研究生: |
蔡春梅 |
---|---|
論文名稱: |
雙聯優混合電池模型平衡解路徑之Hopf分歧問題探討 |
指導教授: | 簡國清 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
南大校區系所調整院務中心 - 應用數學系所 應用數學系所(English) |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 中文 |
中文關鍵詞: | 分歧點 、Hopf分歧理論 、牛頓迭代法 、隱函數定理 、平衡解路徑 、週期解路徑 、割線猜測法 、虛擬弧長延拓法 、打靶法 |
外文關鍵詞: | Bifurcation point, Hopf bifurcation theorem, Newton’s interactive method, implicit function theorem, steady-state solution paths, periodic solution paths, secant-predictor method, pseudo-arclength continuation method, shooting method |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要是由Hopf 分歧理論, 配合牛頓迭代法來求得雙聯優非線性微分方程組的分歧點(包含實數分歧點及Hopf 分歧點). 續由隱函數定理、Liapunov -Schmidt降階法、割線猜測法及虛擬弧長延拓法來得到通過實分歧點及Hopf分歧點平衡解路徑.
此外, 我們也由打靶法、隱函數定理、Liapunov-Schmidt降階法、割線猜測法及虛擬弧長延拓法並配合Rung-Kutta積分法來得到該方程組通過Hopf 分歧點之週期解路徑.
In this thesis﹐we use the Hopf bifurcation theorem with Newton’s interactive method to find the bifurcation points (include real bifurcation points and Hopf bifurcation points) of the non-linear interconnected differential equation’s set. And then use the implicit function theorem, Liapunov-Schmidt reduction method, secant-predictor method and pseudo-arclength continuation method, to obtain the steady-state solution paths passing through real bifurcation points and Hopf bifurcation points.
We also use the shooting method, implicit function theorem, Liapunov-Schmidt reduction method, secant-predictor method and pseudo-arclength continuation method, with Runge-Kutta method to find the periodic solution paths bifurcating from the Hopf bifurcation.
[1] Crandall, M.G, An Introduction to Constructive Aspects of Bifurcation Theorem, edited by P.H Rabinowitz, Academic Press,pp.1-35, 1977.
[2] Crandall, M.G. and Rabinowitz, P.H., Mathematical Theory of Bifurcation, Bifurcation Phenomena in Mathematical Physics and Related Topics, edit by Bardos, C.and Bessis, D.NATO Advanced Study Institute Series, 1979.
[3] Eusebius Doedel and Laurette S. Tuckerman,Numerical Methods for Bifurcation Problems and Large-Scale Dynamical Systems, Springer, 1999.
[4] Hassard, B.D., Kazarinoff,N.D., Wan,Y.-H.(1981), Theory and Applications of Hopf Bifurcation, Cambridge University Press.
[5] Keller, H.B., Lectures on Numerical Methods in Bifurcation Problems, TATA Institute of Fundamental Research, Springer-Verlag,1987.
[6] Keller, H.B., in ”Recent Advances in Numerical Analysis”, Academic Press, New York, pp.73,1978.
[7] Keller, H.B., Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems, Applications of Bifurcation Theory Academic Press, pp.359-384, 1977.
[8] Kubii ek, M. and Hlava ek, V., General Parameter Mapping Technique-A Procedure for Solution of Non-linear Boundary Valve Problems Depending on an Actual Paroblems, J.Inst. Maths Applics 12, pp.287-293, 1973.
[9] Iooss, G and Joseph, D.D., Elementary Stability and Bifurcation Theory, Spring-Verleg, 1989.
[10] Marsden J. E., McCracken, M.(1976). The Hopf Bifurcation and its Application, Applied Mathematical Sciences, 19. Springer-Verlag.
[11] Milan Kubi ek and Alois Kli ,Direction of Bramches Bifurcation at a Bifurcation at a Bifurcation Point. Determination of Starting Points for a Continuation Algorithm, Applied Mathematics and Computation 13, pp.125-142,1983.
[12] Rheinboldt,W.C.﹐Numerical Analysis of Parameterized Nonlinear Equations, Wiley, New York.
[13] Wacker, H.(ed), Continuation Methods, Academic Press, New York, 1978.