簡易檢索 / 詳目顯示

研究生: 蔡春梅
論文名稱: 雙聯優混合電池模型平衡解路徑之Hopf分歧問題探討
指導教授: 簡國清
口試委員:
學位類別: 碩士
Master
系所名稱: 南大校區系所調整院務中心 - 應用數學系所
應用數學系所(English)
論文出版年: 2006
畢業學年度: 95
語文別: 中文
中文關鍵詞: 分歧點Hopf分歧理論牛頓迭代法隱函數定理平衡解路徑週期解路徑割線猜測法虛擬弧長延拓法打靶法
外文關鍵詞: Bifurcation point, Hopf bifurcation theorem, Newton’s interactive method, implicit function theorem, steady-state solution paths, periodic solution paths, secant-predictor method, pseudo-arclength continuation method, shooting method
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要是由Hopf 分歧理論, 配合牛頓迭代法來求得雙聯優非線性微分方程組的分歧點(包含實數分歧點及Hopf 分歧點). 續由隱函數定理、Liapunov -Schmidt降階法、割線猜測法及虛擬弧長延拓法來得到通過實分歧點及Hopf分歧點平衡解路徑.
    此外, 我們也由打靶法、隱函數定理、Liapunov-Schmidt降階法、割線猜測法及虛擬弧長延拓法並配合Rung-Kutta積分法來得到該方程組通過Hopf 分歧點之週期解路徑.


    In this thesis﹐we use the Hopf bifurcation theorem with Newton’s interactive method to find the bifurcation points (include real bifurcation points and Hopf bifurcation points) of the non-linear interconnected differential equation’s set. And then use the implicit function theorem, Liapunov-Schmidt reduction method, secant-predictor method and pseudo-arclength continuation method, to obtain the steady-state solution paths passing through real bifurcation points and Hopf bifurcation points.
    We also use the shooting method, implicit function theorem, Liapunov-Schmidt reduction method, secant-predictor method and pseudo-arclength continuation method, with Runge-Kutta method to find the periodic solution paths bifurcating from the Hopf bifurcation.

    4 目錄 第一章緒論 1 第二章分歧理論 3 2.1 分歧理論 3 2.2 分歧問題 6 2.3 延拓方法 7 2.4 虛擬弧長延拓法 10 第三章平衡解路徑上的Hopf 分歧點及通過Hopf 分歧點的平衡解分支及週期解分支 12 3.1 過Hopf 分歧點之平衡解分支 12 3.1.1 Hopf 分歧點之求法 12 3.1.2 過分歧點之平衡解分支方向 15 3.1.3 平衡解分支之延拓 23 3.2 過Hopf 分歧點之週期解分支 27 3.2.1 週期解初始值之求法 27 3.2.2 過Hopf 分歧點之週期解分支方向 31 3.2.3 週期解分支之解路徑及初始點後的猜值 47 3.3 演算法 51 3.3.1 求出平衡解路徑上的Hopf 分歧點 51 3.3.2 過Hopf 分歧點之平衡解分支的延拓方向與該方向上第一點的出始猜值 52 3.3.3 虛擬弧長延拓平衡解分支之路徑 54 3.3.4 求出週期解的初始值 55 3.3.5 過Hopf 分歧點的週期解之解分支的延拓方向與該方向上第一點的出始猜值 57 3.3.6 虛擬弧長延拓週期解分支之路徑 60 第四章數值實驗 62 4.1 實驗(1) 63 4.2 實驗(2) 85 4.3 實驗(3) 111 第五章結論 119 參考文獻 121

    [1] Crandall, M.G, An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P.H Rabinowitz, Academic Press,pp.1-35, 1977.
    [2] Crandall, M.G. and Rabinowitz, P.H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C.and Bessis, D.NATO Advanced Study Institute Series, 1979.
    [3] Eusebius Doedel and Laurette S. Tuckerman,Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, Springer, 1999.
    [4] Hassard, B.D., Kazarinoff,N.D., Wan,Y.-H.(1981), Theory and Applications of Hopf Bifurcation, Cambridge University Press.
    [5] Keller, H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag,1987.
    [6] Keller, H.B., in ”Recent Advances in Numerical Analysis”, Academic Press, New York, pp.73,1978.
    [7] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory Academic Press, pp.359-384, 1977.
    [8] Kubii ek, M. and Hlava ek, V., General Parameter Mapping Technique-A Procedure for Solution of Non-linear Boundary Valve Problems Depending on an Actual Paroblems, J.Inst. Maths Applics 12, pp.287-293, 1973.
    [9] Iooss, G and Joseph, D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
    [10] Marsden J. E., McCracken, M.(1976). The Hopf Bifurcation and its Application, Applied Mathematical Sciences, 19. Springer-Verlag.
    [11] Milan Kubi ek and Alois Kli ,Direction of Bramches Bifurcation at a Bifurcation at a Bifurcation Point. Determination of Starting Points for a Continuation Algorithm, Applied Mathematics and Computation 13, pp.125-142,1983.
    [12] Rheinboldt,W.C.﹐Numerical Analysis of Parameterized Nonlinear Equations, Wiley, New York.
    [13] Wacker, H.(ed), Continuation Methods, Academic Press, New York, 1978.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE