研究生: |
瞿立威 Li-Wei Chu |
---|---|
論文名稱: |
DNA末端特性影響Ku蛋白直接移轉能力之研究 The studies of Ku direct transfer influenced by the characteristics of DNA ends |
指導教授: |
周文剛
Wen-Gang Chou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生命科學系 Department of Life Sciences |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 69 |
中文關鍵詞: | Ku蛋白 、非同源性末端連結 、DNA雙股斷裂 |
外文關鍵詞: | Ku protein, non-homologous end joining, DNA double strand break |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在哺乳動物細胞中,存在著兩種主要的DNA雙股斷裂修補機制,一種是同源性重組作用(homologous recombination),另一種則是非同源性末端連結作用(non-homologous end joining)。而在整個細胞週期的運行中又以非同源性末端連結作用最常被使用來進行DNA雙股斷裂的修補。在非同源性末端連結的修補機制中,DNA依存性蛋白質激脢(DNA-PK)擔負著非常重要的責任,而Ku蛋白則是這個蛋白質激脢聚合體中必要的單體。Ku蛋白是由Ku70及Ku80兩個次單元所構成的雜二次體,能夠與DNA末端結合促使DNA依存性蛋白質激脢催化單元(DNA-PKcs)的活化,進而徵集ligase Ⅳ與XRCC4 (X-ray repair cross complementing protein 4)對DNA雙股斷裂進行修補。故對於哺乳動物細胞而言,Ku蛋白及DNA-PKcs的變異或缺失往往是導致DNA雙股斷裂修補失敗以及輻射敏感作用的主因。
在先前的研究當中發現,Ku蛋白除了DNA末端的結合能力以外,亦能夠由一個DNA分子直接移轉至另一個DNA分子。有趣的是,此種直接移轉的發生並非Ku蛋白脫離原先的DNA再結合另一個DNA;而是藉由DNA-Ku-DNA聚合體的形成,Ku蛋白於二DNA末端間直接移轉過去。在本論文的研究當中,特別設計不同末端構型的DNA來研究Ku蛋白在二DNA間直接移轉的能力。經由競爭性電泳膠泳動實驗分析,發現到在低鹽環境(50 mM NaCl, 10mM MgCl2)下二DNA末端突出序列互補是Ku蛋白發生直接移轉的重要條件,末端平鈍構型的DNA不具備突出單股序列,故無法滿足末端突出序列互補的條件使Ku蛋白直接移轉失敗;而在高鹽環境(200 mM NaCl, 5mM MgCl2)的實驗中,Ku蛋白則能夠於不同的DNA末端之間直接移轉,例如由5’突出末端直接移轉至平鈍或3’突出末端。此外在二DNA末端突出序列互補時,Ku蛋白只能由特殊dA•dT聚合片段移轉至一般的DNA片段,而無法由一般的DNA片段上直接移轉至特殊dA•dT聚合片段。但是增加一般的DNA序列於特殊dA•dT聚合片段中時,Ku蛋白便能由一般DNA片段直接移轉到這個dA•dT聚合片段上。故推測低鹽環境下DNA末端突出序列的互補將幫助DNA-Ku-DNA構型的形成,進而幫助Ku蛋白在兩段DNA間的直接移轉;而高鹽環境下DNA-Ku-DNA構型的形成則不需要DNA末端突出序列的互補。當DNA-Ku-DNA構型形成後,Ku蛋白由DNA-Ku-DNA構型移轉至其一DNA的能力將受到DNA雙股序列穩定性的影響,而Ku蛋白將停留於較為穩定的DNA雙股片段上。
In mammalian cells, there are two different pathways for repairing DNA double strand breaks (DSBs). One is homologous recombination, and the other is non-homologous end joining. In mammalian cells, DSBs repair proceeds predominantly by non-homologous end joining. In non-homologous end joining pathway, DNA-dependent protein kinase (DNA-PK) takes on an important responsibility. Ku protein is a subunit in DNA-PK. Ku protein is a heterodimer composed of Ku70 and Ku80. Ku protein can interact with double-stranded DNA ends. Ku protein binds DNA ends and recruits the catalytic subunit of DNA-PK (DNA-PKcs) to DNA in order to assemble an active complex. DNA-PK active complex recruits DNA ligase Ⅳ and XRCC4 to repair DSBs. In mammalian cells, deficiency of either Ku protein or DNA-PKcs is the major reason to cause DNA double strand break repair failure.
In this study, we demonstrated that Ku protein could not only bind DNA ends but also can transfer between two DNA molecules. The transfer of Ku is not to release from one DNA and bind to another DNA. Instead, Ku protein can transfer directly between two DNA molecules with homologous cohesive ends. Besides, increasing concentration of sodium chloride in the reaction, Ku protein can transfer between DNA with non-homologous ends. However, Ku protein can not transfer from DNA with random sequence (general DNA molecule) to a poly-dAdT fragment even with homologous cohesive ends. But, Ku protein can transfer from a poly-dAdT fragment to a general DNA molecule with homologous cohesive ends. Interestingly, increasing random DNA sequence in the poly-dAdT fragment, we observed Ku protein can transfer to the poly-dAdT fragment. In conclusions, we suggest from these results that there are two steps in the direct transfer of Ku protein. The first step is the formation of a DNA-Ku-DNA complex. In this step, it is required that the two DNA molecules have homologous cohesive ends under low salt condition but not under high salt condition. In the second step, Ku protein moves from one DNA molecule to another one. In this step, the dinection of movement of Ku under certain situation is influenced by DNA sequences.
Astrom, S. U., Okamura, S. M. & Rine, J. (1999). Yeast cell-type regulation of DNA repair. Nature 397, 310.
Bliss, T. M. & Lane, D. P. (1997). Ku selectively transfers between DNA molecules with homologous ends. J Biol Chem 272, 5765-73.
Bodnarchuk, I. A. (2003). [Analysis of the role of DNA repair, regulation of cell cycle and apoptosis in the radiation-induced adaptive response of mammalian cells]. Radiats Biol Radioecol 43, 19-28.
Brady, N., Gaymes, T. J., Cheung, M., Mufti, G. J. & Rassool, F. V. (2003). Increased error-prone NHEJ activity in myeloid leukemias is associated with DNA damage at sites that recruit key nonhomologous end-joining proteins. Cancer Res 63, 1798-805.
Calsou, P., Delteil, C., Frit, P., Drouet, J. & Salles, B. (2003). Coordinated assembly of Ku and p460 subunits of the DNA-dependent protein kinase on DNA ends is necessary for XRCC4-ligase IV recruitment. J Mol Biol 326, 93-103.
Chan, D. W., Chen, B. P., Prithivirajsingh, S., Kurimasa, A., Story, M. D., Qin, J. & Chen, D. J. (2002). Autophosphorylation of the DNA-dependent protein kinase catalytic subunit is required for rejoining of DNA double-strand breaks. Genes Dev 16, 2333-8.
Chiu, C. F., Lin, T. Y. & Chou, W. G. (2001). Direct transfer of Ku between DNA molecules with nonhomologous ends. Mutat Res 486, 185-94.
Cooper, M. P., Machwe, A., Orren, D. K., Brosh, R. M., Ramsden, D. & Bohr, V. A. (2000). Ku complex interacts with and stimulates the Werner protein. Genes Dev 14, 907-12.
d'Adda di Fagagna, F., Hande, M. P., Tong, W. M., Roth, D., Lansdorp, P. M., Wang, Z. Q. & Jackson, S. P. (2001). Effects of DNA nonhomologous end-joining factors on telomere length and chromosomal stability in mammalian cells. Curr Biol 11, 1192-6.
Dai, Y., Kysela, B., Hanakahi, L. A., Manolis, K., Riballo, E., Stumm, M., Harville, T. O., West, S. C., Oettinger, M. A. & Jeggo, P. A. (2003). Nonhomologous end joining and V(D)J recombination require an additional factor. Proc Natl Acad Sci U S A 100, 2462-7.
DiBiase, S. J., Zeng, Z. C., Chen, R., Hyslop, T., Curran, W. J., Jr. & Iliakis, G. (2000). DNA-dependent protein kinase stimulates an independently active, nonhomologous, end-joining apparatus. Cancer Res 60, 1245-53.
Ding, Q., Reddy, Y. V., Wang, W., Woods, T., Douglas, P., Ramsden, D. A., Lees-Miller, S. P. & Meek, K. (2003). Autophosphorylation of the catalytic subunit of the DNA-dependent protein kinase is required for efficient end processing during DNA double-strand break repair. Mol Cell Biol 23, 5836-48.
Douglas, P., Sapkota, G. P., Morrice, N., Yu, Y., Goodarzi, A. A., Merkle, D., Meek, K., Alessi, D. R. & Lees-Miller, S. P. (2002). Identification of in vitro and in vivo phosphorylation sites in the catalytic subunit of the DNA-dependent protein kinase. Biochem J 368, 243-51.
Dynan, W. S. & Yoo, S. (1998). Interaction of Ku protein and DNA-dependent protein kinase catalytic subunit with nucleic acids. Nucleic Acids Res 26, 1551-9.
Featherstone, C. & Jackson, S. P. (1999). Ku, a DNA repair protein with multiple cellular functions? Mutat Res 434, 3-15.
Gaymes, T. J., North, P. S., Brady, N., Hickson, I. D., Mufti, G. J. & Rassool, F. V. (2002). Increased error-prone non homologous DNA end-joining--a proposed mechanism of chromosomal instability in Bloom's syndrome. Oncogene 21, 2525-33.
Goedecke, W., Eijpe, M., Offenberg, H. H., van Aalderen, M. & Heyting, C. (1999). Mre11 and Ku70 interact in somatic cells, but are differentially expressed in early meiosis. Nat Genet 23, 194-8.
Goudelock, D. M., Jiang, K., Pereira, E., Russell, B. & Sanchez, Y. (2003). Regulatory Interactions between the Checkpoint Kinase Chk1 and the Proteins of the DNA-dependent Protein Kinase Complex. J Biol Chem 278, 29940-7.
Goytisolo, F. A., Samper, E., Edmonson, S., Taccioli, G. E. & Blasco, M. A. (2001). The absence of the dna-dependent protein kinase catalytic subunit in mice results in anaphase bridges and in increased telomeric fusions with normal telomere length and G-strand overhang. Mol Cell Biol 21, 3642-51.
Haber, J. E. (2000). Partners and pathwaysrepairing a double-strand break. Trends Genet 16, 259-64.
Hoeijmakers, J. H. (2001). Genome maintenance mechanisms for preventing cancer. Nature 411, 366-74.
Hsu, H. L., Gilley, D., Galande, S. A., Hande, M. P., Allen, B., Kim, S. H., Li, G. C., Campisi, J., Kohwi-Shigematsu, T. & Chen, D. J. (2000). Ku acts in a unique way at the mammalian telomere to prevent end joining. Genes Dev 14, 2807-12.
Hsu, H. L., Yannone, S. M. & Chen, D. J. (2002). Defining interactions between DNA-PK and ligase IV/XRCC4. DNA Repair (Amst) 1, 225-35.
Karmakar, P., Snowden, C. M., Ramsden, D. A. & Bohr, V. A. (2002). Ku heterodimer binds to both ends of the Werner protein and functional interaction occurs at the Werner N-terminus. Nucleic Acids Res 30, 3583-91.
Karran, P. (2000). DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 10, 144-50.
Khanna, K. K. & Jackson, S. P. (2001). DNA double-strand breaks: signaling, repair and the cancer connection. Nat Genet 27, 247-54.
Koike, M. (2002). Dimerization, translocation and localization of Ku70 and Ku80 proteins. J Radiat Res (Tokyo) 43, 223-36.
Koike, M., Shiomi, T. & Koike, A. (2001). Dimerization and nuclear localization of ku proteins. J Biol Chem 276, 11167-73.
Lindahl, T. & Wood, R. D. (1999). Quality control by DNA repair. Science 286, 1897-905.
Merel, P., Prieur, A., Pfeiffer, P. & Delattre, O. (2002). Absence of major defects in non-homologous DNA end joining in human breast cancer cell lines. Oncogene 21, 5654-9.
Merkle, D., Douglas, P., Moorhead, G. B., Leonenko, Z., Yu, Y., Cramb, D., Bazett-Jones, D. P. & Lees-Miller, S. P. (2002). The DNA-dependent protein kinase interacts with DNA to form a protein-DNA complex that is disrupted by phosphorylation. Biochemistry 41, 12706-14.
Mimori, T., Akizuki, M., Yamagata, H., Inada, S., Yoshida, S. & Homma, M. (1981). Characterization of a high molecular weight acidic nuclear protein recognized by autoantibodies in sera from patients with polymyositis-scleroderma overlap. J Clin Invest 68, 611-20.
Mimori, T. & Hardin, J. A. (1986). Mechanism of interaction between Ku protein and DNA. J Biol Chem 261, 10375-9.
Muller, C., Calsou, P., Frit, P. & Salles, B. (1999). Regulation of the DNA-dependent protein kinase (DNA-PK) activity in eukaryotic cells. Biochimie 81, 117-25.
Nick McElhinny, S. A., Snowden, C. M., McCarville, J. & Ramsden, D. A. (2000). Ku recruits the XRCC4-ligase IV complex to DNA ends. Mol Cell Biol 20, 2996-3003.
Peterson, S. E., Stellwagen, A. E., Diede, S. J., Singer, M. S., Haimberger, Z. W., Johnson, C. O., Tzoneva, M. & Gottschling, D. E. (2001). The function of a stem-loop in telomerase RNA is linked to the DNA repair protein Ku. Nat Genet 27, 64-7.
Pierce, A. J. & Jasin, M. (2001). NHEJ deficiency and disease. Mol Cell 8, 1160-1.
Rassool, F. V. (2003). DNA double strand breaks (DSB) and non-homologous end joining (NHEJ) pathways in human leukemia. Cancer Lett 193, 1-9.
Rich, T., Allen, R. L. & Wyllie, A. H. (2000). Defying death after DNA damage. Nature 407, 777-83.
Richardson, C. & Jasin, M. (2000). Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697-700.
Riha, K. & Shippen, D. E. (2003). Ku is required for telomeric C-rich strand maintenance but not for end-to-end chromosome fusions in Arabidopsis. Proc Natl Acad Sci U S A 100, 611-5.
Rothkamm, K., Kruger, I., Thompson, L. H. & Lobrich, M. (2003). Pathways of DNA double-strand break repair during the mammalian cell cycle. Mol Cell Biol 23, 5706-15.
Samper, E., Goytisolo, F. A., Slijepcevic, P., van Buul, P. P. & Blasco, M. A. (2000). Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1, 244-52.
Sawada, M., Hayes, P. & Matsuyama, S. (2003a). Cytoprotective membrane-permeable peptides designed from the Bax-binding domain of Ku70. Nat Cell Biol 5, 352-7.
Sawada, M., Sun, W., Hayes, P., Leskov, K., Boothman, D. A. & Matsuyama, S. (2003b). Ku70 suppresses the apoptotic translocation of Bax to mitochondria. Nat Cell Biol 5, 320-9.
Schild-Poulter, C., Pope, L., Giffin, W., Kochan, J. C., Ngsee, J. K., Traykova-Andonova, M. & Hache, R. J. (2001). The binding of Ku antigen to homeodomain proteins promotes their phosphorylation by DNA-dependent protein kinase. J Biol Chem 276, 16848-56.
Smith, J., Baldeyron, C., De Oliveira, I., Sala-Trepat, M. & Papadopoulo, D. (2001). The influence of DNA double-strand break structure on end-joining in human cells. Nucleic Acids Res 29, 4783-92.
Song, K., Jung, D., Jung, Y., Lee, S. G. & Lee, I. (2000). Interaction of human Ku70 with TRF2. FEBS Lett 481, 81-5.
Tamura, K., Adachi, Y., Chiba, K., Oguchi, K. & Takahashi, H. (2002). Identification of Ku70 and Ku80 homologues in Arabidopsis thaliana: evidence for a role in the repair of DNA double-strand breaks. Plant J 29, 771-81.
Tong, W. M., Cortes, U., Hande, M. P., Ohgaki, H., Cavalli, L. R., Lansdorp, P. M., Haddad, B. R. & Wang, Z. Q. (2002). Synergistic role of Ku80 and poly(ADP-ribose) polymerase in suppressing chromosomal aberrations and liver cancer formation. Cancer Res 62, 6990-6.
van Gent, D. C., Hoeijmakers, J. H. & Kanaar, R. (2001). Chromosomal stability and the DNA double-stranded break connection. Nat Rev Genet 2, 196-206.
Walker, J. R., Corpina, R. A. & Goldberg, J. (2001). Structure of the Ku heterodimer bound to DNA and its implications for double-strand break repair. Nature 412, 607-14.
Wang, H., Wang, X., Zhou, X. Y., Chen, D. J., Li, G. C., Iliakis, G. & Wang, Y. (2002). Ku affects the ataxia and Rad 3-related/CHK1-dependent S phase checkpoint response after camptothecin treatment. Cancer Res 62, 2483-7.
Wei, C., Skopp, R., Takata, M., Takeda, S. & Price, C. M. (2002). Effects of double-strand break repair proteins on vertebrate telomere structure. Nucleic Acids Res 30, 2862-70.
Weller, G. R., Kysela, B., Roy, R., Tonkin, L. M., Scanlan, E., Della, M., Devine, S. K., Day, J. P., Wilkinson, A., di Fagagna, F., Devine, K. M., Bowater, R. P., Jeggo, P. A., Jackson, S. P. & Doherty, A. J. (2002). Identification of a DNA nonhomologous end-joining complex in bacteria. Science 297, 1686-9.
West, C. E., Waterworth, W. M., Story, G. W., Sunderland, P. A., Jiang, Q. & Bray, C. M. (2002). Disruption of the Arabidopsis AtKu80 gene demonstrates an essential role for AtKu80 protein in efficient repair of DNA double-strand breaks in vivo. Plant J 31, 517-28.
Williams, B. & Lustig, A. J. (2003). The paradoxical relationship between NHEJ and telomeric fusion. Mol Cell 11, 1125-6.
Wilson, T. E., Topper, L. M. & Palmbos, P. L. (2003). Non-homologous end-joining: bacteria join the chromosome breakdance. Trends Biochem Sci 28, 62-6.
Zhang, W. W. & Yaneva, M. (1992). On the mechanisms of Ku protein binding to DNA. Biochem Biophys Res Commun 186, 574-9.
Zhou, B. B. & Elledge, S. J. (2000). The DNA damage response: putting checkpoints in perspective. Nature 408, 433-9.
Zhou, X. Y., Wang, X., Wang, H., Chen, D. J., Li, G. C., Iliakis, G. & Wang, Y. (2002). Ku affects the ATM-dependent S phase checkpoint following ionizing radiation. Oncogene 21, 6377-81.