研究生: |
周品宏 Jhou, Pin-Hong. |
---|---|
論文名稱: |
風力開關式磁阻發電機為主之聯網直流微電網 A WIND SWITCHED-RELUCTANCE GENERATOR BASED GRID-CONNECTED MICRO-GRID |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: |
鐘太郎
Jong, Tai-Lang 曾萬存 Tseng, Wan Tsun 張忠良 Zhang, Zhong-Liang 胡國英 Hwu, Kuo-Ing |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2017 |
畢業學年度: | 105 |
語文別: | 英文 |
論文頁數: | 137 |
中文關鍵詞: | 微電網 、風力發電機 、開關式磁阻電機 、儲能系統 、飛輪 、蓄電池 、超電容 、變頻器 、諧振轉換器 |
外文關鍵詞: | Microgrid, wind generator, switched-reluctance machine, energy storage system, flywheel, battery, super-capacitor, inverter, resonant converter |
相關次數: | 點閱:5 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發一以風力開關式磁阻發電機為主之直流微電網,具混合儲能、能源收集及併網功能。微電網之共同直流匯流排電壓由開關式磁阻發電機經由一交錯式昇壓直流/直流介面轉換器建立。所具之混合式能源儲能系統含飛輪、鉛酸電池組及超電容,超電容直並於開關式磁阻發電機之輸出,而電池及開關式磁阻馬達驅動飛輪,分別經由各自之雙向介面轉換器介接至共同直流匯流排,透過適當的控制獲得良好之能源支撐充放電特性。此外,當系統能源過剩時,利用所構裝之傾卸切換電阻負載,防止直流匯流排之過壓。
微電網之隔離連網,係由所建雙向LLC諧振轉換器及單相三線式變頻器達成。兩級電力轉換器之電路及控制器均妥以設計實現。藉由所設計之比例-共振控制機構,變頻器具有良好輸出電壓波形品質。當再生能源過剩或不足時,所開發之隔離單相三線式變頻器可執行微電網至電網及電網至微電網雙向操作。
為了進一步提高微電網之供電穩定品質,建構一三相維也納切換式整流器為主之能源支撐系統,當風能及儲能設備能源短缺時,可收集之交流或直流電源可插入微電網,提供能源支撐。所有組成之控制法則均以數位實現,其操控性到以實測結果驗證之。
This thesis develops a switched-reluctance generator (SRG) based DC microgrid with hybrid storage, energy harvesting and grid-connected capability. The microgrid DC bus voltage is established by the wind SRG via an interleaved boost DC/DC converter. The hybrid energy storage system consists of a SRM driven flywheel, a lead-acid battery bank and a super-capacitor. While the super-capacitor bank is directly connected across the SRG output, the battery and the flywheel are respectively interfaced to the common DC bus via its bidirectional DC/DC converter. Satisfactory energy support discharging and charging characteristics are preserved by proper controls. In addition, a chopped dump load is equipped for avoiding bus over-voltage in the occurrence of energy surplus.
The isolated grid-connection of the established microgrid to utility grid is achieved by a bidirectional LLC resonant converter and a bidirectional single-phase three-wire (1P3W) inverter. The schematics and control schemes of these two power stages are all properly designed and implemented. Good inverter output waveforms are obtained via the designed proportional plus resonant control scheme. And the microgrid-to-grid (M2G) and the grid-to-microgrid (G2M) bidirectional operations can be smoothly conducted.
To further enhance the power supplying quality of the established microgrid, a three-phase Vienna SMR based energy support scheme (ESS) is developed. As wind and stored energies are deficient, the possible harvested AC and DC sources can be plugged into the ESS to provide energy support for the microgrid. The control schemes of all the established power converters are realized digitally and evaluated experimentally.
A. Micro-grid and Renewable Sources
[1] D. Boroyevich, I. Cvetkovic, D. Dong, R. Burgos, F. Wang, and F. C. Lee, “Future electronic power distribution systems a contemplative view,” in Proc. IEEE OPTIM, 2010, pp.1369-1380.
[2] S. W. Mohod and M. V. Aware, “Micro wind power generator with battery energy storage for critical load,” IEEE Syst. J., vol. 6, no. 1, pp. 118-125, 2012.
[3] P. C. Loh, D. Li, Y. K. Chai, and F. Blaabjerg, “Autonomous operation of hybrid microgrid with AC and DC subgrids,” IEEE Trans. Power Electron., vol. 28, no. 5, pp. 2214-2223, 2013.
[4] H. Valderrama-Blavi, J. M. Bosque, F. Guinjoan, L. Marroyo, and L. Martinez-Salamero, “Power adaptor device for domestic DC microgrids based on commercial MPPT inverters,” IEEE Trans. Ind. Electron., vol. 60, no. 3, pp. 1191-1203, 2013.
[5] T. Dragicevic, J. M. Guerrero, J. C. Vasquez, and D. Skrlec, “Supervisory control of an adaptive-droop regulated DC microgrid with battery management capability,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 695-706, 2014.
[6] K. W. Hu and C. M. Liaw, “developed of a wind interior permanent-magnet synchronous generator based microgrid and its operation control,” IEEE Trans. Power Electron. Vol. 30, no. 9, pp. 4973-4985, 2015.
[7] O. Anaya-Lara, N. Jenkins, J Ekanayake, P. Cartwright and M. Hughes, Wind Energy Generation: Modeling and Control, Chichester: John Wiley and Sons, 2009.
[8] K. W. Hu and C. M. Liaw, “Incorporated operation control of DC microgrid and electric vehicle,” IEEE Trans. Ind. Electron., vol. 63, no. 1, pp. 202-215, 2016.
[9] F. R. Islam, H. R. Pota, and M. S. Ali, “V2G technology for designing active filter system to improve wind power quality,” in Proc. IEEE AUPEC, 2011, pp. 1-6.
[10] P. H. Kydd, J. R. Anstrom, P. D. Heitmann, K. J. Komara, and M. E. Crouse, “Vehicle-solar-grid integration: concept and construction” IEEE Power Energy Technol. Syst. J. vol. 3, no. 3, pp. 81-88, 2016.
B. Switched-reluctance Machines
(a) Switched-reluctance Motors
[11] P. C. Sen, Principles of Electric Machines and Power Electronics, 2nd ed., New Jersey: John Wiley & Sons, Inc., 1997.
[12] R. Krishnan, Switched Reluctance Motor Drives: Modeling, Simulation, Analysis, Design, and Applications, New York: CRC Press, 2001.
[13] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam, and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[14] K. Kiyota and A. Chiba, “Design of switched reluctance motor competitive to 60-kW IPMSM in third-generation hybrid electric vehicle,” IEEE Trans. Ind. Appl., vol. 48, no. 6, pp. 2303-2309, 2012.
[15] Emine Bostanci, Mehdi Moallem, Amir Parsapour, and Babak Fahimi, “Opportunities and Challenges of Switched Reluctance Motor Drives for Electric Propulsion: A Comparative Study,” IEEE Trans. Transport. Electrific., vol. 3, no. 1, pp. 58-75, 2017.
[16] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[17] B. Bilgin, A. Emadi, and M. Krishnamurthy, “Design considerations for switched reluctance machines with a higher number of rotor poles,” IEEE Trans. Ind. Electron., vol. 59, no. 10, pp. 3745-3756, 2012.
[18] S. E. Schulz and K. M. Rahman, “High performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Appl., vol. 39, no. 4, pp. 1118-1126, 2003.
[19] R. Gobbi and K. Ramar, “Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors,” IET Proc. Elect. Power Appl., vol. 3, no. 5, pp. 453-460, 2009.
[20] K. Wong, “Energy-efficient peak-current state-machine control with a peak power mode,” IEEE Trans. Power Electron., vol. 24, no. 2, pp. 489-498, 2009.
[21] Z. Lin, D. Reay, B. Williams, and X. He, “High-performance current control for switched reluctance motors based on on-line estimated parameters,” IEEE Trans. Elect. Power Appl., vol. 4, no. 1, pp. 67-74, 2010.
[22] Y. Kuwahara, H. Ono, T. Kosaka, N. Matsui, and H. Shimada, “Precise pulsewise current drive of SRM under PWM control,” in Proc. IEEE PEDS, 2013, pp. 1049-1054.
[23] R. Mikail, I. Husain, Y. Sozer, M. S. Islam, and T. Sebastian, “A fixed switching frequency predictive current control method for switched reluctance machines,” IEEE Trans. Ind. Appl., vol. 50, no. 6, pp. 3717-2726, 2014.
[24] F. Peng and A. Emadi, “A digital PWM current controller for switched reluctance motor drives,” in Proc. IEEE ITEC, 2014, pp. 1-6.
[25] H. N. Huang, K. W. Hu, Y. W. Wu, T. L. Jong and C. M. Liaw, “A current control scheme with back-EMF cancellation and tracking error adapted commutation shift for switched-reluctance motor drive,” IEEE Trans. Ind. Electron., vol. 63, no. 12, pp. 7381-7392, 2016.
[26] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Appl., vol. 44, no. 6, pp. 800-808, 1997.
[27] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor drive” IEE Proc. Elect. Power Appl., vol. 48, no.4, pp. 345-353, 2001.
[28] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst. vol. 38, no. 3, pp. 955-968, 2002.
[29] S. Rafael, A. J. Pires, and P. J. C. Branco, “An adaptive learning rate approach for an on-line neuro-fuzzy speed controller applied to a switched reluctance machine,” in Proc. IEEE ISIE, 2005, vol. 3, pp. 941-944.
[30] L. L. N. dos Reis, F. Sobreira, A. R. R. Coelho, O. M. Almeida, J. C. T. Campos, and S. Daher, “Identification and adaptive speed control for switched reluctance motor using DSP,” in Proc. IEEE COBEP, 2009, vol. 3, pp. 836-841.
[31] H. Hannoun, M. Hilairet, and C. Marchand, “Design of an SRM speed control strategy for a wide range of operating speeds,” IEEE Trans. Ind. Electron., vol. 57, no. 9, pp. 2911-2921, 2010.
[32] J. J. Gribble, P. C. Kjaer, and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Elect. Power Applicat., vol. 146, no. 1, pp. 2-10, 1999.
[33] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
[34] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[35] K. W. Hu, Y. Y. Chen and C. M. Liaw, “A reversible position sensorless controlled switched-reluctance motor drive with adaptive and intuitive commutation tuning,” IEEE Trans. Power Electron., vol. 30, no. 7, pp. 3781-3793, 2015.
[36] H. N. Huang, K. W. Hu and C. M. Liaw, “A switch-mode rectifier fed switched- reluctance motor drive with dynamic commutation shifting using DC-link current,” IET Electric Power Applications, vol. 11, no. 4, pp. 640-652, 2017.
[37] J. Y. Chai and C. M. Liaw, “On the reduction of speed ripple and vibration for switched reluctance motor drive via intelligent current profiling” IEE Proc. Elect. Power Applicat., vol. 4, no. 5, pp. 380-396, 2010.
[38] V. P. Vujičić, “Minimization of torque ripple and copper losses in switched reluctance drive,” IEEE Trans. Power Electron., vol. 27, no. 1, pp. 388-399, 2012.
[39] K. I. Hwu and C. M. Liaw, “DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., vol. 147, no. 5, pp. 337-344, 2000.
[40] H. C. Chang and C. M. Liaw, “Development of a compact switched-reluctance motor drive for EV propulsion with voltage boosting and PFC charging capabilities,” IEEE Trans. Veh. Technol., vol. 58, no. 7, pp. 3198-3215, 2009.
(b) Switched-reluctance Generators
[41] M. Menne, R. B. Inderka, and R. W. De Doncker, “Critical states in generating mode of switched reluctance machines,” in Proc. IEEE PESC, 2000, vol. 3, pp. 1544-1550.
[42] D. A. Torrey, “Switched reluctance generators and their control,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 3-14, 2002.
[43] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, “Control of a switched reluctance generator for variable-speed wind energy applications,” IEEE Trans. Energy Convers., vol. 20, no. 4, pp. 781-791, 2005.
[44] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[45] N. Schofield and S. Long, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2009.
[46] A. W. F. V. Silveira, D. A. Andrade, L. C. Gomes, A. Fleury, and C. A. Bissochi, “DSP based SRG load voltage control,” in Proc. IEEE VPPC, 2010, pp. 1-5
[47] C. Mademlis and I. Kioskeridis, “Optimizing performance in current-controlled switched reluctance generators,” IEEE Trans. Energy Convers., vol. 20, no. 3, pp. 556-565, 2005.
[48] W. Fernando, M. Barnes, and O. Marjanovic, “Excitation control and voltage regulation of switched reluctance generators above base speed operation,” in Proc. IEEE VPPC, 2011, pp. 1-6.
[49] E. Afjei, A. Siadatan, and M. Asgar, “Comparison between two field-assisted switched reluctance generators suitable for wind turbine applications,” in Proc. IEEE ICCEP, 2011, pp. 272-276.
[50] S. Narla, Y. Sozer, and I. Husain, “Switched reluctance generator controls for optimal power generation and battery charging,” in Proc. IEEE ECCE, 2011, pp. 3575-3581.
[51] V. Nasirian, S. Kaboli, and A. Davoudi, “Output power maximization and optimal symmetric freewheeling excitation for switched reluctance generators,” IEEE Trans. Ind. Appl., vol. 49, no. 3, pp. 1031-1042, 2013.
[52] C. Sikder, I. Husain, and Y. Sozer, “Switched reluctance generator control for optimal power generation with current regulation,” IEEE Trans. Ind. Appl., vol. 50, no. 1, pp. 307-316, 2014.
[53] Y. C. Chang and C. M. Liaw, “Establishment of a switched-reluctance generator based common DC micro-grid system,” IEEE Transactions on Power Electronics, vol. 26, no. 9, pp. 2512-2527, 2011.
(c) Converters for Switched-reluctance Machines
[54] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[55] M. Barnes and C. Pollock, “Power electronic converters for switched reluctance drives,” IEEE Trans. Power Electron., vol. 13, no. 6, pp. 1100-1111, 1998.
[56] S. Mir, I. Husain, and M. E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, no. 5, pp. 912-921, 1997.
[57] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[58] A. K. Jain and N. Mohan, “SRM power converter for operation with high de-magnetization voltage,” IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1224-1231, 2005.
C. Energy Storage Systems
[59] J. P. Barton and D. G. Infield, “Energy storage and its use with intermittent renewable energy,” IEEE Trans. Energy Convers., vol. 19, no. 2, pp. 441-448, 2004.
[60] A. Kusko and J. DeDad, “Stored energy- short-term and long-term energy storage methods,” IEEE Trans. Ind. Appl. Mag., vol. 13, no. 4, pp. 66-72, 2007.
[61] J. Cao and A. Emadi, “Batteries needs electronics,” IEEE. Ind. Electron. Mag., vol. 5, no. 1, pp. 27-35, 2011.
[62] M. Ortuzar, J. Moreno, and J. Dixon, “Ultracapacitor-based auxiliary energy system for an electric vehicle: implementation and evaluation,” IEEE Trans. Ind. Electron., vol. 54, no. 4, pp. 2147-2156, 2007.
[63] P. Thounthong, S. Rael, and B. Davat, “Analysis of supercapacitor as second source based on fuel cell power generation,” IEEE Trans. Energy Convers., vol. 24, no. 1, pp. 247-255, 2009.
[64] J. L. da Silva Neto, L. G. B. Rolim, and G. G. Sotelo, “Control of power circuit interface of a flywheel-based energy system,” in Proc. IEEE ISIE, 2003, vol. 2 pp. 962-967.
[65] G. O. Cimuca, C. Saudemont, B. Robyns, and M. M. Radulescu, “Control and performance evaluation of a flywheel energy-storage system associated to a variable-speed wind generator,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1074-1085, 2006.
[66] R. Pena-Alzola, R. Sebastian, J. Quesada, and A. Colmenar, “Review of flywheel based energy storage systems,” in Proc. IEEE Power Eng., 2011, pp. 1-6.
[67] R. Arghandeh, M. Pipattanasomporn, and S. Rahman, “Flywheel energy storage systems for ride-through applications in a facility microgrid,” IEEE Trans. Smart Grid, vol. 3, no. 4, pp. 1955-1962, 2012.
[68] C. S. Hearn, M. C. Lewis, S. B. Pratap, R. E. Hebner, F. M. Uriarte, C. Dongmei, and R.G. Longoria, “Utilization of optimal control law to size grid-level flywheel energy storage,” IEEE Trans. Sustain. Eng., vol. 4, no. 3, pp. 611-618, 2013.
[69] J.-I. Itoh, K. Tanaka, S. Matsuo, and N. Yamada, “Experimental verification of flywheel power leveling system oriented to low cost and general purpose use,” in Proc. IEEE ECCE, 2013, pp.35-42.
[70] S. Gayathri Nair and N. Senroy, “Wind turbine with flywheel for improved power smoothening and LVRT,” in Proc. IEEE PES, 2013, pp.1-5.
[71] F. Diaz-Gonzalez, F.D. Bianchi, A. Sumper, and O. Gomis-Bellmunt, “Control of a flywheel energy storage system for power smoothing in wind power plants,” IEEE Trans. Energy Convers., vol. 29, no. 1, pp. 204-214, 2014.
[72] R. Cardenas, R. Pena, M. Perez, J. Clare, G. Asher, and P. Wheeler, “Power smoothing using a flywheel driven by a switched reluctance machine,” IEEE Trans. Ind. Electron., vol. 53, no. 4, pp. 1086-1093, 2006.
[73] J. L. S. Neto, R. De Andrade, L. G. B. Rolim, A. C. Ferreira, G. G. Sotelo, and W. Suemitsu, “Experimental validation of a dynamic model of a SRM used in superconducting bearing flywheel energy storage system,” in Proc. IEEE ISIE, 2006, pp. 2492-2497.
[74] A. Rajapakshe, U. K. Madawala, and D. Muthumani, “A model for a fly-wheel driven by a grid connected switch reluctance machine,” in Proc. IEEE ICSET, 2008, pp. 1025-1030.
[75] J. Sun, Z. Kuang, S. Wang, and Y. Chen, “Efficiency optimal control of switched reluctance machine over wide speed range applied to flywheel energy storage system,” in Proc. IEEE EML, 2012, pp.1-6.
[76] L. Zhihao, O. Onar, A. Khaligh, and E. Schaltz, “Design and control of a multiple input DC/DC converter for battery/ultra-capacitor based electric vehicle power system,” in Proc. IEEE APEC, pp. 591-596, 2009.
[77] K. W. Hu and C. M. Liaw, “On the flywheel/battery hybrid energy storage system for DC microgrid, ” in Proc. IEEE IFEEC, 2013, pp. 119-125.
[78] N. Mendis, K. M. Muttaqi, and S. Perera, “Management of battery-supercapacitor hybrid energy storage and synchronous condenser for isolated operation of PMSG based variable-speed wind turbine generating systems,” IEEE Trans. Smart Grid, vol. 5, no. 2, pp. 944-953, 2014.
[79] K. W. Hu, P. H. Yi, and C. M. Liaw, “An EV SRM drive powered by battery/ supercapacitor with G2V and V2H/V2G capabilities,” IEEE Trans. Ind. Electron., vol. 62, no. 8, pp. 4714-4727, Aug. 2015.
D. Interface Power Converters
[80] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, 3rd ed., New Jersey: John Wiley & Sons, Inc., 2003.
[81] H. C. Chang and C. M. Liaw, “On the front-end converter and its control for a battery powered switched-reluctance motor drive,” IEEE Trans. Power Electron., vol. 23, no. 4, pp. 2143-2156, 2008.
[82] L. Palma and P. N. Enjeti, “A modular fuel cell, modular DC-DC converter concept for high performance and enhance reliability,” IEEE Trans. Power Electron., vol. 24, no. 6, pp. 1437-1443, 2009.
[83] N. M. L. Tan, T. Abe, and H. Akagi, “Design and performance of a bidirectional isolated DC-DC converter for a battery energy storage system,” IEEE Trans. Power Electron., vol. 27, no. 3, pp. 1237-1248, 2011.
[84] A. A. Fardoun, E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “Bi-directional converter with low input/output current ripple for renewable energy applications,” in Proc. ECCE, 2011, pp. 3322-3329.
[85] K. W. Hu, J. C. Wang, T. S. Lin and C. M. Liaw, “A switched-reluctance generator with interleaved interface DC-DC converter,” IEEE Trans. Energy Convers. Vol. 30, no. 1, pp. 273-284, 2015.
[86] Y. S. Lin , K. W. Hu, T. H. Yeh and C. M. Liaw, “An electric vehicle IPMSM drive with interleaved front-end DC/DC converter,” IEEE Trans. Veh. Technol, vol. 65, no. 5, pp. 4493-4504, 2016.
E. PWM Inverters
[87] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, New York: Pergamon Press, 1988.
[88] A. M. Hava, R. J. Kerkman, and T. A. Lipo, “Simple analytical and graphical methods for carrier-based PWM-VSI drives,” IEEE Trans. Power Electron., vol. 14, no. 1, pp. 49-61, 1999.
[89] M. Castilla, J. Miret, J. Matas, L. G. de Vicuña, and J. M. Guerrero, “Control design guidelines for single-phase grid-connected photovoltaic inverters with damped resonant harmonic compensators,” IEEE Trans. Ind. Electron., vol. 56, no. 11, pp. 4492-4500, 2009.
[90] K. Selvajyothi and P. A. Janakiraman, “Reduction of voltage harmonics in single phase inverters using composite observers,” IEEE Trans. Power Del., vol. 25, no. 2, pp. 1045-1057, 2010.
[91] B. Sahan, S. V. Araujo, C. Noding, and P. Zacharias, “Comparative evaluation of three-phase current source inverters for grid interfacing of distributed and renewable energy systems,” IEEE Trans. Power Electron., vol. 26, no. 8, pp. 2304-2318, 2011.
[92] R. Carballo, R. Nunez, V. Kurtz, and F. Botteron, “Design and implementation of a three-phase DC-AC converter for microgrids based on renewable energy sources,” IEEE Trans. Latin Ameri., vol. 11, no. 1, pp. 112-118, 2013.
[93] G. G. Pozzebon, A. F. Q. Goncalves, G. G. Pena, N. E. M. Mocambique, and R. Q. Mavhado, “Operation of a three-phase power converter connected to a distribution system,” IEEE Trans. Ind. Electron., vol. 60, no. 5, pp. 1810-1818, 2013.
[94] J. Kim, J. Choi, and H. Hong, “Output LC filter design of voltage source inverter considering the performance of controller,” in Proc. IEEE ICPST, 2000, vol. 3, pp. 1659-1664.
[95] K. W. Hu and C. M. Liaw, “On an auxiliary power unit with emergency AC power output and its robust controls,” IEEE Trans. Ind. Electron., vol. 60, no. 10, pp. 4387-4402, 2013.
[96] R. Teodorescu, F. Blaabjerg, M. Liserre and P.C. Loh, “Proportional-resonant controllers and filters for grid-connected voltage-source converters,” IEE Proc.-Electr. Power Appl., vol. 153, no. 5, pp. 750-762, 2006.
[97] M. C. Chou and C. M. Liaw, “Dynamic control and diagnostic friction estimation for a PMSM driven satellite reaction wheel,” IEEE Trans. Ind. Electron, vol. 58, no. 10, pp. 4693-4707, October 2011.
F. High Frequency Isolated DC-Link
[98] G. Chryssis, High-Frequency Switching Power Supply, 2nd ed. New York: McGraw-Hill, 1989.
[99] A. I. Pressman, Switching Power Supply Design, 2nd ed. New York: McGraw-Hill, 1999.
[100] M. H. Kheraluwala, D. W. Novotny and D. M. Divan, “Design considerations for high power high frequency transformers,” in Proc. PESC, 1990, pp. 734-742.
[101] W. G. Hurley, W. H. Wolfle and J. G. Breslin, “Optimized transformer design: inclusive of high-frequency effects,” IEEE Trans. Power Electron., vol. 13, pp. 651-659, 1998.
[102] R. Petkov, “Optimum design of a high-power, high-frequency transformer,” IEEE Trans. Power Electron., vol. 11, no. 1, pp. 33-42, 1996.
[103] S. Inoue and H. Akagi, “A bidirectional isolated DC–DC converter as a core circuit of the next-generation medium-voltage power conversion system,” IEEE Trans. Power. Electron., vol. 22, no. 2, pp. 535-542, 2007.
[104] J. A. Claassens and I. W. Hofsajer, “A flux balancer for phase shift ZVS DC-DC converters under transient conditions, ” in Proc. APEC, 2006, pp. 523-527.
[105] P. K. Jain, K. Wen, H. Soin and Y. Xi, “Analysis and design considerations of a load and line independent zero voltage switching full bridge DC/DC converter topology,” IEEE Trans. Power Electron., vol. 22, no. 5, pp. 649-657, 2002.
[106] G. Koo, G. Moon and M. Youn, “New zero-voltage-switching phase-shift full-bridge converter with low conduction losses,” IEEE Trans. Ind. Electron., vol. 52, no. 1, pp. 228-235, 2005.
[107] O. Deblecker, A. Moretti and F. Vallee, “Comparative study of soft-switched Isolated DC-DC converters for auxiliary railway supply,” IEEE Trans. Power Electron., vol. 23, no. 5, pp. 2218-2229, 2008.
G. Switched-mode Rectifiers
(a) Single-phase SMRs
[108] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of single-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[109] O. Garcia, J. A. Cobos, R. Prieto, P. Alou, and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[110] J. Y. Chai and C. M. Liaw, “Robust control of switch-mode rectifier considering nonlinear behavior,” IET Electric Power Applications, vol. 1, no. 3, pp. 316-328, 2007.
[111] L. Solero, V. Serrao, M. Montuoro, and A. Romanelli, “Low THD variable load buck PFC converter,” in Proc. PESC, 2008, pp. 906-912.
[112] H. Laszlo, G. Liu, and M. J. Milan, “Design-oriented analysis and performance evaluation of buck PFC front-end,” in Proc. APEC, 2009, pp. 1170-1176.
[113] K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori, and F. Ueda “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36.
[114] E. H. Ismail, A. J. Sabzali, and M. A. Al-Saffar, “Buck-boost-type unity power factor rectifier with extended voltage conversion ratio,” IEEE Trans. Ind. Electron., vol. 55, no. 3, pp. 1123-1132, 2008.
[115] Y. C. Chang and C. M. Liaw, “A flyback rectifier with spread harmonic spectrum,” IEEE Trans. Ind. Electron, vol. 58, no. 8, pp. 3485-3499, July 2011.
(b) Three-phase SMRs
[116] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey, and D. P. Kothari, “A review of three-phase improved power quality AC-DC converter,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[117] T. Friedli and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part I,” IEEE Trans. Power Electron., vol. 28, no. 1, pp. 176-198, 2013.
[118] T. Friedli, M. Hartmann, and J. W. Kolar, “The essence of three-phase PFC rectifier systems- Part II,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 543-560, 2014.
[119] J. Y. Chai, Y. C. Chang, and C. M. Liaw, “On the switched-reluctance motor drive with three-phase single-switch switch-mode rectifier front-end,” IEEE Trans. Power Electron., vol. 25, no. 5, pp. 1135-1148, 2010.
[120] J. W. Kolar, U. Drofenik, and F. C. Zach, “Current handling capability of the neutral point of a three-phase/switch/level boost-type PWM (VIENNA) rectifier,” in Proc. IEEE PESC, 1996, vol. 2, pp. 1329-1336.
[121] H. Ertl, J. W. Kolar, and F. C. Zach, “Design and experimental investigation of a three-phase high power density high efficiency unity power factor PWM (VIENNA) rectifier employing a novel integrated power semiconductor module,” in Proc. IEEE APEC, 1996, pp. 514-523.
[122] S. Gadelovitz and A. Kuperman, “Modeling and classical control of unidirectional Vienna rectifiers,” in Proc. IEEE PQ, 2012, pp. 1-4.
H. Others
[123] Hitachi Cut-cores for High Power Applications Data Manual, Advance Material on Technology Co., America, 2016.