hu, “Visual Pattern Recognition by Moment Invariants”, Information Theory, IRE Transactions, 1962.
    [9] Q. Chen, E. Petriu and X. Yang, “A Comparative Study of Fourier Descriptor and Hu’s Seven Moment Invariants for Image Recognition”, Electrical and Computer Engineering, Canadian Conference, 2004.
    [10] I. Konukseven and B. Kaftanoglu, “Moving Part Recognition and Automatic Pick and Place Using Industrial Robot”, Intelligent Robots and Systems, Proceedings of the 1997 IEEE/RSJ International Conference, 1997.
    [11] T. Kotthauser and G. Mauer, “Vision-Based Autonomous Robot Control for Pick and Place Operation”, Advanced Intelligent Mechatronics, AIM IEEE/ASME International Conference, 2009.
    [12] S. Lee, J. Kim, M. Lee, K. Yoo, L. G. Barajas and R. Menassa, “3D Visual Perception System for Bin Picking in Automotive Sub-Assembly Automation”, Automation Science and Engineering(CASE), IEEE International Conference, 2012.
    [13] O. Skotheim, M. Lind, P. Ystgaard and S. A. Fjerdingen, “A Flexible 3D Object Localization System for Industrial Part Handling”, Intelligent Robots and Sytems(IROS), IEEE/RSJ International Conference, 2012.
    [14] M. Sonka, V. Hlavac and R. Boyle,“Image Processing, Analysis, and Machine Vision”, 2nd edition.
    [15] E. Rosten and T. Drummond,“Machine Learning for High-Speed Corner Detection”, 9th European Conference on Computer Vision, Graz, Austria, May 2006.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE