簡易檢索 / 詳目顯示

研究生: 林郁盛
論文名稱: 游標尺式之懸浮閘極電晶體應用於加速度計之設計與製作
Design and fabrication of a suspended gate FET acceleromter using vernier-type sensing mechanism
指導教授: 陳榮順
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 50
中文關鍵詞: 懸浮式閘極游標尺加速度計
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究呈現游標尺式懸浮閘極場效電晶體之位移感測方式並且應用於加速度計上,以此進行設計、數值軟體模擬及實際製作完成。
    本研究的架構為藉由加速度計上的質量塊移動,使得附屬於加速度計上的多個閘極移動,再觀察是否閘極有覆蓋在汲極與源極之間的通道上方,決定該對MOS的通道部份是否導通。以通道部份是否有電流通過作為ON或OFF的判斷,利用多組閘極以此方式運作,可產生游標尺的機制,可得到較精確的測量值,並達成加速度計的輸出訊號在不需加上電路即可解讀為數位訊號,不同以往加速度計之輸出方式為類比訊號。
    本研究的特色為提供加速度計一種不需電路即可達成訊號數位化的方式,並可根據游標尺式閘極大小的設計改變其解析度,並且使用可和CMOS製程相容的製程方式製作。


    摘要 I 誌謝 II 目錄 III 圖表目錄 V 第一章 緒論 1 1.1研究背景與動機 1 1.2文獻回顧 1 1.3 論文架構 4 第二章 結構設計與理論分析 6 2.1金氧半場效電晶體之結構與特性 6 2.2懸浮式閘極場效電晶體之結構與特性 9 2.3游標尺原理與其應用於懸浮式閘極電晶體之結構 13 2.4加速度計作用原理 16 2.5游標尺懸浮式閘極電晶體與加速度計結合 18 第三章 模擬結果與製程簡介 20 3.1利用ISE-TCAD模擬懸浮閘極電晶體的特性 20 3.2利用CoventerWare模擬加速度計之運動情形 31 第四章 製程流程與量測 36 4.1 製程流程 36 4.2 實驗結果及量測 37 第五章 總結與未來工作 46 5.1 總結 46 5.2 未來工作 46 參考文獻 48

    [1] F. Rudolf, “A micromechanical capacitive accelerometer with a two-point inertial-mass suspension,” Sensors and Actuators, vol. 4, 1983, pp.191-198.
    [2] R. P. van Kampen, M. J. Vellekoop, P. M. Sarro and R. F. Wolffenbuttel, “Application of Electrostatic Feedback to Critical Damping of an Integrated Silicon Capacitive Accelerometer,” Sensors and Actuators A: Physical, 1994, pp. 100-106.
    [3] J. Wu, G. K. Fedder and L. R. Carley, “A low-noise low-offset capacitive sensing amplifier for a 50-μg/ monolithic CMOS MEMS accelerometer,” Journal of Solid-State Circuits, vol. 39, no.5, May, 2004, pp. 722-730.
    [4] L. M. Roylance and J. B. Angell, “A batch-fabricated silicon accelerometer,” IEEE Transactions on Electron Devices, vol. 26, 1979, pp. 1911
    [5] H. V. Allen, S. C. Terry and D. W. De Bruin, “Accelerometer system with self-testable features,“ Sensors and Actuators A: Physical, vol. 20, 1989, pp. 153-161.
    [6] A. Partridge, J. K. Reynolds, B. W. Chui, E. M. Chou, A. M. Fitzgeralg, L. Zhang, N. I. Maluf and T. W. Kenny, “A high-performance planar piezoresistive accelerometer,” Journal of MicroElectroMachanical System, vol. 9, no. 1, March, 2000, pp. 58-66.
    [7] D. L. DeVoe and A. P. Pisano, “Surface micromachined piezoelectric accelerometer,” Journal of MicroElectroMachanical Systems, vol. 10, no. 2, June, 2001, pp. 180-186.
    [8] M. Aikele, K. Bauer, W. Ficker, F. Neubauer, U. Prechtel, J. Schalk and H. Seidal, “Resonant accelerometer with self-test,“ Sensors and Actuators A: Physical, December, 2000, pp. 161-167.
    [9] F. Mailly, A. Martinez, A. Giani, F. Pascal-Delannoy and A. Boyer “Design of a micromachined thermal accelerometer: thermal simulation and experimental results,” Microelectronics Journal, 2003, pp. 275-280.
    [10] J. A. Plaza, M. A. Benitez, J. Esteve and E. L. Tamayo, “New FET accelerometer based on surface micromachining,” Sensors and Actuators A: Physical, vol. 61, 1997, pp. 342-345.
    [11] W. D. Frobenius, S. A. Zeitman, M. H. White, D. D. O’Sullivan and R. G. Hamel, “Microminiature ganged threshold accelerometers compatible with integrated circuit technology,” IEEE Transactions on Electron Devices, vol. 19, 1979, pp. 37.
    [12] P. M. Zavracky, F. Hartley, N. Sherman, T. Hansen and K. Warner, “A new force balanced accelerometer using tunneling tip position sensing, abstract,” in Digest International Conference of Solid-State Sensors and Actuators, Yokohama, Japan, June 7-10, 1993, pp. 50-51.
    [13] C. H. Liu, A. M. Barzilai, J. K. Reynolds, A. Partridge, J. D. Grade, H. K. Rockstad and T. W. Kenny, “Characterization of a high-sensitivity micromachined accelerometer with micro-g resolution,” Journal of MicroElectroMechanical Systems, vol. 7, no. 2, 1998, pp. 235-244.
    [14] H. C. Nathanson, W. E. Newell, R. A. Wickstrom and J. R. Jr. Davis, “The resonant gate transistor,” IEEE Transactions on Electron Devices, vol. 14, 1967, pp. 117-133.
    [15] R. S. Jachowicz and Z. M. Azgin, “FET pressure sensor and iterative method for modeling of the device,” Sensors and Acturators, A: Physical, vol. 97-98, 2002, pp. 369-378.
    [16] P. K. Ajmera and I. H. Song, “Laterally movable gate FET (LMGFET) for on-chip integration of MEMS with electronics,” Proceedings of SPIE - the International Society for Optical Engineering, vol. 4334, 2001, pp. 31-37.
    [17] I. H. Song, S. Kopparthi, P. K. Ajmera and A. Srivastava, “Design, simulation and fabrication of a novel integrated microaccelerometer utilizing a post-CMOS fabrication technique,” Proceeding of SPIE - Smart Structure and Materials, vol. 5055, 2003, pp. 78-86.
    [18] T.–W. Lin, Max T.–K. Hou and R. Chen , “ A MEMS position encoder for comb-drive actuators using suspended gate Field-Effect transistors,” Journal of Key Engineering Materials , Vols. 326-328 , 2006, pp. 1379 – 1382.
    [19] 林東緯, “懸浮式閘極場效電晶體應用於梳狀致動器之位移感測,” 國立清華大學微機電工程研究所碩士論文, 2006
    [20] 徐若涵, “游標尺式之懸浮閘極電晶體應用於梳狀致動器之位移感測,” 國立清華大學微機電工程研究所碩士論文, 2007

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE