研究生: |
林思羽 Lin, Ssu-Yu |
---|---|
論文名稱: |
結合電沉積二氧化鈦緻密層與板鈦礦支架層製備高效率塑膠鈣鈦礦太陽能電池 High Efficiency Plastic Perovskite Solar Cell Using Low Temperature Processable Electrodeposited TiO2 Compact Layer and Brookite Scaffold |
指導教授: |
衛子健
Wei, Tzu-Chien |
口試委員: |
竇維平
Dow, Wei-Ping 李建良 Lee, Chien-Liang |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 中文 |
論文頁數: | 73 |
中文關鍵詞: | 鈣鈦礦 、塑膠基板 、低溫 、電沉積 、板鈦礦 |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鈣鈦礦太陽能電池的效率在近十年來快速的成長至22.1 %,使得商業化的可能性大幅提升,但傳統形式的鈣鈦礦太陽能電池結構中,緻密層與多孔支架層二氧化鈦薄膜需高溫燒結製程,不僅不利於大面積連續生產,更消耗大量的能源。因此發展低溫製程的鈣鈦礦太陽能電池便成為實用化與否的一大重要技術挑戰。低溫製程的鈣鈦礦太陽能電池仍然可以硬式玻璃基板與塑膠高分子基板上施作,然一般認為塑膠高分子基板擁有輕量與可彎曲的特性,應用範圍較玻璃基板廣泛,因此此篇研究著重於發展低溫塑膠基板的鈣鈦礦太陽能電池。
低溫鈣鈦礦太陽能電池的挑戰在於傳統緻密層與多孔支架層的二氧化鈦需高溫燒結,因此,此篇研究在緻密層的部分,為使不耐酸鹼性的塑膠高分子基板不被電沉積溶液腐蝕,添加螯合劑(EDTA)至電沉積溶液中,增加三氯化鈦在溶液中的溶解度,達到增加電沉積溶液pH值的目的,再進行電沉積反應沉積緻密層,並經由循環伏安法的結果發現沉積的薄膜具有良好的覆蓋率。而多孔支架層為不含黏著劑(Binder-free)的特殊多孔漿料,此漿料可在70 oC即形成板鈦礦二氧化鈦結晶,其結晶經由XRD確認,從TEM得知其幾何形狀為扁平狀且直徑相較於原先所使用的銳鈦礦二氧化鈦較小(約25奈米),大約16-18奈米,除此之外,結合UV與UPS的結果發現,此漿料導帶位置也較銳鈦礦低,表示未經高溫燒結的多孔漿料可藉由顆粒較小且扁平狀增加與鄰近顆粒的接觸面積,以彌補未經燒結所增加的電子傳遞電阻與導帶位置低增加電子的注入能力。結合以上的電沉積緻密層與特殊多孔漿料,可製備出目前塑膠高分子基板的多孔結構最高效率,效率高達15.76 %。
In recent years, fabricating plastic perovskite solar cells (PSCs) becomes increasingly attractive because of their light-weight and bendability. However, commercial plastic substrate like Indium Tin Oxide-polyethylene naphthalate (ITO-PEN) substrate cannot endure in high temperature and acidic condition, which are safe while making PSC on glass substrate. Previously, our group developed an electrodeposition technology to replace commonly-used spin coating to deposit more compact and thinner hole blocking TiOx layer at ambient temperature. In this research, modified electrodeposition is developed to deposit TiOx blocking layer (ED-BL) on ITO-PEN. As to scaffold layer, commercial brookite slurry are used to substitute conventional anatase slurry, because brookite slurry does not require high temperature post-treatment to remove binder so that entire process to be available below 150 oC. However, ITO-PEN is easily corroded in acidic solution bath with pH value below 3. Here, we adjusted the pH value to 4.8 and applied EDTA to solution bath to prevent particle aggregation and make the solution be suitable for ITO-PEN substrate. For brookite slurry, the XRD pattern evidenced that brookite crystal can be formed after annealing at 70 °C. Sheet-like structure of brookite particles with particle size between 16-18 nm was investigated by TEM, which was believed to provide more contact area with near particles, benefiting electron transfer. After process optimization, the flexible device fabricated in low temperature showed a champion photovoltaic efficiency of 15.76%.
1 K. E. Trenberth, J. T. Fasullo, J. Kiehl, Earth's Global Energy Budget. Bulletin of the American Meteorological Society 90, 311-323 (2009).
2 D. M. Chapin, C. Fuller, G. Pearson, A New Silicon p‐n Junction Photocell for Converting Solar Radiation into Electrical Power. Journal of Applied Physics 25, 676-677 (1954).
3 D. Weber, CH3NH3SnBrXI3-X(X=0-3), a Sn(II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforschung B 33, 862-864 (1978).
4 D. Weber, CH3NH3PbX3, a Pb(II)-System with Cubic Perovskite Structure. Zeitschrift für Naturforschung B 33, 1443-1445 (1978).
5 A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 131, 6050-6051 (2009).
6 J.-H. Im, C.-R. Lee, J.-W. Lee, S.-W. Park, N.-G. Park, 6.5% Efficient Perovskite Quantum-Dot-Sensitized Solar Cell. Nanoscale 3, 4088-4093 (2011).
7 M. M. Lee, J. Teuscher, T. Miyasaka, T. N. Murakami, H. J. Snaith, Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites. Science 338, 643-647 (2012).
8 S. D. Stranks, G. E. Eperson G. Grancini, C Menelaou, M. J. P. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza, H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber. Science 342, 341-344 (2013).
9 H.-S. Kim, C. R. Lee, J. H. Im, K. B. Lee, T. Moehl, A. Marchioro, S. J. Moon, R. H. Baker, J. Ho. Yum, J. E. Moser, M. GrätzelLead, N. G. Park, Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientic Report 2, 591-597 (2012).
10 M. Liu, M. B. Johnston, H. J. Snaith, Efficient Planar Heterojunction Perovskite Solar Cells by Vapour Deposition. Nature 501, 395-398 (2013).
11 H. Zhou, Q. Chen, G. Li, S. Luo, T. B. Song, H. S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Interface Engineering of Highly Efficient Perovskite Solar Cells. Science 345, 542-546 (2014).
12 J. Chen, J. Xu, L. Xiao, B. Zhang, S. Dai, J. Yao, Mixed-Organic-Cation (FA)x(MA)1-xPbI3 Planar Perovskite Solar Cells with 16.48% Efficiency via a Low-Pressure Vapor-Assisted Solution Process. ACS Applied Material Interfaces 9, 2449-2458 (2017).
13 M. H. Kumar, N. Yantara, S. Dharani, M. Graetzel, S. Mhaisalkar, P. P. Boix, N. Mathews, Flexible, Low-Temperature, Solution Processed ZnO-Based Perovskite Solid State Solar Cells. Chemical Communications 49, 11089-11091 (2013).
14 W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li, J. Wan, G. Yang, Y. Yan, Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells. Journal of the American Chemical Society 137, 6730-6733 (2015).
15 W. Zhang, M. Saliba, S. D. Stranks, Y. Sun, X. Shi, U. Wiesner, H. J. Snait, Enhancement of Perovskite-Based Solar Cells Employing Core–Shell Metal Nanoparticles. Nano letters 13, 4505-4510 (2013).
16 J. M. Ball, M. M. Lee, A. Hey, H. J. Snaith, Low-Temperature Processed Meso-Superstructured to Thin-Film Perovskite Solar Cells. Energy Enviromental Science 6, 1739-1743 (2013).
17 J. T.-W. Wang, J. M. Ball, E. M. Barea, A. Abate, J. A. Alexander-Webber, J. Huang, M Saliba, I. M. Sero, J. Bisquert, H. J. Snaith, R. J. Nicholas, Low-Temperature Processed Electron Collection Layers of Graphene/TiO2 Nanocomposites in Thin Film Perovskite Solar Cells. Nano letters 14, 724-730 (2013).
18 K. Wojciechowski, M. Saliba, T. Leijtens, A. Abate, H. J. Snaith, Sub-150 C Processed Meso-Superstructured Perovskite Solar Cells with Enhanced Efficiency. Energy Environmental Science 7, 1142-1147 (2014).
19 A. K. Jena, H. W. Chen, A. Kogo, Y. Sanehira, M. Ikegami, T. Miyasaka, The Interface between FTO and the TiO2 Compact Layer Can Be One of the Origins to Hysteresis in Planar Heterojunction Perovskite Solar Cells. ACS applied materials & interfaces 7, 9817-9823 (2015).
20 S. D. Sung, D. P. Ojha, J. S. You, J. Lee, J. Kim, W. I. Lee, 50 nm Sized Spherical TiO2 Nanocrystals for Highly Efficient Mesoscopic Perovskite Solar Cells. Nanoscale 7, 8898-8906 (2015).
21 F. Fu, T. Feurer, T. Jäger, E. Avancini, B. Bissig, S. Yoon, S. Buecheler, A. N. Tiwari, Low-Temperature-Processed Efficient Semi-Transparent Planar Perovskite Solar Cells for Bifacial and Tandem Applications. Nature Communications 6, 8932-8940 (2015).
22 S. S. Shin, W. S. Wang, J. H. Noh, J. H. Suk, N. J. Jeon, J. H. Park, J. S. Kim, W. M. Seong, S. I. Seok, High-Performance Flexible Perovskite Solar Cells Exploiting Zn2SnO4 Prepared in Solution below 100 OC. Nature communications 6, 7410-7418 (2015).
23 A. Yella, L.-P. Heiniger, P. Gao, M. K. Nazeeruddin, M. Grätzel, Nanocrystalline Rutile Electron Extraction Layer Enables Low-Temperature Solution Processed Perovskite Photovoltaics with 13.7% Efficiency. Nano letters 14, 2591-2596 (2014).
24 D. Liu, T. L. Kelly, Perovskite Solar Cells with a Planar Heterojunction Structure Prepared Using Room-Temperature Solution Processing Techniques. Nature Photonics 8, 133-138 (2014).
25 J. Zhang, E. J. Juárez-Pérez, I. Mora-Seró, B. Viana, T. Pauporté, Fast and Low Temperature Growth of Electron Transport Layers for Efficient Perovskite Solar Cells. Journal of Materials Chemistry A 3, 4909-4915 (2015).
26 P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith, L. M. Herz, Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells. ACS nano 5, 5158-5166 (2011).
27 J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada, S. M. Zakeeruddin, . Petrozza, . Abate, M. K. Nazeeruddin, M. Grätzel, A. Hagfeldt, Highly Efficient Planar Perovskite Solar Cells Through Band Alignment Engineering. Energy & Environmental Science 8, 2928-2934 (2015).
28 E. H. Anaraki, A. Kermanpur, L. Steier, . Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M . Grätzel, A. Hagfeldt, J. P. Correa-Baena, Highly Efficient and Stable Planar Perovskite Solar Cells by Solution-Processed Tin Oxide. Energy & Environmental Science 9, 3128-3134, (2016).
29 J.-Y. Chen, C.-C. Chueh, Z. Zhu, W.-C. Chen, A. K.-Y. Jen, Low-Temperature Electrodeposited Crystalline SnO2 as an Efficient Electron-Transporting Layer for Conventional Perovskite Solar Cells. Solar Energy Material Solar Cells 164, 47-55 (2017).
30 Y. Cheng, Q. D. Yang, J. Xiao, Q. Xue, H. W. Li, Z. Guan, H. L. Yip, S. W. Tsang, Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles. ACS Applied Materials & Interfaces 7, 19986-19993 (2015).
31 J. Yang, B. D. Siempelkamp, E. Mosconi, F. De Angelis, T. L. Kelly, Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO. Chemistry of Materials 27, 4229-4236 (2015).
32 A. Huang, L. Lei, J. Zhu, Y. Yu, Y. Liu, S. Yang, S. Bao, P. Jin, Controllable Deposition of TiO2 Nanopillars at Room Temperature for High Performance Perovskite Solar Cells with Suppressed Hysteresis. Solar Energy Materials and Solar Cells 168, 172-182 (2017).
33 J. H. Heo, M. H. Lee, H. J. Han, B. R. Patil, J. S. Yu, S. H. Im, Highly Efficient Low Temperature Solution processable Planar Type CH3NH3PbI3 Perovskite Flexible Solar Cells. Journal of Materials Chemistry A 4, 1572-1578 (2016).
34 A. Kogo, M. Ikegami, T. A. Miyasaka, SnOx–Brookite TiO2 Bilayer Electron Collector for Hysteresis-Less High Efficiency Plastic Perovskite Solar Cells Fabricated at Low Process Temperature. Chemical Communications 52, 8119-8122 (2016).
35 M. Park, J. Y. Kim, H. J. Son, C. H. Lee, S. S. Jang, M. J. Ko, Low-Temperature Solution-Processed Li-Doped SnO2 as an Effective Electron Transporting Layer for High-Performance Flexible and Wearable Perovskite Solar Cells. Nano Energy 26, 208-215 (2016).
36 C. Wang, D. Zhao, C. R. Grice, W. Liao, Y. Yu, A. Cimaroli, . Shrestha, P. J. Roland, J. Chen, Z. Yu, . Liu, N. Cheng, R. J. Ellingson, X, Zhao, Y. Yan, Low-Temperature Plasma-Enhanced Atomic Layer Deposition of Tin Oxide Electron Selective Layers for Highly Efficient Planar Perovskite Solar Cells. Journal of Materials Chemistry A 4, 12080-12087 (2016).
37 S. S. Shin, W. S. Yang, E. J. Yeom, S. J. Lee, N. J. Jeon, Y. C. Joo, I. J. Park, J. H. Noh, S. I. Seok, Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells. Journal of Physical Chemistry Letters 7, 1845-1851 (2016).
38 D. Yang, R. Yang, J. Zhang, Z. Yang, S. Liu, . Li, High Efficiency Flexible Perovskite Solar Cells Using Superior Low Temperature TiO2. Energy & Environmental Science 8, 3208-3214 (2015).
39 W. Qiu, U. W. Paetzold, R. Gehlhaar, V. Smirnov, H. G. Boyen, J. G. Tait, B. Conings, W. Zhang, C. B. Neilsen, I. M. Culloch, L. Froyen, P. Heremans, D. heyns, An Electron Beam Evaporated TiO2 Layer for High Efficiency Planar Perovskite Solar Cells on Flexible Polyethylene Terephthalate Substrates. Journal of Materials Chemistry A 3, 22824-22829 (2015).
40 I. Jeong, H. Jung, M. Park, J. S. Park, H. J. Son, J. Joo, J. Lee, M. J. Ko, A Tailored TiO2 Electron Selective Layer for High-Performance Flexible Perovskite Solar Cells via Low Temperature UV Process. Nano Energy 28, 380-389 (2016).
41 F. Di Giacomo, V. Zardetto, A. D'Epifanio, S. Pescetelli, F. Matteocci, S. Razza, A. D. Carlo, S. Licoccia, W. M. M. Kessels, M. Creatore, T. M. Brown, Flexible Perovskite Photovoltaic Modules and Solar Cells Based on Atomic Layer Deposited Compact Layers and UV‐Irradiated TiO2 Scaffolds on Plastic Substrates. Advanced Energy Materials 5, 1401808-1401816 (2015).
42 A. Kogo, S. Iwasaki, M. Ikegami, T. Miyasaka, An Ultrathin Sputtered TiO2 Compact Layer for Mesoporous Brookite-Based Plastic CH3NH3PbI3−xClx Solar Cells. Chemistry Letters 46, 530-532 (2017).
43 A. Fakharuddin, F. Di Giacomo, I. Ahmed, Q. Wali, T. M. Brown, R. Jose, Role of Morphology and Crystallinity of Nanorod and Planar Electron Transport Layers on the Performance and Long Term Durability of Perovskite Solar Cells. J. Power Sources 283, 61-67 (2015).
44 C. Lokhande, S.-K. Min, K.-D. Jung, O.-S. Joo, Cathodic Electrodeposition of Amorphous Titanium Oxide Films From an Alkaline Solution Bath. Journal of Matweials Science 39, 6607-6610 (2004).
45 L. Rassaei, E. Vigil, R. W. Frnch, M. F. Mahon, R. G. Compton, F. Marken, Effects of Microwave Radiation on Electrodeposition Processes at Tin-Doped Indium Oxide (ITO) Electrodes. Electrochimica Acta 54, 6680-6685 (2009).
46 石彦龙, 冯晓娟, 杨武, 王永生, 超疏水二氧化钛薄膜的製備及其經紫外光照射引發的超親水性研究. 無機化學學报 26, 2209-2214 (2010).
47 T.-S. Su, T.-Y. Hsieh, C.-Y. Hong, T.-C. Wei, Electrodeposited Ultrathin TiO2 Blocking Layers for Efficient Perovskite Solar Cells. Scientific reports 5 16098-16105 (2015).
48 H. Hu, B. Dong, H. Hu, F. Chen, M. Kong, Q. Zhang, T. Luo, L. Zhao, Z. Guo, J. Li, Z. Xu, S. Wang, D. Eder, L. Wan, Atomic Layer Deposition of TiO2 for a High-Efficiency Hole-Blocking Layer in Hole-Conductor-Free Perovskite Solar Cells Processed in Ambient Air. ACS Applied Materials & Interfaces 8, 17999-18007 (2016).
49 S. Y. Lin, T. S. Su, T. Y. Hsieh, P. C. Lo, T. C. Wei, Efficient Plastic Perovskite Solar Cell with a Low‐Temperature Processable Electrodeposited TiO2 Compact Layer and a Brookite TiO2 Scaffold. Advanced Energy Materials 1700169-1700177(2017).
50 S. Wang, M. Sina, P. Parikh, T. Uekert, B. Shahbazan, A. Devaraj, Y. S. Meng, Role of 4-Tert-Butylpyridine as a Hole Transport Layer Morphological Controller in Perovskite Solar Cells. Nano Letters 16, 5594-5600 (2016).
51 S. Cacovich, L. Cina, F. Matteocci, . Divitini, P. A. Midgey, A. D. Carlo, C. Ducai, Gold and Iodine Diffusion in Large Area Perovskite Solar Cells Under Illumination. Nanoscale 9, 4700-4706 (2017).