研究生: |
邱漢欽 Chiu, Han-Chin |
---|---|
論文名稱: |
高介電材料於高遷移率砷化銦鎵:達到低界面陷阱態密度及高性能自動對準反轉式通道MOSFET之研發 High-κ dielectrics on high carrier mobility InGaAs: achieving low interfacial density of states and high-performance self-aligned inversion-channel MOSFETs |
指導教授: |
洪銘輝
Hong, Minghwei 郭瑞年 Kwo, Raynien |
口試委員: |
鄭克勇
Cheng, K. Y. 劉致為 Liu, C. W. 郭治群 Guo, J. C. 皮敦文 Pi, P. W. 王永和 Wang, Y. H. 賴聰賢 Lay, T. S. |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 英文 |
論文頁數: | 116 |
中文關鍵詞: | 砷化鎵 、砷化銦鎵 、高速電子 、原子層沉層 、高介電 、界面陷阱態密度 、三五金氧半電晶體 、三五族半導體製程 、自動對準 |
外文關鍵詞: | GaAs, InGaAs, high mobility, atomic-layer-deposition (ALD), high-k, interfacial density of states, III-V MOSFET, Conductance method, Quasi-state CV, Fermi-level movement efficiency, III-V process, Self-aligned, ICP-RIE |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Atomic-layer-deposited Al2O3 on In0.53Ga0.47As with short air-exposure between the oxide and semiconductor deposition without any InGaAs surface treatments has shown negligible frequency-dispersion capacitance-voltage (CV) characteristics in the depletion and accumulation region, and well-behaved frequency-dependent inversion curves. The interfacial density of states (Dit) of the metal-oxide-semiconductor capacitor (MOSCAP) was determined by the Terman method and the conductance method. The Dit distribute over the bandgap of In0.53Ga047As in “U”-shape giving lower Dit values near the mid-gap were obtained about 5×1011-3×1012 eV-1cm-2. By the conductance method, however, the Dit values were adopted as the authentic values and the Dit close to the mid-gap is about 3×1012 eV-1cm-2. The quasi-static CV characteristics indicate a high efficiency of 63% for the Fermi-level movement efficiency near the mid-gap.
On the basis of the high quality Al2O3/InGaAs interface, self-aligned enhancement-mode (E-mode) inversion-channel InxGa1-xAs (x=0.53 and 0.75) n-MOSFETs using atomic-layer-deposited Al2O3 as the gate dielectric have been demonstrated. Devices with lower dopant activation temperature (DAT) and higher indium content channel show better output DC characteristics. A low subthreshold swing ~ 103 mV/dec was obtained from the In0.75Ga0.25As MOSFETs with DAT of 600oC; furthermore, a maximum drain current (IDS) ~ 1.1 mA/μm was measured at a drain-to-source voltage of 1 V from a 350-nm gate-length device, the highest value among all enhancement-mode inversion-channel n-MOSFETs using InGaAs as the channels and ex-situ grown high-□ dielectrics. In addition, device optimization including TiN gate metal etching by ICP-RIE, channel doping, S/D implantation, and channel engineering were also studied in this work.
(Chapter 1)
[1] R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, “Benchmarking Nanotechnology for High-Performance and Low-Power Logic Transistor Applications”, IEEE Trans. Nanotechnol., vol. 4, 153 (2005).
[2] S. Datta, G. Dewey, M. Doczy, B. S. Doyle, B. Jin, J. Kavalieros, R. Kotlyar, M. Metz, N. Zelick, R. Chau, “High mobility Si/SiGe strained channel MOS transistors with HfO2/TiN gate stack”, in Int. Electron Devices Meeting Tech. Dig., 2003, 653.
[3] C. Auth, A. Cappellani, J.-S. Chun, A. Dalis, A. Davis, T. Ghani, G. Glass, T. Glassman, M. Harper, M. Hattendorf, P. Hentges, S. Jaloviar, S. Joshi, J. Klaus, K. Kuhn, D. Lavric, M. Lu, H. Mariappan, K. Mistry, B. Norris, N. Rahhal-orabi, P. Ranade, J. Sandford, L. Shifren, V. Souw, K. Tone, F. Tambwe, A. Thompson, D. Towner, T. Troeger, P. Vandervoorn, C. Wallace, J. Wiedemer, C. Wiegand, “45nm High-k + metal gate strain-enhanced transistors”, in VLSI Symp. Tech. Dig., 2008, 128.
[4] B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, R. Chau, “Tri-Gate fully-depleted CMOS transistors: fabrication, design and layout”, in VLSI Symp. Tech. Dig., 2003, 133.
[5] R. Chau, Proceedings of the CS MANTECH Conference, Chicago, IL, 14, April 2008.
[6] NSM Archive website - http://www.ioffe.rssi.ru/SVA/NSM/Semicond/index.html
[7] Y. Q. Wu, W. K. Wang, O. Koybasi, D. N. Zakharov, E. A. Stach, S. Nakahara,J. C. M. Hwang, and P. D. Ye, “0.8-V Supply Voltage Deep-Submicrometer Inversion-Mode In0.75Ga0.25As MOSFET”, IEEE Electron Device Lett., 30, 700 (2009).
[8] U. Singisetti, M. A. Wistey, G. J. Burek, A. K. Baraskar, B. J. Thibeault, A. C. Gossard,M. J. W. Rodwell, B. Shin, E. J. Kim, P. C. McIntyre, B. Yu, Y. Yuan, D. Wang, Y. Taur, P. Asbeck, and Y. J. Lee, “In0.53Ga0.47As Channel MOSFETs With Self-Aligned InAs Source/Drain Formed by MEE Regrowth”, IEEE Electron Device Lett., 30, 1128 (2009).
[9] Y. T. Chen, H. Zhao, Y. Wang, F. Xue, F. Zhou, and J. C. Lee, “Fluorinated HfO2 gate dielectric engineering on In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistors”, Appl. Phys. Lett., 96, 103506 (2010).
[10] H. C. Chin, X. Gong, X. Liu, and Y. C. Yeo, “Lattice-Mismatched In0.4Ga0.6As Source/Drain Stressors With In Situ Doping for Strained In0.53Ga0.47As Channel n-MOSFETs”, IEEE Electron Device Lett., 30, 805 (2009).
[11] D. H. Kim and J. A. del Alamo, “30-nm InAs Pseudomorphic HEMTs on an InP Substrate With a Current-Gain Cutoff Frequency of 628 GH”, IEEE Electron Device Lett., 29, 830 (2008).
[12] T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, “High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-emiconductor field-effect-transistor with Al2O3/ Ga2O3(Gd2O3) as gate dielectrics”, Appl. Phys. Lett., 93, 033516 (2008).
[13] H. C. Lin, W. E. Wang, G. Brammertz, M. Meuris, M. Heyns, “Electrical study of sulfur passivated In0.53Ga0.47As MOS capacitor and transistor with ALD Al2O3 as gate insulator”, Microelectron. Eng., 86, 1554 (2009).
[14] M. Radosavljevic, B. Chu-Kung, S. Corcoran, G. Dewey, M. K. Hudait, J. M. Fastenau, J. Kavalieros, W. K. Liu*, D. Lubyshev, M. Metz, K. Millard, N. Mukherjee, W. Rachmady, U. Shah,and Robert Chau, “Advanced High-K Gate Dielectric for High-Performance Short-Channel In0.7Ga0.3As Quantum Well Field Effect Transistors on Silicon Substrate for Low Power Logic Applications”, in Int. Electron Devices Meeting Tech. Dig., 2009, 319.
[15] J. P. de Souza, E. Kiewra, Y. Sun, A. Callegari, D. K. Sadana, G. Shahidi, D. J. Webb, J. Fompeyrine, R. Germann, C. Rossel, and C. Marchiori, “Inversion mode n-channel GaAs field effect transistor with high-k/metal gate,” Appl. Phys. Lett., 92, 153508 (2008).
[16] A. M. Sonnet, C. L. Hinkle, M. N. Jivani, R. A. Chapman, G. P. Pollack, R. M. Wallace, and E. M. Vogel, “Performance enhancement of n-channel inversion type InxGa1-xAs metal-oxide-semiconductor field effect transistor using ex situ deposited thin amorphous silicon layer,” Appl. Phys. Lett., 93, 122109 (2008).
[17] H. C. Chin, M. Zhu, C. H. Tung, G. S. Samudra, and Y. C. Yeo, “In-situ Surface Passivation and CMOS-Compatible Palladium-Germanium Contacts for Surface-Channel Gallium Arsenide MOSFETs,” IEEE Electron Device Lett., 29, 553 (2008).
[18] E. Yablonovitch, C. J. Sandroff, R. Bhat, and T. Gmitter, “Nearly ideal electronic properties of sulfide coated GaAs surfaces”, Appl. Phys. Lett., 51, 439 (1987).
[19] N. Goel, P. Majhi, C. O. Chui, W. Tsai, D. Choi, and J. S. Harris, “InGaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectric grown by atomic-layer deposition”, Appl. Phys. Lett., 89, 163517 (2006).
[20] Y. Xuan, H. C. Lin, and P. D. Ye, “Simplified Surface Preparation for GaAs Passivation Using Atomic Layer-Deposited High-κ Dielectrics”, IEEE Trans. Electron Devices, 54, 1811 (2007).
[21] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3”, Appl. Phys. Lett., 87, 252104 (2005).
[22] M. Hong, M. Passlack, J. P. Mannaerts, J. Kwo, S. N. G. Chu, N. Moriya, S. Y. Hou, and V. J. Fratello, “Low interface state density oxide-GaAs structures fabricated by in situ molecular beam epitaxy”, J. Vac. Sci. Technol. B, 14, 2297 (1996).
[23] F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, “Demonstration of enhancement-mode p- and n-channel GaAs MOSFETs with Ga2O3(Gd2O3) as gate oxide”, Solid-State Electron., 41, 1751 (1997).
[24] E.H. Nicollian and J.R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology”, (Wiley-Interscience, Hoboken, N.J.) 2003.
[25] L. M. Terman, “An investigation of Surface States at a Silicon/Silicon Oxide Interface Employing Metal-Oxide-Silicon Diodes”, Solid-State Electron., 5, 285 (1962).
[26] C. N. Berglund, “Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces”, IEEE Trans. Electron Devices, 12, 701 (1996).
[27] D. V. Lang, “Deep-level transient spectroscopy: A new method to characterize traps in semiconductors”, J. Appl. Phys., 45, 3023 (1974).
[28] J. S. Brugler and P. G. A. Jespers, “Charge Pumping in MOS Devices”, IEEE Trans. Electron Devices, 16, 297 (1969).
[29] Y. Sun, S. J. Koester, E. W. Kiewra, K. E. Fogel, D. K. Sadana, D. J. Webb, J. Fompeyrine, J. P. Locquet, M. Sousa, and R. Germann, “Buried-channel In0.70Ga0.30As/In0.52Al0.48As MOS capacitors and transistors with HfO2 gate dielectrics”, in Device Research Conference Dig., 2009, 49.
[30] R. J. W. Hill, R. Droopad, D. A. J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, O. Ignatova, A. Asenov, K. Rajagopalan, P. Fejes, I.G. Thayne and M. Passlack, “1 mm gate length, In0.75Ga0.25As channel, thin body n-MOSFET on InP substrate with transconductance of 737 mS/mm”, Electron. Lett., 44, 1283 (2008).
[31] Y. Sun, E. W. Kiewra, J. P. de Souza, J. J. Bucchignano, K. E. Fogel, D. K. Sadana, and G. G. Shahidi, “High-Performance In0.7Ga0.3As-Channel MOSFETs With High-κ Gate Dielectrics and α-Si Passivation”, IEEE Electron Device Lett., 30, 5 (2009).
[32] H. C. Chiu, P. Chang, M. L. Huang, T. D. Lin, Y. H. Chang, J. C. Huang, S. Z. Chen, J. Kwo, W. Tsai, and M. Hong, “High performance self-aligned inversion-channel MOSFETs with In0.53Ga0.47As channel and ALD-Al2O3 gate dielectric”, in Device Research Conference Dig., 2009, 83.
[33] T. D. Lin, H. C. Chiu, P. Chang, Y. H. Chang, Y. D. Wu, M. Hong, and J. Kwo, “Self-aligned inversion-channel In0.75Ga0.25As metal-oxide-semiconductor field-effect-transistors using UHV-Al2O3/Ga2O3(Gd2O3) and ALD-Al2O3 as gate dielectrics”, Solid-State Electron., 54, 919 (2010).
[34] Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, and P. D. Ye, “Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited Al2O3 as Gate Dielectric”, IEEE Electron Device Lett., 28, 935 (2007).
[35] K. Y. Lee, Y. J. Lee, P. Chang, M. L. Huang, Y. C. Chang, M. Hong,and J. Kwo, “Achieving 1 nm capacitive effective thickness in atomic layer deposited HfO2 on In0.53Ga0.47As”, Appl. Phys. Lett., 92, 25908 (2008).
[36] H. C. Chiu, L. T. Tung, Y. H. Chang, Y. J. Lee, C. C. Chang, J. Kwo,and M. Hong, “Achieving a low interfacial density of states in atomic layer deposited Al2O3 on In0.53Ga0.47As”, Appl. Phys. Lett., 93, 202903 (2008).
(Chapter 2)
[1] http://en.wikipedia.org/Atomic_layer_deposition
[2] Agilent 4156C, Application Note 4156-10, “Evaluation of Gate Oxides Using a Voltage Step Quasi-Static CV Method”.
[3] E. H. Nicollian and J.R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology”, (Wiley-Interscience, Hoboken, N.J.) 2003.
[4] D. K. Schroder, “Semiconductor Material and Device Characterization”, (John Wiley, Hoboken, N.J.) 2005.
[5] L. M. Terman, “An Investigation of Surface States at a Silicon Silicon Oxide Interface Employing Metal Oxide Silicon Diodes”, Solid-State Electron., 5, 285 (1962).
(Chapter 3)
[1] Z. Tang, H. Hsia, H. C. Kuo, D. Caruth, G.E. Stillman, and M. Feng, “188 GHz doped-channel In0.8Ga0.2P/In0.53 Ga0.47As/InP HFETs”, Electron. Lett., 36, 1657 (2000).
[2] J.H. Jang, S. Kim, and I. Adesida, “Fabrication and characterization of In0.52Al0.48As/In0.53Ga0.47As E/D-HEMTs on InP substrates”, Solid-State Electron., 50, 758 (2006).
[3] T. W. Kim, S. J. Jo, and J. I. Song, “A Capless InP/In0.52Al0.48As/In0.53Ga0.47As p-HEMT Having a Self-Aligned Gate Structure”, IEEE Electron Device Lett., 27, 722 (2006).
[4] F. Ren, J. M. Kuo, M. Hong, W. S. Hobson, J. R. Lothian, J. Lin, H. S. Tsai, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, “Ga2O3(Gd2O3)/InGaAs enhancement-mode n-channel MOSFETs”, IEEE Electron Device Lett., 19, 309 (1998).
[5] Y. Xuan, Y. Q. Wu, and P. D. Ye, “High-Performance Inversion-Type Enhancement-Mode InGaAs MOSFET With Maximum Drain Current Exceeding 1 A/mm”, IEEE Electron Dev. Lett., 29, 294 (2008).
[6] T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, “High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/ Ga2O3(Gd2O3) as gate dielectrics”, Appl. Phys. Lett., 93, 033516 (2008).
[7] M. Hong, J. P. Mannaerts, J. E. Bowers, J. Kwo, M. Passlack, W. Y. Hwang, and L. W. Tu, “Novel Ga2O3(Gd2O3) passivation techniques to produce low Dit oxide-GaAs interfaces”, J. Crystal Growth, 175/176, 422 (1997).
[8] M. Hong, J. Kwo, A. R. Kortan, J. P. Mannaerts, and A. M. Sergent, “Epitaxial Cubic Gadolinium Oxide as a Dielectric for Gallium Arsenide Passivation”, Science, 283, 1897 (1999).
[9] P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, “Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition”, Appl. Phys. Lett., 84, 434 (2004).
[10] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3”, Appl. Phys. Lett., 87, 252104 (2005).
[11] M. L. Huang, Y. C. Chang, C. H. Chang, T. D. Lin, J. Kwo, T. B. Wu, and M. Hong, “Energy-band parameters of atomic-layer-deposition Al2O3/InGaAs heterostructure”, Appl. Phys. Lett., 89, 012903 (2006).
[12] Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, and P. D. Ye, “Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited Al2O3 as Gate Dielectric”, IEEE Electron Device Lett., 28, 935 (2007).
[13] Y. C. Chang, M. L. Huang, K. Y. Lee, Y. J. Lee, T. D. Lin, M. Hong, J. Kwo, T. S. Lay, C. C. Liao, and K. Y. Cheng, “Atomic-layer-deposited HfO2 on In0.53Ga0.47As Passivation and energy-band parameters”, Appl. Phys. Lett., 92, 072901 (2008).
[14] K. Y. Lee, Y. J. Lee, P. Chang, M. L. Huang, Y. C. Chang, M. Hong , and J. Kwo, “Achieving 1 nm capacitive effective thickness in atomic layer deposited HfO2 on In0.53Ga0.47As”, Appl. Phys. Lett., 92, 252908 (2008).
[15] S. Koveshnikov, N. Goel, P. Majhi, H. Wen, M. B. Santos, S. Oktyabrsky, V. Tokranov, R. Kambhampati, R. Moore, F. Zhu, J. Lee, W. Tsai, “In0.53Ga0.47As based metal oxide semiconductor capacitors with atomic layer deposition ZrO2 gate oxide”, Appl. Phys. Lett., 92, 222904 (2008).
[16] D. G. Park, H. J. Cho, K. Y. Lim, C. Lim, I. S. Yeo, J. S. Roh, and J. W. Park, “Characteristics of n+ polycrystalline-Si/Al2O3/Si metal-oxide-semiconductor structures prepared by atomic layer chemical vapor deposition using Al(CH3)3 and H2O vapor”, J. Appl. Phys., 89, 6275 (2001).
[17] I. S. Jeon, J. Park, D. Eom, C. S. Hwang, H. J. Kim, C. J. Park, H. Y. Cho, J. H. Lee, N. I. Lee and H. K. Kang, “Post-Annealing Effects on Fixed Charge and Slow/Fast Interface States of TiN/Al2O3/p-Si Metal-Oxide-Semiconductor Capacitor”, Jpn. J. Appl. Phys., 42, 1222 (2003).
[18] D. M. Fleetwood, P. S. Winokur, R. A. Reber, Jr., T. L. Meisenheimer, J. R. Schwank, M. R. Shaneyfelt, and L. C. Riewe, “Effects of oxide traps, interface traps, and “border traps” on metal-oxide-semiconductor devices”, J. Appl. Phys., 73, 5058 (1993).
[19] Y. Sun, P. Pianetta, P. T. Chen, M. Kobayashi, Y. Nishi, N. Goel, M. Garner, and W. Tsai, “Arsenic-dominated chemistry in the acid cleaning of InGaAs and InAlAs surfaces”, Appl. Phys. Lett., 93, 194103 (2008).
[20] K. Martens, C. O. Chui, G. Brammertz, B. D. Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, “On the Correct Extraction of Interface Trap Density of MOS Devices With High-Mobility Semiconductor Substrates”, IEEE Trans. Electron Device, 55, 547 (2008).
[21] E. H. Nicollian and J.R. Brews, “MOS (Metal Oxide Semiconductor) Physics and Technology”, (Wiley-Interscience, Hoboken, N.J.) 2003.
[22] Agilent 4156C, Application Note 4156-10, “Evaluation of Gate Oxides Using a Voltage Step Quasi-Static CV Method”
[23] C. N. Berglund, “Surface States at Steam-Grown Silicon-Silicon Dioxide Interfaces”, IEEE Trans. Electron Devices, 13, 701 (1966).
[24] G. Brammertz,H. C. Lin, M. Caymax, M. Meuris, M. Heyns, and M. Passlack, “On the interface state density at In0.53Ga0.47As/oxide interfaces”, Appl. Phys. Lett., 95, 202109 (2009).
[25] K. Martens, B. Kaczer, H. Maes, and G. Groeseneken, Intl. SiGe Tech. and Device. Meet. 2008, 82-83.
[26] G. V. Groeseneken, H. E. Maes, N. Beltran, and R. F. De Keersmaecker, IEEE Trans. Electron Devices, 31, 42, (1984).
[27] D. Bauza and Y. Maneglia, IEEE Trans. Electron Devices, 44, 2262, (1997).
[28] M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 87, 252104 (2005).
[29] M. L. Huang, Y. C. Chang, C. H. Chang, T. D. Lin, J. Kwo, T. B. Wu, and M. Hong, Appl. Phys. Lett. 89, 012903 (2006).
[30] S. Jakschik, A. Avellan, U. Schroeder, and J. W. Bartha, IEEE Trans. Electron Devices, 51, 2252, (2004).
(Chapter 4)
[1] M. Hong, J. P. Mannaerts, J. E. Bowers, J. Kwo, M. Passlack, W. Y. Hwang, and L. W. Tu, “Novel Ga2O3(Gd2O3) passivation techniques to produce low Dit oxide-GaAs interfaces”, J. Crystal Growth, 175/176, 422 (1997).
[2] F. Ren, J. M. Kuo, M. Hong, W. S. Hobson, J. R. Lothian, J. Lin, H. S. Tsai, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, “Ga2O3(Gd2O3)/InGaAs Enhancement-Mode n-Channel MOSFET’s,” IEEE Electron Device Lett., 19, 309 (1998).
[3] Y. Xuan, Y. Q. Wu, and P. D. Ye, “High-Performance Inversion-Type Enhancement-Mode InGaAs MOSFET With Maximum Drain Current Exceeding 1A/mm,” IEEE Electron Device Lett., 29, 294 (2008).
[4] T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, “High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/ Ga2O3(Gd2O3) as gate dielectrics”, Appl. Phys. Lett., 93, 033516 (2008).
[5] Y. Xuan, P. D. Ye and T. Shen, “Substrate engineering for high-performance surface-channel III-V metal-oxide-semiconductor field-effect transistors”, Appl. Phys. Lett., 95, 202109 (2009).
[6] D. Shahrjerdi, T. Akyol, M. Ramon, D. I. Garcia-Gutierrez, E. Tutuc, and S. K. Banerjee, “Self-aligned inversion-type enhancement-mode GaAs metal-oxide- semiconductor field-effect transistor with Al2O3 gate dielectric,” Appl. Phys. Lett., 92, 203505 (2008).
[7] J. Q. Lin, S. J. Lee, H. J. Oh, G. Q. Lo, D. L. Kwong, and D. Z. Chi, “ Inversion-Mode Self-Aligned In0.53Ga0.47As N-Channel Metal-Oxide-Semiconductor Field- Effect Transistor With HfAlO Gate Dielectric and TaN Metal Gate,” IEEE Electron Device Lett., 29, 977 (2008).
[8] J. P. de Souza, E. Kiewra, Y. Sun, A. Callegari, D. K. Sadana, G. Shahidi, D. J. Webb, J. Fompeyrine, R. Germann, C. Rossel, and C. Marchiori, “Inversion mode n-channel GaAs field effect transistor with high-k/metal gate,” Appl. Phys. Lett., 92, 153508 (2008).
[9] A. M. Sonnet, C. L. Hinkle, M. N. Jivani, R. A. Chapman, G. P. Pollack, R. M. Wallace, and E. M. Vogel, “Performance enhancement of n-channel inversion type InxGa1-xAs metal-oxide-semiconductor field effect transistor using ex situ deposited thin amorphous silicon layer,” Appl. Phys. Lett., 93, 122109 (2008).
[10] H. C. Chin, M. Zhu, C. H. Tung, G. S. Samudra, and Y. C. Yeo, “In-situ Surface Passivation and CMOS-Compatible Palladium-Germanium Contacts for Surface-Channel Gallium Arsenide MOSFETs,” IEEE Electron Device Lett., 29, 553 (2008).
[11] F. Fracassi, R. d’Agostino, R. Lamendola, and I. Mangieri, “Dry etching of titanium nitride thin films in CF4–O2 plasmas “, J. Vac. Sci. Technol. A, 13, 335 (1995).
[12] R. d’Agostino, F. Fracassi, C. Pacifico, and P. Capezzuto, “Dry etching of Ti in chlorine containing feeds”, J. Appl. Phys., 71, 462(1992).
[13] J. Tonotani, T. Iwamoto, F. Sato, K. Hattori, S. Ohmi, and H. Iwai, “Dry etching characteristics of TiN film using Ar/CHF3, Ar/Cl2, and Ar/BCl3 gas chemistries in an inductively coupled plasma”, J. Vac. Sci. Technol. B, 21, 2163 (2003).
[14] C. T. Gabriel, J. Zheng, and S. C. Abraham, “Minimizing metal etch rate pattern sensitivity in a high density plasma etcher”, J. Vac. Sci. Technol. A, 15, 697 (1997).
[15] S. C. Abraham, C. T. Gabriel, and J. Zheng, “Performance of different etch chemistries on titanium nitride antireflective coating layers and related selectivity and microloading improvements for submicron geometries obtained with a high-density metal etcher”, J. Vac. Sci. Technol. A, 15, 702 (1997).
[16] Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, and P. D. Ye, “Submicrometer Inversion-Type Enhancement-Mode InGaAs MOSFET With Atomic-Layer-Deposited Al2O3 as Gate Dielectric”, IEEE Electron Device Lett., 28, 935 (2007).
[17] Y. Xuan, Y. Q. Wu, T. Shen, T. Yang, and P. D. Ye, “High performance submicron inversion-type enhancement-mode InGaAs MOSFETs with ALD Al2O3, HfO2 and HfAlO as gate dielectrics”, in Int. Electron Devices Meeting Tech. Dig., 2007, 637.
[18] Y. Taur, “MOSFET Channel Length: Extraction and Interpretation”, IEEE Trans. Electron Devices, 47, 160 (2000).
[19] http://www.srim.org/
[20] Y. Xuan, H. C. Lin, P. D. Ye, and G. D. Wilk, “Capacitance-voltage studies on enhancement-mode InGaAs metal-oxide-semiconductor field-effect transistor using atomic-layer-deposited Al2O3 gate dielectric”, Appl. Phys. Lett., 88, 263518 (2006).
[21] C. P. Chen, T. D. Lin, Y. J. Lee, Y. C. Chang, M. Hong, and J. Kwo, “Self-aligned inversion n-channel In0.2Ga0.8As/GaAs metal-oxide-semiconductor field-effect-transistors with TiN gate and Ga2O3(Gd2O3) dielectric”, Solid-State Electron, 52, 1615 (2008).
[22] Y. Xuan, T. Shen, M. Xu, Y. Q. Wu, and P. D. Ye, “High-performance Surface Channel In-rich In0.75Ga0.25As MOSFETs with ALD High-k as Gate Dielectric”, in Int. Electron Devices Meeting Tech. Dig., 2008, 371.
[23] Y. Q. Wu, W. K. Wang, O. Koybasi, D. N. Zakharov, E. A. Stach, S. Nakahara,J. C. M. Hwang, and P. D. Ye, “0.8-V Supply Voltage Deep-Submicrometer Inversion-Mode In0.75Ga0.25As MOSFET”, IEEE Electron Device Lett., 30, 700 (2009).
[24] R. Chau, S. Datta, and A. Majumdar, “Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications”, in IEEE CSIC Symp. Tech. Dig., 2005, 17.
[25] S. Ogura, P. J. Tsang, W. W. Walker, D. L. Critchlow, and J. F. Shepard, “Design and Characteristics of the Lightly Doped Drain-Source (LDD) insulated Gate Field-Effect Transistor”, IEEE Trans. Electron Devices, 27, 1359 (1980).
[26] S. M. Sze and K. K. Ng, “Physics of semiconductor devices” (Wiley-Interscience, N. J., 3rd ed. 2007).