簡易檢索 / 詳目顯示

研究生: 林育如
Lin, Yu-Ju
論文名稱: 立體電子效應,Proline 環構形效應及苯環與 Proline 作用力對 Polyproline 構形的影響
Study of polyproline conformation: stereoelectronic effects, ring puckering effects, and aromatic-proline interactions
指導教授: 洪嘉呈
Hormg, Jia-Cherng
口試委員: 江昀緯
朱立岡
黃人則
李政怡
洪嘉呈
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 140
中文關鍵詞: 立體電子效應脯胺酸聚脯胺酸環構型效應
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脯胺酸 (Proline) 存在著環構形 (endo/exo) 及胜肽鍵異構化 (cis/trans) 的平衡。脯胺酸胜肽鍵的順反異構作用在蛋白質的折疊及對特定異構物的生化辨識過程中扮演很重要的角色,由於聚脯胺酸可以形成具有順式胜肽鍵的第一型 (PPI) 及具有反式胜肽鍵的第二型 (PPII) 螺旋結構,所以在研究脯胺酸胜肽鍵的順反異構上,聚脯胺酸是一個有價值的研究模型。最近研究顯示立體電子效應可以影響 PPII → PPI 的轉換速率,且以氟脯胺酸 (fluoroproline) 取代在聚脯胺酸上影響最大。在第二章中,我們將利用4號位子取代的氟脯胺酸置入在聚脯胺酸的氮端及碳端來探討立體電子效應對脯胺酸胜肽鍵順反異構化的影響,並且去探討末端的立體電子效應對聚脯胺酸構形的影響。利用圓二色光譜儀 (CD) 進行動力學研究,結果顯示碳端的立體電子效應對 PPII 轉換成 PPI 有較大的影響,嵌入三個 (2S,4R)-4- fluoroproline (Flp) 在碳端增加了 PPII 轉換成 PPI的活化能 (1.53 kJ mol-1),而置入三個 (2S,4S)-4-fluoroproline (flp) 則降低了活化能 (4.61 kJ mol-1)。相反的,取代在氮端時, PPII 轉換成 PPI的活化能的差異僅有 -0.03 到 0.10 kJ mol-1。我們的結果證實立體電子效應對 PPII → PPI 轉換速率之影響是具有方向性的,亦符合了 PPII 摺疊的機構。
    脯胺酸的環構形可藉由其環上不同的取代基來調控,由於立體電子效應,拉電子基取代在 4S 位子的脯胺酸衍生物傾向形成 C-endo 環構形及順式的胜肽鍵,及 PPI 螺旋結構。 4-Thiaproline (Thp) 傾向形成 endo 環構形及順式胜肽鍵,在第三章中,我們將利用一系列 Thp 取代的胜肽去探討 Thp 對聚脯胺酸的影響。我們合成了 P5ThpP5、P11、Thp7及 P7,並使用 CD 去鑑定結構,其結果顯示 Thp 取代不僅使 PPII 結構變不穩定,也降低形成 PPI 螺旋的傾向。我們也利用密度泛函理論 (DFT) 分析 Thp 與具有 Thp 的聚脯胺酸胜肽,其結果顯示 Thp endo/exo 構形的能量差非常小,此結果可能導致具有 Thp 的胜肽在溶液中會同時表現出 PPI 及 PPII 的結構。我們的實驗結果證實即使 Thp 的結構與脯胺酸相似,Thp 對聚脯胺酸的結構仍造成重大的影響。
    在胜肽及蛋白質序列中,由於鄰近的芳香環對脯胺酸造成的作用力 (aromatic-proline interactions 或 proline-aromatic interactions) 使脯胺酸易形成順式的胜肽鍵。此作用力與芳香環的電子密度有密切的關係,富有電子的芳香環可形成較強的 aromatic-proline interaction 進而促進形成順式的胜肽鍵。在第四章中,我們嵌入天然的芳香族胺基酸 (F、Y、W) 於聚脯胺酸的碳端及氮端,去研究 aromatic-proline 效應對聚脯胺酸結構及 PPI ⟷ PPII 轉換動力學的影響。 CD 實驗結果顯示氮端的 aromatic-proline interaction對聚脯胺酸的結構影響比碳端的 aromatic-proline interaction 明顯。 PPI 的穩定度與 aromatic-proline interaction 的強度有關,且穩定度的排序以取代基代表則為 Y > W > F,然而 PPII 的穩定度顯示出相反的排序 F > W > Y 。隨時間變化的 CD 光譜所得動力學實驗結果顯示出芳香族胺基酸的置入效應對 PPII → PPI 的轉換是具有方向性的,相反的,對 PPI → PPII 的轉換是不具方向性的,其中芳香族胺基酸的疏水性側鏈扮演著一個重要的角色去影響 PPI 轉換成 PPII 的過程。我們的實驗結果顯示 aromatic-proline interaction 可用來調控 PPI 及 PPII 的穩定度;此外,我們亦提出 aromatic-proline interaction 可能發生在 PPI 折疊過程的後段之假設,因為其雖然增強了 PPI 結構之成分與緊密度,但無法加速折疊的過程。


    Proline exists equilibria between endo/exo ring puckers and cis/trans peptide bond isomers. Prolyl cis/trans isomerization plays a critical role in protein folding and isomer-specific biochemical recognition. Since polyproline can form all-cis type I helices (PPI) or all-trans type II helices (PPII), it has been a valuable model to study the prolyl isomerization. Recent studies have shown that stereoelectronic effects influence the rate of PPII → PPI conversion and the fluoroproline substituted peptides have the most pronounced changes. In Chapter 2, we synthesized a series of host-guest peptides with 4-substituted fluoroproline incorporated into the N-terminus or the C-terminus and used a kinetic approach to explore terminal stereoelectronic effects on polyproline conformation. Time-dependent CD measurements revealed that incorporation of fluoroproline at the C-terminal end of polyproline has a large effect on PPII → PPI conversion, where a tri((2S,4R)-4-fluoroproline) sequence, (Flp)3, increases the transition barrier of PPII → PPI conversion by 1.53 kJ mol-1 while a tri((2S,4S)-4-fluoroproline) sequence, (flp)3, decreases the transition barrier by 4.61 kJ mol-1. In contrast, the same substitutions at the N-terminus only affect the transition barrier of PPII → PPI conversion by -0.03 to 0.10 kJ mol-1. Our results demonstrate stereoelectronic effects on PPII → PPI conversion are directional and provide an approach to establish the PPII → PPI transition mechanism.
    The conformational equilibria between ring puckers can be modulated by substitutions on the proline ring. Implanting an electron-withdrawing group on the 4S position of proline prefers a C-endo pucker and a cis peptide bond due to stereoelectronic effects, and favors polyproline I (PPI) helices rather than polyproline II (PPII) helices by preorganization. 4-Thiaproline (Thp) favors an endo ring pucker and a cis peptide bond, and we incorporated Thp into polyproline peptides to explore its effects on the peptide conformation in Chapter 3. We synthesized a series of peptides, including P5ThpP5, P11, Thp7, and P7, and characterized their structures by CD spectroscopy. The results show that Thp substitutions not only destabilize PPII helices but also decrease the tendency to form PPI helices. The density functional theory (DFT) analysis on Thp and Thp-containing oligopeptide reveals that the energy difference between exo and endo ring puckers is small for Thp, i.e. Thp only slightly favors the endo pucker. Such a small energy difference could lead to the coexistence of PPI and PPII in solution for Thp-containing peptides. Our data demonstrate that although Thp possesses a structure similar to proline, it has a significant impact on polyproline conformation.
    In a peptide or protein, the sequence with aromatic residues adjacent to proline residues shows a higher propensity in forming cis prolyl bonds due to aromatic-proline interactions or proline-aromatic interactions. The interactions are related to the electronegativity of aromatic- ring: an electron-rich aromatic ring relatively favored a cis amide bond. In Chapter 4, we incorporated aromatic amino acids (F, Y, W) into the N-terminal or the C-terminal end of polyproline to investigate aromatic-proline interactions on polyproline conformation and PPI ⟷ PPII interconversion kinetics. CD measurements reveal that the N-terminal aromatic-proline interaction significantly affects polyproline conformation more than the C-terminal aromatic-proline interaction. PPI stability is correlated with the strength of aromatic-proline interactions in the order of Y > W > F, while PPII stability is in an opposite order of F > W > Y. Time-dependent CD measurements reveal that aromatic-substitution effects are directional on PPII → PPI conversion but nondirectional on PPI → PPII conversion and the hydrophobicity of aromatic side chain may play a critical role in the conversion of PPI to PPII. Our data demonstrate that aromatic-proline interactions can modulate the stabilities of PPI and PPII conformations. Moreover, we proposed that aromatic-proline interactions may occur in the late stage of PPI folding process since the aromatic-proline interactions cannot speed the folding process.

    中文摘要 I Abstract III List of Abbreviations V Contents VII List of Figures X List of Tables XIV Chapter 1 Background 1 1-1 Protein structure 1 1-2 Proline : showing the unique structural characteristics 4 1-3 Influence of proline residues on protein conformation 6 1-4 Prolyl isomerization 9 1-5 Proline recognition motif 12 1-6 Characteristics of polyproline helices 13 1-7 PPII helices in unfolded and folded proteins 17 1-8 Characteristics of polyproline for protein-protein interaction 19 1-9 Interconversion between PPI and PPII 21 1-10 References 22 Chapter 2 Terminal stereoelectronic effects on polyproline conformation 28 2-1 Introduction 28 2-1-1 Stereoelectronic effect 28 2-1-2 Stereoelectronic effects from proline derivatives 29 2-1-3 Stereoelectronic effects on different peptide system 31 2-1-4 Aim and scope 35 2-2 Materials and methods 35 2-2-1 General 35 2-2-2 Attachment of Fmoc-Pro-OH, Fmoc-Flp-OH, and Fmoc-flp-OH to 2-chlorotrityl resin 36 2-2-3 Peptide synthesis and purification 36 2-2-4 Circular dichroism (CD) spectroscopy 37 2-3 Results and discussion 38 2-3-1 Far-UV CD spectra of PPI and PPII conformation 38 2-3-2 The effects on terminal 4-fluoroproline residues on PPII stability 40 2-3-3 Kinetic CD measurements to study the transition state barrier of PPI and PPII interconversion 43 2-4 Conclusions 49 2-5 References 50 Chapter 3 The impact of 4-thiaproline on polyproline conformation 53 3-1 Introduction 53 3-1-1 Heterocyclic mutation - thiazolidine of PPII structure 53 3-1-2 4-thiaproline (Thp) 54 3-1-3 Thiazolidine-based drugs 58 3-1-4 Aim and scope 60 3-2 Materials and methods 60 3-2-1 General 60 3-2-2 Attachment of Fmoc-Tyr-OH to 2-chlorotrityl resin 61 3-2-3 Peptide synthesis and purification 61 3-2-4 Circular dichroism (CD) spectroscopy 62 3-2-5 Computations 63 3-3 Results and discussion 64 3-3-1 CD measurements – effects of single Thp substitution on polyproline 64 3-3-1-a Far-UV CD scan 64 3-3-1-b Solvent-dependent measurements in various percentages of n-propanol 66 3-3-1-c Temperature-induced transition experiments 67 3-3-2 Effects of multiple Thp substitutions on polyproline 69 3-3-3 Computational analyses of 4-thiaproline and Thp-substituted polyproline 69 3-4 Conclusion 77 3-5 References 79 Chapter 4 Terminal aromatic-proline interactions on polyproline conformation: kinetic and thermodynamic studies 82 4-1 Introduction 82 4-1-1 Aromatic-proline interactions 82 4-1-2 Intramolecular aromatic-proline interactions 85 4-1-3 Intermolecular aromatic-proline interactions 87 4-1-4 Aromatic-proline interactions in preference of cis prolyl bonds 89 4-1-5 Aim and scope 90 4-2 Materials and methods 91 4-2-1 General 91 4-2-2 Attachment of Fmoc-Pro-OH, Fmoc-Phe-OH, Fmoc-Tyr-OH, and Fmoc-Trp-OH to 2-chlorotrityl resin 92 4-2-3 Peptide synthesis and purification 92 4-2-4 Circular dichroism (CD) spectroscopy 93 4-2-5 NMR analysis 95 4-3 Results and discussion 95 4-3-1 Estimation of propensity for cis-prolyl bond 95 4-3-2 Far-UV CD spectra of PPI and PPII structures 97 4-3-3 Effects of terminal aromatic residues on PPII stability 99 4-3-4 Kinetic CD measurements to study the transition state barrier of PPI and PPII interconversion 102 4-4 Conclusions 116 4-5 References 117 Chapter 5 Summary and perspective 120 Appendix 123

    Chap 1
    1. Horton, H. R., Moran, L. A., Scrimgeour, K. G., Perry, M. D., and Rawn, J. D. (2006) Principles of biochemistry (4th ed.). Prentice Hall, New York. pp 96
    2. Lelson, D. L., and Cox, M. M. (2005) Principles of biochemistry (4th ed.). W. H. Freeman and company, New York. pp 120-124
    3. Improta, R., Benzi, C., and Barone, V. (2001) Understanding the role of stereoelectronic effects in determining collagen stability. 1. A quantum mechanical study of proline, hydroxyproline, and fluoroproline dipeptide analogues in aqueous solution. J. Am. Chem. Soc. 123, 12568-12577
    4. MacArthur, M. W., and Thornton, J. M. (1991) Influence of proline residues on protein conformation. J. Mol. Biol. 218, 397-412
    5. Kabsch, W., and Sander, C. (1983) Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. Biopolymers 22, 2577-2637
    6. Smith, J. A., Pease, L. G., and Kopple, K. D. (1980) Reverse turns in peptides and protein. CRC Crit. Rev. Biochem. 8, 315-399
    7. Rose, G. D., Glerasch, L. M., and Smith, J. A. (1985) Turns in peptides and proteins. Adv. Prot. Chem. 37, 1-109
    8. Richardson, J. S. (1981) The anatomy and taxonomy of protein structure. Adv. Prot. Chem.34, 167-339
    9. Richardson, J., and Richardson, D. (1988) Amino acid preferences for specific locations at the ends of alpha helices. Science 240, 1648-1652
    10. Deber, C. M., Brodsky, B., and Rath, A. (2001) Proline residues in proteins. eLS, Wiley, Ltd.
    11. Moriarty, D. F., and Raleigh, D. P. (1999) Effects of sequential proline substitutions on amyloid formation by human amylin20-29. Biochemistry 38, 1811-1818
    12. Soto, C., Sigurdsson, E. M., Morelli, L., Kumar, R. A., Castaño, E. M., and Frangione, B. (1998) β-sheet breaker peptides inhibit fibrillogenesis in a rat brain model of amyloidosis: implications for Alzheimer's therapy. Nat. Med. 4, 822-826
    13. Abedini, A., Meng, F., and Raleigh, D. P. (2007) A single-point mutation converts the highly amyloidogenic human islet amyloid polypeptide into a potent fibrillization inhibitor. J. Am. Chem. Soc. 129, 11300-11301
    14. Bhattacharyya, A., Thakur, A. K., Chellgren, V. M., Thiagarajan, G., Williams, A. D., Chellgren, B. W., Creamer, T. P., and Wetzel, R. (2006) Oligoproline effects on polyglutamine conformation and aggregation. J. Mol. Biol. 355, 524-535
    15. Hutchinson, E. G., and Thornton, J. M. (1994) A revised set of potentials for β-turn formation in proteins. Protein Sci. 3, 2207-2216
    16. Brandts, J. F., Halvorson, H. R., and Brennan, M. (1975) Consideration of the possibility that the slow step in protein denaturation reactions is due to cis-trans isomerism of proline residues. Biochemistry 14, 4953-4963
    17. Stewart, D. E., Sarkar, A., and Wampler, J. E. (1990) Occurrence and role ofcis peptide bonds in protein structures. J. Mol. Biol. 214, 253-260
    18. Wu, W.-J., and Raleigh, D. P. (1998) Local control of peptide conformation: stabilization of cis proline peptide bonds by aromatic proline interactions. Biopolymers 45, 381-394
    19. Fischer, G. (2000) Chemical aspects of peptide bond isomerisation. Chem. Soc. Rev. 29, 119-127
    20. Ramachandran, G. N., and Sasisekharan, V. (1968) Conformation of polypeptides and proteins. Advances in Protein Chemistry, Academic Press, New York. pp 283-437
    21. Schulz, G. E., Schirmer, R.H. (1979) Principles of protein structure. Springer, New York. pp 25
    22. Schmid, F. X., and Baldwin, R. L. (1978) Acid catalysis of the formation of the slow-folding species of RNase A: evidence that the reaction is proline isomerization. Proc. Natl. Acad. Sci. USA 75, 4764-4768
    23. Ferreon, J. C., and Hilser, V. J. (2003) The effect of the polyproline II (PPII) conformation on the denatured state entropy. Protein Sci. 12, 447-457
    24. Hamburger, J. B., Ferreon, J. C., Whitten, S. T., and Hilser, V. J. (2004) Thermodynamic mechanism and consequences of the polyproline II (PII) structural bias in the denatured states of proteins. Biochemistry 43, 9790-9799
    25. Whittington, S. J., Chellgren, B. W., Hermann, V. M., and Creamer, T. P. (2005) Urea promotes polyproline II helix formation:  implications for protein denatured states. Biochemistry 44, 6269-6275
    26. Shi, Z., Chen, K., Liu, Z., and Kallenbach, N. R. (2006) Conformation of the backbone in unfolded proteins. Chem. Rev. 106, 1877-1897
    27. Wedemeyer, W. J., Welker, E., and Scheraga, H. A. (2002) Proline cis-trans isomerization and protein folding. Biochemistry 41, 14637-14644
    28. Siligardi, G., and Drake, A. F. (1995) The importance of extended conformations and, in particular, the PII conformation for the molecular recognition of peptides. Biopolymers 37, 281-292
    29. Vanhoof, G., Goossens, F., De Meester, I., Hendriks, D., Scharpe, S. (1995) Proline motifs in peptides and their biological processing. FASEB J. 9, 736-744
    30. Kleywegt, G. J., and Jones, T. A. (1996) Phi/psi-chology: Ramachandran revisited. Structure 4, 1395-1400
    31. Brandsch, M., Thunecke, F., Küllertz, G., Schutkowski, M., Fischer, G., and Neubert, K. (1998) Evidence for the absolute conformational specificity of the intestinal H+/peptide symporter, PEPT1. J. Biol. Chem. 273, 3861-3864
    32. Sarkar, P., Reichman, C., Saleh, T., Birge, R. B., and Kalodimos, C. G. (2007) Proline cis-trans isomerization controls autoinhibition of a signaling protein. Mol. Cell 25, 413-426
    33. Salahuddin, A. (1984) Proline peptide isomerization and protein folding. J. Biosci. 6, 349-355
    34. Steinberg, I. Z., Harrington, W. F., Berger, A., Sela, M., and Katchalski, E. (1960) The configurational changes of poly-L-proline in solution. J. Am. Chem. Soc. 82, 5263-5279
    35. Reimer, U., Scherer, G., Drewello, M., Kruber, S., Schutkowski, M., and Fischer, G. (1998) Side-chain effects on peptidyl-prolyl cis/trans isomerisation. J. Mol. Biol. 279, 449-460
    36. Fischer, G., Bang, H., Mech, C. (1984) Detection of enzyme catalysis for cis-trans-isomerization of peptide bonds using proline-containing peptides. Biomed. Biochim. Acta 43, 1101-1111
    37. Fischer, G., Wittmann-Liebold, B., Lang, K., Kiefhaber, T., Schmid, F. X. (1989) Cyclophilin and peptidyl-prolyl cis-trans isomerase are probably identical proteins. Nature 337, 476-478
    38. Marshall, G. R. (1992) Three-dimensional structure of peptide-protein complexes: implications for recognition. Curr. Opin. Struct. Biol. 2, 904-919
    39. Marshall, G. R. (2001) Peptide interactions with G-protein coupled receptors. Bioplymers 60, 246-277
    40. Tugarinov, V., Zvi, A., Levy, R., and Anglister, J. (1999) A cis proline turn linking two beta-hairpin strands in the solution structure of an antibody-bound HIV-1IIIB V3 peptide. Nat. Struct. Mol. Biol. 6, 331-335
    41. Zarrinpar, A., Bhattacharyya, R. P., and Lim, W. A. (2003) The structure and function of proline recognition domains. Sci. STKE 179, RE8
    42. Adzhubei, A. A., Sternberg, M. J. E., and Makarov, A. A. (2013) Polyproline-II helix in proteins: structure and function. J. Mol. Biol. 425, 2100-2132
    43. Zondlo, N. J. (2012) Aromatic-proline interactions: electronically tunable CH/π interactions. Acc. Chem. Res. 46, 1039-1049
    44. Cowan, P. M., and McGavin, S. (1955) Structure of poly-L-proline. Nature 176, 501-503
    45. Benedetti, E., Bavoso, A., di Blasio, B., Pavone, V., Pedone, C., Toniolo, C., and Bonora, G. M. (1983) Solid-state geometry and conformation of linear, diastereoisomeric oligoprolines. Biopolymers 22, 305-317
    46. Matsuzaki, T. (1974) The crystal structure of t-butyloxycarbonyltetra-l-proline benzyl ester. Acta Cryst. B 30, 1029-1036
    47. Wilhelm, P., Lewandowski, B., Trapp, N., and Wennemers, H. (2014) A crystal structure of an oligoproline PPII-helix, at last. J. Am. Chem. Soc.136, 15829-15832
    48. Knof, S., and Engel, J. (1974) Conformational stability, partial specific volumes and spectroscopic properties of poly-L-proline, poly-L-hydroxyproline and some of its O-acyl-derivatives in various solvent systems. Isr. J. Chem. 12, 165-177
    49. Mutter, M., Wöhr, T., Gioria, S., and Keller, M. (1999) Pseudo-prolines: induction of cis/trans-conformational interconversion by decreased transition state barriers. Biopolymers (Peptide Sci.) 51, 121-128
    50. Kakinoki, S., Hirano, Y., and Oka, M. (2005) On the stability of polyproline-I and II structures of proline oligopeptides. Polym. Bull. 53, 109-115
    51. Dugave, C., and Demange, L. (2003) Cis-trans isomerization of organic molecules and biomolecules: implications and applications. Chem. Rev. 103, 2475-2532
    52. Horng, J.-C., and Raines, R. T. (2006) Stereoelectronic effects on polyproline conformation. Protein Sci. 15, 74-83
    53. Cubellis, M. V., Caillez, F., Blundell, T. L., and Lovell, S. C. (2005) Properties of polyproline II, a secondary structure element implicated in protein-protein interactions. Proteins 58, 880-892
    54. Eker, F., Griebenow, K., Cao, X., Nafie, L. A., and Schweitzer-Stenner, R. (2004) Preferred peptide backbone conformations in the unfolded state revealed by the structure analysis of alanine-based (AXA) tripeptides in aqueous solution. Proc. Natl. Acad. Sci. USA 101, 10054-10059
    55. Rucker, A. L., Pager, C. T., Campbell, M. N., Qualls, J. E., and Creamer, T. P. (2003) Host-guest scale of left-handed polyproline II helix formation. Proteins 53, 68-75
    56. Brown, A. M., and Zondlo, N. J. (2012) A propensity scale for type II polyproline helices (PPII): aromatic amino acids in proline-rich sequences strongly disfavor PPII due to proline-aromatic interactions. Biochemistry 51, 5041-5051
    57. Radhakrishnan, R., Presta, L. G., Meyer Jr, E. F., and Wildonger, R. (1987) Crystal structures of the complex of porcine pancreatic elastase with two valine-derived benzoxazinone inhibitors. J. Mol. Biol. 198, 417-424
    58. Adzhubei, A. A., and Sternberg, M. J. E. (1993) Left-handed polyproline II helices commonly occur in globular proteins. J. Mol. Biol. 229, 472-493
    59. Eker, F., Cao, X., Nafie, L., Huang, Q., and Schweitzer-Stenner, R. (2002) The structure of alanine based tripeptides in water and dimethyl sulfoxide probed by vibrational spectroscopy. J. Phys. Chem. B 107, 358-365
    60. Liu, Z., Chen, K., Ng, A., Shi, Z., Woody, R. W., and Kallenbach, N. R. (2004) Solvent dependence of PII conformation in model alanine peptides. J. Am. Chem. Soc. 126, 15141-15150
    61. Hinderaker, M. P., and Raines, R. T. (2003) An electronic effect on protein structure. Protein Sci. 12, 1188-1194
    62. Choudhary, A., Gandla, D., Krow, G. R., and Raines, R. T. (2009) Nature of amide carbonyl-carbonyl interactions in proteins. J. Am. Chem. Soc. 131, 7244-7246
    63. Rath, A., Davidson, A. R., and Deber, C. M. (2005) The structure of “unstructured” regions in peptides and proteins: role of the polyproline II helix in protein folding and recognition. Biopolymers (Peptide Sci.) 80, 179-185
    64. Hu, K.-N., Havlin, R. H., Yau, W.-M., and Tycko, R. (2009) Quantitative determination of site-specific conformational distributions in an unfolded protein by solid-state nuclear magnetic resonance. J. Mol. Biol. 392, 1055-1073
    65. Blanch, E. W., Morozova-Roche, L. A., Cochran, D. A. E., Doig, A. J., Hecht, L., and Barron, L. D. (2000) Is polyproline II helix the killer conformation? A raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme. J. Mol. Biol. 301, 553-563
    66. Ishijima, J., Nagasaki, N., Maeshima, M., and Miyano, M. (2007) RVCaB, a aalcium-binding protein in radish vacuoles, is predominantly an unstructured protein with a polyproline type II helix. J. Biochem. 142, 201-211
    67. Mezei, M., Fleming, P. J., Srinivasan, R., and Rose, G. D. (2004) Polyproline II helix is the preferred conformation for unfolded polyalanine in water. Proteins 55, 502-507
    68. Kentsis, A., Mezei, M., and Osman, R. (2005) Origin of the sequence-dependent polyproline II structure in unfolded peptides. Proteins 61, 769-776
    69. Kentsis, A., Mezei, M., Gindin, T., and Osman, R. (2004) Unfolded state of polyalanine is a segmented polyproline II helix. Proteins 55, 493-501
    70. Stapley, B. J., and Creamer, T. P. (1999) A survey of left-handed polyproline II helices. Protein Sci. 8, 587-595
    71. Bochicchio, B., and Tamburro, A. M. (2002) Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality 14, 782-792
    72. Williamson, M. P. (1994) The structure and function of proline-rich regions in proteins. Biochem. J. 297, 249-260
    73. Lin, L.-N., and Brandts, J. F. (1979) Role of cis-trans isomerism of the peptide bond in protease specificity. Kinetic studies on small proline-containing peptides and on polyproline. Biochemistry 18, 5037-5042
    74. Lin, L.-N., and Brandts, J. F. (1980) Kinetic mechanism for conformational transitions between poly-L-prolines I and II: a study utilizing the cis-trans specificity of a proline-specific protease. Biochemistry 19, 3055-3059

    Chap 2
    1. Dill, K. A. (1990) Dominant forces in protein folding. Biochemistry 29, 7133-7155
    2. Hinderaker, M. P., and Raines, R. T. (2003) An electronic effect on protein structure. Protein Sci. 12, 1188-1194
    3. Choudhary, A., Gandla, D., Krow, G. R., and Raines, R. T. (2009) Nature of amide carbonyl-carbonyl interactions in proteins. J. Am. Chem. Soc. 131, 7244-7246
    4. Newberry, R. W., VanVeller, B., Guzei, I. A., and Raines, R. T. (2013) n→π* Interactions of amides and thioamides: implications for protein stability. J. Am. Chem. Soc. 135, 7843-7846
    5. Wolfe, S. (1972) Gauche effect. Stereochemical consequences of adjacent electron pairs and polar bonds. Acc. Chem. Res. 5, 102-111
    6. DeRider, M. L., Wilkens, S. J., Waddell, M. J., Bretscher, L. E., Weinhold, F., Raines, R. T., and Markley, J. L. (2002) Collagen stability:  insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. J. Am. Chem. Soc. 124, 2497-2505
    7. Panasik, N., Eberhardt, E. S., Edison, A. S., Powell, D. R., and Raines, R. T. (1994) Inductive effects on the structure of proline residues. Int. J. Pept. Protein Res. 44, 262-269
    8. Eberhardt, E. S., Panasik, N., and Raines, R. T. (1996) Inductive effects on the energetics of prolyl peptide bond isomerization:  implications for collagen folding and stability. J. Am. Chem. Soc. 118, 12261-12266
    9. Benzi, C., Improta, R., Scalmani, G., and Barone, V. (2002) Quantum mechanical study of the conformational behavior of proline and 4R-hydroxyproline dipeptide analogues in vacuum and in aqueous solution. J. Comput. Chem. 23, 341-350
    10. Taylor, C. M., Hardré, R., and Edwards, P. J. B. (2005) The impact of pyrrolidine hydroxylation on the conformation of proline-containing peptides. J. Org. Chem. 70, 1306-1315
    11. Improta, R., Benzi, C., and Barone, V. (2001) Understanding the role of stereoelectronic effects in determining collagen stability. 1. A quantum mechanical study of proline, hydroxyproline, and fluoroproline dipeptide analogues in aqueous solution. J. Am. Chem. Soc. 123, 12568-12577
    12. Bretscher, L. E., Jenkins, C. L., Taylor, K. M., DeRider, M. L., and Raines, R. T. (2001) Conformational stability of collagen relies on a stereoelectronic effect. J. Am. Chem. Soc. 123, 777-778
    13. Chiang, Y.-C., Lin, Y.-J., and Horng, J.-C. (2009) Stereoelectronic effects on the transition barrier of polyproline conformational interconversion. Protein Sci. 18, 1967-1977
    14. Naduthambi, D., and Zondlo, N. J. (2006) Stereoelectronic tuning of the structure and stability of the Trp cage miniprotein. J. Am. Chem. Soc. 128, 12430-12431
    15. Zheng, T.-Y., Lin, Y.-J., and Horng, J.-C. (2010) Thermodynamic consequences of incorporating 4-substituted proline derivatives into a small helical protein. Biochemistry 49, 4255-4263
    16. Tang, H.-C., Lin, Y.-J., and Horng, J.-C. (2014) Modulating the folding stability and ligand binding affinity of Pin1 WW domain by proline ring puckering. Proteins 82, 67-76
    17. Jenkins, C. L., McCloskey, A. I., Guzei, I. A., Eberhardt, E. S., and Raines, R. T. (2005) O-acylation of hydroxyproline residues: effect on peptide-bond isomerization and collagen stability. Biopolymers (Peptide Sci.) 80, 1-8
    18. Shoulders, M. D., Hodges, J. A., and Raines, R. T. (2006) Reciprocity of steric and stereoelectronic effects in the collagen triple helix. J. Am. Chem. Soc. 128, 8112-8113
    19. Kotch, F. W., Guzei, I. A., and Raines, R. T. (2008) Stabilization of the collagen triple helix by O-methylation of hydroxyproline residues. J. Am. Chem. Soc.130, 2952-2953
    20. Shoulders, M. D., Kotch, F. W., Choudhary, A., Guzei, I. A., and Raines, R. T. (2010) The aberrance of the 4S diastereomer of 4-hydroxyproline. J. Am. Chem. Soc. 132, 10857-10865
    21. Hodges, J. A., and Raines, R. T. (2005) Stereoelectronic and steric effects in the collagen triple helix:  toward a code for strand association. J. Am. Chem. Soc. 127, 15923-15932
    22. Horng, J.-C., and Raines, R. T. (2006) Stereoelectronic effects on polyproline conformation. Protein Sci. 15, 74-83
    23. Kuemin, M., Schweizer, S., Ochsenfeld, C., and Wennemers, H. (2009) Effects of terminal functional groups on the stability of the polyproline II structure: a combined experimental and theoretical study. J. Am. Chem. Soc. 131, 15474-15482
    24. Scopes, R. K. (1974) Measurement of protein by spectrophotometry at 205 nm. Anal. Biochem. 59, 277-282
    25. Grimsley, G. R., and Pace, C. N. (2003) Spectrophotometric determination of protein concentration. Current Protocols in Protein Science, Wiley, Hoboken. pp 3.1.1-3.1.9
    26. Lin, L.-N., and Brandts, J. F. (1980) Kinetic mechanism for conformational transitions between poly-L-prolines I and II: a study utilizing the cis-trans specificity of a proline-specific protease. Biochemistry 19, 3055-3059

    Chap 3
    1. Brown, A. M., and Zondlo, N. J. (2012) A propensity scale for type II polyproline helices (PPII): aromatic amino acids in proline-rich sequences strongly disfavor PPII due to proline-aromatic interactions. Biochemistry 51, 5041-5051
    2. Mamai, A., Zhang, R., Natarajan, A., and Madalengoitia, J. S. (2000) Poly-l-proline type II peptide mimics based on the 3-azabicyclo[3.1.0]hexane system. J. Org. Chem. 66, 455-460
    3. Pandey, A. K., Naduthambi, D., Thomas, K. M., and Zondlo, N. J. (2013) Proline editing: a general and practical approach to the synthesis of functionally and structurally diverse peptides. Analysis of steric versus stereoelectronic effects of 4-substituted prolines on conformation within peptides. J. Am. Chem. Soc. 135, 4333-4363
    4. Kuemin, M., Schweizer, S., Ochsenfeld, C., and Wennemers, H. (2009) Effects of terminal functional groups on the stability of the polyproline II structure: a combined experimental and theoretical study. J. Am. Chem. Soc. 131, 15474-15482
    5. Witter, D. J., Famiglietti, S. J., Cambier, J. C., and Castelhano, A. L. (1998) Design and synthesis of SH3 domain binding ligands: modifications of the consensus sequence XPpXP. Bioorg. Med. Chem. Lett. 8, 3137-3142
    6. Goodman, M., Chen, V., Benedetti, E., Pedone, C., and Corradini, P. (1972) Conformational aspects of polypeptide structure. XLI. Crystal structure of S-thiazolidine-4-carboxylic acid and helical structure of poly[(S)-thiazolidine- 4-carboxylic acid]. Biopolymers 11, 1779-1787
    7. Budisa, N., Minks, C., Medrano, F. J., Lutz, J., Huber, R., and Moroder, L. (1998) Residue-specific bioincorporation of non-natural, biologically active amino acids into proteins as possible drug carriers: structure and stability of the per-thiaproline mutant of annexin V. Proc. Natl. Acad. Sci. USA 95, 455-459
    8. Benedetti, E., Christensen, A., Gilon, C., Fuller, W., and Goodman, M. (1976) Conformational studies of peptides. The crystal structures of N-acetyl-L- prolinamide and N-acetyl-(S)-thiazolidine-4-carboxamide. Biopolymers 15, 2523-2534
    9. Robert, F. (1976) The crystal and molecular structure of N-tert-butyloxycarbonyl- l-thiazolidine-4-carboxylic acid (C9H15NO4S). Acta Cryst. 32, 2367-2369
    10. Choudhary, A., Pua, K., and Raines, R. (2011) Quantum mechanical origin of the conformational preferences of 4-thiaproline and its S-oxides. Amino Acids 41, 181-186
    11. Kang, Y. K. (2002) Cis-trans isomerization and puckering of pseudoproline dipeptides. J. Phys. Chem. B 106, 2074-2082
    12. Kern, D., Schutkowski, M., and Drakenberg, T. (1997) Rotational barriers of cis/trans isomerization of proline analogues and their catalysis by cyclophilin. J. Am. Chem. Soc. 119, 8403-8408
    13. Shuman, R. T., Rothenberger, R. B., Campbell, C. S., Smith, G. F., Gifford-Moore, D. S., Paschal, J. W., and Gesellchen, P. D. (1995) Structure- activity study of tripeptide thrombin inhibitors using alpha-alkyl amino acids and other conformationally constrained amino acid substitutions. J. Med. Chem. 38, 4446-4453
    14. Gorres, K. L., Edupuganti, R., Krow, G. R., and Raines, R. T. (2008) Conformational preferences of substrates for human prolyl 4-hydroxylase. Biochemistry 47, 9447-9455
    15. Prabhakar, Y. S., Solomon, V. R., Gupta, M. K., and Katti, S. B. (2006) QSAR studies on thiazolidines: a biologically privileged scaffold. In QSAR and molecular modeling studies in heterocyclic drugs II, Gupta, S., Springer, Berlin Heidelberg. 4, pp 161-249
    16. Lubec, B., Hjelm, M., Hoeger, H., Gialamas, J., and Lubec, G. (1997) 4-Thiaproline reduces heart lipid peroxidation and collagen accumulation in the diabetic db/db mouse. Amino Acids 12, 343-351
    17. Horng, J.-C., and Raines, R. T. (2006) Stereoelectronic effects on polyproline conformation. Protein Sci. 15, 74-83
    18. Chiang, Y.-C., Lin, Y.-J., and Horng, J.-C. (2009) Stereoelectronic effects on the transition barrier of polyproline conformational interconversion. Protein Sci. 18, 1967-1977
    19. Kümin, M., Sonntag, L.-S., and Wennemers, H. (2006) Azidoproline containing helices:  stabilization of the polyproline II structure by a functionalizable group. J. Am. Chem. Soc. 129, 466-467
    20. Kuemin, M., Nagel, Y. A., Schweizer, S., Monnard, F. W., Ochsenfeld, C., and Wennemers, H. (2010) Tuning the cis/trans conformer ratio of Xaa-Pro amide bonds by intramolecular hydrogen bonds: the effect on PPII helix stability. Angew. Chem. Int. Ed. 49, 6324-6327
    21. Brunck, T. K., and Weinhold, F. (1979) Quantum-mechanical studies on the origin of barriers to internal rotation about single bonds. J. Am. Chem. Soc. 101, 1700-1709
    22. Goodman, M., Niu, G. C. C., and Su, K.-C. (1970) Conformational aspects of polypeptide structure. XXXI. Helical poly[(S)-thiazolidine-4-carboxylic acid] and poly[(S)-oxazolidine-4-carboxylic acid]. Theoretical results. J. Am. Chem. Soc. 92, 5219-5220
    23. Goodman, M., Su, K.-C., and Niu, G. C. C. (1970) Conformational aspects of polypeptide structure. XXXII. Helical poly[(S)-thiazolidine-4-carboxylic acid]. Experimental results. J. Am. Chem. Soc. 92, 5220-5222
    24. DeRider, M. L., Wilkens, S. J., Waddell, M. J., Bretscher, L. E., Weinhold, F., Raines, R. T., and Markley, J. L. (2002) Collagen stability:  insights from NMR spectroscopic and hybrid density functional computational investigations of the effect of electronegative substituents on prolyl ring conformations. J. Am. Chem. Soc. 124, 2497-2505
    25. Zhong, H., and Carlson, H. A. (2006) Conformational studies of polyprolines. J. Chem. Theory Comput. 2, 342-353

    Chap 4
    1. Bhattacharyya, R., and Chakrabarti, P. (2003) Stereospecific interactions of proline residues in protein structures and complexes. J. Mol. Biol. 331, 925-940
    2. Steiner, T., and Koellner, G. (2001) Hydrogen bonds with π-acceptors in proteins: frequencies and role in stabilizing local 3D structures. J. Mol. Biol. 305, 535-557
    3. Brandl, M., Weiss, M. S., Jabs, A., Sühnel, J., and Hilgenfeld, R. (2001) C-H⋯π-interactions in proteins. J. Mol. Biol. 307, 357-377
    4. Zondlo, N. J. (2012) Aromatic-proline interactions: electronically tunable CH/π interactions. Acc. Chem. Res. 46, 1039-1049
    5. Thomas, K. M., Naduthambi, D., and Zondlo, N. J. (2006) Electronic control of amide cis-trans isomerism via the aromatic-prolyl interaction. J. Am. Chem. Soc. 128, 2216-2217
    6. Pandey, A. K., Thomas, K. M., Forbes, C. R., and Zondlo, N. J. (2014) Tunable control of polyproline helix (PPII) structure via aromatic electronic effects: an electronic switch of polyproline helix. Biochemistry 53, 5307-5314
    7. Vermeulen, W., Van Troys, M., Bourry, D., Dewitte, D., Rossenu, S., Goethals, M., Borremans, F. A. M., Vandekerckhove, J., Martins, J. C., and Ampe, C. (2006) Identification of the PXW Sequence as a structural gatekeeper of the headpiece C-terminal subdomain fold. J. Mol. Biol. 359, 1277-1292
    8. Neidigh, J. W., Fesinmeyer, R. M., and Andersen, N. H. (2002) Designing a 20-residue protein. Nat. Struct. Mol. Biol. 9, 425-430
    9. Xiao, S., Bi, Y., Shan, B., and Raleigh, D. P. (2009) Analysis of core packing in a cooperatively folded miniature protein: the ultrafast folding villin headpiece helical subdomain. Biochemistry 48, 4607-4616
    10. Zheng, T.-Y., Lin, Y.-J., and Horng, J.-C. (2010) Thermodynamic consequences of incorporating 4-substituted proline derivatives into a small helical protein. Biochemistry 49, 4255-4263
    11. Zarrinpar, A., Bhattacharyya, R. P., and Lim, W. A. (2003) The structure and function of proline recognition domains. Sci. STKE 2003, Re8
    12. Ma, B., Elkayam, T., Wolfson, H., and Nussinov, R. (2003) Protein–protein interactions: structurally conserved residues distinguish between binding sites and exposed protein surfaces. Proc. Natl. Acad. Sci. USA 100, 5772-5777
    13. London, N., Movshovitz-Attias, D., and Schueler-Furman, O. (2010) The structural basis of peptide-protein binding strategies. Structure 18, 188-199
    14. Glaser, F., Steinberg, D. M., Vakser, I. A., and Ben-Tal, N. (2001) Residue frequencies and pairing preferences at protein-protein interfaces. Proteins 43, 89-102
    15. Yao, J., Dyson, H. J., and Wright, P. E. (1994) Three-dimensional structure of a type VI turn in a linear peptide in water solution evidence for stacking of aromatic rings as a major stabilizing factor. J. Mol. Biol. 243, 754-766
    16. Fischer, G. (2000) Chemical aspects of peptide bond isomerisation. Chem. Soc. Rev. 29, 119-127
    17. Wu, W.-J., and Raleigh, D. P. (1998) Local control of peptide conformation: stabilization of cis proline peptide bonds by aromatic proline interactions. Biopolymers 45, 381-394
    18. Ganguly, H. K., Majumder, B., Chattopadhyay, S., Chakrabarti, P., and Basu, G. (2012) Direct evidence for CH···π interaction mediated stabilization of Pro-cisPro bond in peptides with Pro-Pro-aromatic motifs. J. Am. Chem. Soc. 134, 4661-4669
    19. Meng, H. Y., Thomas, K. M., Lee, A. E., and Zondlo, N. J. (2006) Effects of i and i+3 residue identity on cis-trans isomerism of the aromatici+1-prolyli+2 amide bond: implications for type VI β-turn formation. Biopolymers (Peptide Sci.) 84, 192-204
    20. Brown, A. M., and Zondlo, N. J. (2012) A propensity scale for type II polyproline helices (PPII): aromatic amino acids in proline-rich sequences strongly disfavor PPII due to proline-aromatic interactions. Biochemistry 51, 5041-5051
    21. Kuemin, M., Schweizer, S., Ochsenfeld, C., and Wennemers, H. (2009) Effects of terminal functional groups on the stability of the polyproline II structure: a combined experimental and theoretical study. J. Am. Chem. Soc. 131, 15474-15482
    22. Lin, Y.-J., and Horng, J.-C. (2014) Impacts of terminal (4R)-fluoroproline and (4S)-fluoroproline residues on polyproline conformation. Amino Acids 46, 2317-2324
    23. Scopes, R. K. (1974) Measurement of protein by spectrophotometry at 205 nm. Anal. Biochem. 59, 277-282
    24. Grimsley, G. R., and Pace, C. N. (2003) Spectrophotometric determination of protein concentration. Current Protocols in Protein Science, Wiley, Hoboken. pp 3.1.1-3.1.9
    25. Chakrabartty, A., Kortemme, T., Padmanabhan, S., and Baldwin, R. L. (1993) Aromatic side-chain contribution to far-ultraviolet circular dichroism of helical peptides and its effect on measurement of helix propensities. Biochemistry 32, 5560-5565
    26. Gilbert, S. M., Wellner, N., Belton, P. S., Greenfield, J. A., Siligardi, G., Shewry, P. R., and Tatham, A. S. (2000) Expression and characterisation of a highly repetitive peptide derived from a wheat seed storage protein. Biochim. Biophys. Acta 1479, 135-146
    27. Bochicchio, B., and Tamburro, A. M. (2002) Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. Chirality 14, 782-792
    28. Mant, C. T., Kovacs, J. M., Kim, H.-M., Pollock, D. D., and Hodges, R. S. (2009) Intrinsic amino acid side-chain hydrophilicity/hydrophobicity coefficients determined by reversed-phase high-performance liquid chromatography of model peptides: Comparison with other hydrophilicity/hydrophobicity scales. Peptide Sci. 92, 573-595
    29. Lin, L.-N., and Brandts, J. F. (1979) Role of cis-trans isomerism of the peptide bond in protease specificity. Kinetic studies on small proline-containing peptides and on polyproline. Biochemistry 18, 5037-5042
    30. Lin, L.-N., and Brandts, J. F. (1980) Kinetic mechanism for conformational transitions between poly-L-prolines I and II: a study utilizing the cis-trans specificity of a proline-specific protease. Biochemistry 19, 3055-3059

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE