研究生: |
紀廷暉 Chi, Ting-Hui |
---|---|
論文名稱: |
在5G網路中藉由分段路由適於動態使用者之即時群播演算法 Efficient Live Video Multicast Algorithm for Dynamic Users via Segment Routing in 5G Networks |
指導教授: |
陳文村
Chen, Wen-Tsuen |
口試委員: |
許健平
Sheu, Jang-Ping 王志宇 Wang, Chih-Yu |
學位類別: |
碩士 Master |
系所名稱: |
|
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 英文 |
論文頁數: | 37 |
中文關鍵詞: | 5G 、軟體定義網路 、分段路由 、群播 、NP困難 |
外文關鍵詞: | 5G, SDN, segment-routing, multicast, NP-hard |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
預期即時視頻流應用將在下一代網路即5G網路中迅速增長。為了有效地服務在5G網路中觀看相同直播視頻的所有用戶,群播技術在提供可擴展和高性能服務中起著重要作用。包含在5G網路中的軟體定義網路(SDN)由於其更新路由規則的靈活性而進一步促進了群播技術的開發。然而,在SDN中,很少有群播機制考慮到行動用戶交接(handover)導致的規則更新負擔,這導致巨大的網路負擔。在本論文中,我們採用分段路由(SR)作為緩解規則更新負擔的第一步,然後考慮規則更新成本,同時維護群播樹以處理用戶之交接。因此,我們首先制定Handover-aware Multicast Tree(HMT)問題,然後證明此問題是NP困難(NP-hard),並且不存在任何近似演算法,並在最後提出一個名為Mobility Aware Multicast Tree Algorithm(MAMTA)的啟發式演算法。MAMTA利用用戶移動的預測來分配可以向用戶提供更長服務的基地台,這導致不頻繁的規則更新。模擬結果顯示MAMTA明顯優於最短路徑樹和Steiner樹演算法。
Live video streaming applications are expected to proliferate very rapidly in the next generation network, i.e., 5G networks. To efficiently serve all users watching the same live video in 5G networks, the multicast technique plays an important role in providing scalable and high performance services. Software-Defined Networking (SDN), contained in 5G networks, further facilitates the development of multicast techniques due to its flexibility of updating routing rules. However, few of conventional multicast mechanisms in SDN take into account the rule update overhead resulting from handovers of mobile users, which leads to tremendous network overhead. In this thesis, we adopt Segment Routing (SR) as the first step to alleviate the rule update overhead, and then consider the rule update cost while maintaining the multicast tree to deal with user handovers. Thus, we first formulate Handover-aware Multicast Tree (HMT) problem, then show that HMT is NP-hard and does not admit any approximation algorithm, and finally propose a heuristic algorithm called Mobility Aware Multicast Tree Algorithm (MAMTA). MAMTA takes advantage of user movement prediction to assign a base station that could provide longer service to a user, which leads to infrequent rule updates. Simulation results show that MAMTA significantly outperforms the shortest path tree and Steiner tree algorithms.
[1] “Cisco visual networking index: Forecast and methodology, 2016-2021,” Cisco White Papers, [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visualㄦnetworking-index-vni/completewhite-paper-c11-481360.html.
[2] H. Zhang, Z. Lu, X. Wen, and Z. Hu, “QoE-based reduction of handover delay for multimedia application in IEEE 802.11 networks,” IEEE Communications Letters, vol. 19, no. 11, pp. 1873–1876, Nov. 2015.
[3] R. Malli, X. Zhang, and C. Qiao, “Benefits of multicasting in all-optical networks,” in Proceedings of SPIE, 1998.
[4] S. H. Shen, L. H. Huang, D. N. Yang, and W. T. Chen, “Reliable multicast routing for software-defined networks,” in Proceedings of IEEE International Conference on Computer Communications (IEEE INFOCOM), 2015.
[5] S. Sun, L. Gong, B. Rong, and K. Lu, “An intelligent SDN framework for 5G heterogeneous networks,” IEEE Communications Magazine, vol. 53, no. 11, pp. 142–147, Nov. 2015.
[6] M. Ku´zniar, P. Perešíni, and D. Kosti´c, “What you need to know about SDN flow tables,” in Proceedings of Passive and Active Measurement, 2015.
[7] “Segment routing architecture draft-ietf-spring-segment-routing-14,” IETF, Dec. 2017. [Online]. Available: https://tools.ietf.org/html/draft-ietf-springsegment-routing-14.
[8] R. Bhatia, F. Hao, M. Kodialam, and T. V. Lakshman, “Optimized network traffic engineering using segment routing,” in Proceedings of IEEE International Conference on Computer Communications (IEEE INFOCOM), 2015.
[9] J. P. Sheu and Y. C. Chen, “A scalable and bandwidth-efficient multicast algorithm based on Segment Routing in Software-Defined Networking,” in Proceedings of IEEE International Conference on Communications (ICC), 2017.
[10] L. H. Huang, H. C. Hsu, S. H. Shen, D. N. Yang, and W. T. Chen, “Multicast traffic engineering for Software-Defined Networks,” in Proceedings of IEEE International Conference on Computer Communications (IEEE INFOCOM), 2016.
[11] D. N. Yang and W. Liao, “On bandwidth-efficient overlay multicast,” IEEE Transactions on Parallel and Distributed Systems, vol. 18, no. 11, pp. 1503–1515, Nov. 2007.
[12] E. Aharoni and R. Cohen, “Restricted dynamic Steiner trees for scalable multicast in datagram networks,” IEEE/ACM Transactions on Networking, vol. 6, no. 3, pp. 286–297, Jun. 1998.
[13] S. Chiang, J. Kuo, S. Shen, D. Yang, and W. Chen, “Online multicast traffic engineering for Software-Defined Networks,” in Proceedings of IEEE International Conference on Computer Communications (IEEE INFOCOM), 2018.
[14] “Protocol independent multicast - sparse mode (PIM-SM): Protocol specification (revised),” IETF RFC 7761, Mar. 2016. [Online]. Available: https://tools.ietf.org/html/rfc7761.
[15] L. H. Huang, H. J. Hung, C. C. Lin, and D. N. Yang, “Scalable and bandwidth efficient multicast for Software-Defined Networks,” in Proceedings of IEEE Global Telecommunications Conference (GLOBECOM), 2014.
[16] N. McKeown et al., “OpenFlow: Enabling innovation in campus networks,” ACM SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 69–74, Mar. 2008.
[17] K. Sood, S. Yu, and Y. Xiang, “Performance analysis of Software-Defined Network switch using M/Geo/1 model,” IEEE Communications Letters, vol. 20, no. 12, pp. 2522–2525, Dec. 2016.
[18] F. Hao, M. Kodialam, and T. V. Lakshman, “Optimizing restoration with segment routing,” in Proceedings of IEEE International Conference on Computer Communications (IEEE INFOCOM), 2016.
[19] S. Salsano, L. Veltri, L. Davoli, P. L. Ventre, and G. Siracusano, “PMSR - poor man’s segment routing, a minimalistic approach to segment routing and a traffic engineering use case,” in Proceedings of IEEE/IFIP Network Operations and Management Symposium (NOMS), 2016.
[20] “OpenFlow specification,” ONF, [Online]. Available: https://www.opennetworking.org/software-defined-standards/specifications/.
[21] F. Hwang, D. Richards, and P. Winter, The Steiner Tree Problem, ser. Annals of Discrete Mathematics. Elsevier Science, 1992.
[22] A. D. Mathieu Leconte and G. Paschos, “Traffic engineering with precomputed pathbooks,” in Proceedings of IEEE INFOCOM, 2018.
[23] K. G. Ramakrishnan and M. A. Rodrigues, “Optimal routing in shortest-path data networks,” Bell Labs Technical Journal, vol. 6, no. 1, pp. 117–138, Jan. 2001.
[24] B. Fortz and M. Thorup, “Optimizing OSPF/IS-IS weights in a changing world,” IEEE Journal on Selected Areas in Communications, vol. 20, no. 4, pp. 756–767, May 2002.
[25] Y. Xu, C. Yu, J. Li, and Y. Liu, “Video telephony for end-consumers: Measurement study of Google+, iChat, and Skype,” IEEE/ACM Transactions on Networking, vol. 22, no. 3, pp. 371–384, Jun. 2014.
[26] M. R. Garey and D. S. Johnson, Computers and Intractability; A Guide to the Theory of NP-Completeness. New York, NY, USA: W. H. Freeman & Co., 1990, ISBN: 0716710455.
[27] W. j. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling time-variant user mobility in wireless mobile networks,” in Proceedings of IEEE International Conference on Computer Communications (IEEE INFOCOM), 2007.
[28] W. J. Hsu, T. Spyropoulos, K. Psounis, and A. Helmy, “Modeling spatial and temporal dependencies of user mobility in wireless mobile networks,” IEEE/ACM Transactions on Networking, vol. 17, no. 5, pp. 1564–1577, Oct. 2009.
[29] T. Pajor, E. Uchoa, and R. F. Werneck, “A robust and scalable algorithm for the Steiner problem in graphs,” CoRR, vol. abs/1412.2787, 2014.
[30] “Salt Lake City topology,” Mosaik, [Online]. Available: http://demo.mosaik.com/map.html#?z=14&ll=40.75766,-111.88739&c=tw_1,fl_a,fl_b,fl_c,fl_d.
[31] R. U. Mondal, T. Ristaniemi, and J. Turkka, “Genetic algorithm optimized grid-based RF fingerprint positioning in heterogeneous small cell networks,” in Proceedings of International Conference on Location and GNSS (ICL-GNSS), 2015.
[32] “LTE radio link budgeting and RF planning,” LTE Encyclopedia, [Online]. Available: https://sites.google.com/site/lteencyclopedia/lte- radio- linkbudgeting-and-rf-planning.
[33] R. C. Browning, E. A. Baker, J. A. Herron, and R. Kram, “Effects of obesity and sex on the energetic cost and preferred speed of walking,” Journal of Applied Physiology, vol. 100, no. 2, pp. 390–398, 2006.
[34] B. Ohde, G. ´ Slaski, and M. Maciejewski, “Statistical analysis of real-world urban driving cycles for modelling energy consumption of electric vehicles,” Journal of Mechanical and Transport Engineering, pp. 25–39, Jan. 2016.
[35] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A scalable and flexible data center network,” in Proceedings of ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM), 2009.
[36] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vahdat, “B4: Experience with a globally-deployed software defined wan,” in Proceedings of ACM Conference on Applications, Technologies, Architectures, and Protocols for Computer Communication (SIGCOMM), 2013.
[37] D. P. Williamson and D. B. Shmoys, The Design of Approximation Algorithms, 1st. New York, NY, USA: Cambridge University Press, 2011, ISBN: 0521195276, 9780521195270.