研究生: |
陳尹瀅 Chen, Yin-Ying |
---|---|
論文名稱: |
SmCo5/SmCo7/SmCo6.7Zr0.3/SmCo6.7V0.3之晶體結構、磁化量及磁晶異向性探討 The study of the structure and the magnetic properties of SmCo5/SmCo7/SmCo6.7Zr0.3/SmCo6.7V0.3 |
指導教授: |
歐陽浩
Ouyang, Hao |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2010 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | 磁晶異向性 、釤鈷 、矯頑磁場 、第一原理計算 |
外文關鍵詞: | magnetocrystalline anisotropy, SmCo, coercivity, ab initio calculation |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Sm-Co系列永磁材料以極高的磁能積和居禮溫度,在電機工業和微機電工業上受到矚目。在其磁性質中,磁晶異向性會影響矯頑磁場,進而決定磁能積的大小,在工業上是一重要的參數。實驗上須將樣品細化成粉末量測磁晶異向性,但一來難以細化成單一磁區的粉末,二來某些介穩態樣品如SmCo7,會在細化過程中分解成其他穩定態。基於實驗上的困難,模擬計算是得到磁晶異向性一個很好的選擇。
本文以TEM和XRD對微結構作分析,再利用建構於密度泛函理論的第一原理計算,以Sm-Co系永磁材料為對象,探討當SmCo5轉變為SmCo7、SmCo7轉變為SmCo6.7Zr0.3和SmCo6.7V0.3時,原子環境的變化對微結構、磁化量、磁晶異向性的影響。
總能計算顯示第三元素Zr/V能夠穩定TbCu7結構,且取代了SmCo7中的2eCo原子。磁化量的計算值與實驗值差距在6%以內。模擬得到磁易軸為c軸,與實驗結果吻合。磁晶異向性常數的理論值約為實驗值的1/4到1/3,趨勢為異向性 (SmCo5) >異向性 (SmCo7),異向性(SmCo6.7Zr0.3) >異向性(SmCo7),異向性(SmCo6.7V0.3) >異向性(SmCo7),可由原子排列對稱性的角度來解釋。
The Sm-Co permanent magnets have received intensive interests in the electromechanical and micro-electromechanical industry due to the high energy product and the high Curie temperature. The magnetocrystalline anisotropy affects the coercivity thus influences the energy product. Hence the magnetocrystalline anisotropy constant is an important parameter in practical utility. The anisotropy field (Ha) was determined by measuring the easy and hard axis magnetization on powder aligned in a field and fixed in epoxy. But it is difficult to get the powder of single domain and the metastable materials decompose during the powdering process. As a result, simulation is a good method to obtain the magnetocrystalline anisotropy constant.
SmCo5, SmCo7, SmCo6.7Zr0.3 and SmCo6.7V0.3 are discussed in this study. TEM and X-ray diffraction are used to analysis the microstructure. First-principles density functional calculation is used for discussing the influence of atomic environment on microstructure, magnetization, and magnetocrystalline anisotropy.
The total energy calculations show the third element doping (Zr or V) can stabilize the TbCu7 structure. The Zr or V atoms replace the 2e Co atoms. The calculated magnetic moment agreed with experiments within 6% difference. The calculated magnetocrystalline anisotropy constants are about 3~4 times smaller than the measured value. The trends are anisotropy (SmCo5) > anisotropy (SmCo7), anisotropy (SmCo6.7Zr0.3) > anisotropy (SmCo7), anisotropy (SmCo6.7V0.3) > anisotropy (SmCo7) which can be explained by the symmetry of atoms.
1. 中正大學物理學系碩士論文,合金元素對SmCo7合金薄帶磁性、相變化及顯微結構之影響,黃世騰,民95。
2. B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Pub. Co. (1972).
3. K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38 (1967) 1001.
4. T. Ojima et al., J. Appl. Phys. 4 (1977) 671.
5. M. Sagawa, S. Fujimura, N. Togawa, H. Yamamoto and Y. Matsuura, J. Appl. Phys. 55 (1984) 2083.
6. D. Niarchos, Sensor and Actuators A: Physical. 106 (2003) 255.
7. C.H. Lee et al., Phys. Rev. B 42 (1990) 11384.
8. S. Jeong, Yu-Nu Hsu, D.E. Laughlin, Michael E. McHenry, IEEE Trans. Magn. 36 (2000) 2336.
9. P.L. Cavallotti et al., Surf. Coat. Technol. 105 (1998) 232.
10. E. Pina et al., J. Magn. Magn. Mater. 290 (2005) 1234.
11. C. J. Yang, S. W. Kim, Metals and Materials International, 4 (1998) 1063.
12. G. Rieger et al., J. Appl. Phys. 87 (2000) 5329.
13. D. Weller, A. Moser, IEEE Trans. Magn. 6 (1999) 4423.
14. K. J. Strnat, Ferromagnetic materials: a handbook on the properties of magnetically ordered substances, North-Holland Pub. Co. (1980).
15. R. Rani, F. J. Cadieu, X. R. Qian, W. A. Mendoza, and S. A. Shaheen, J. Appl. Phys. 81 (1997) 5634.
16. M. Mizukami, T. Abe, and T. Nishihara, IEEE Trans. Magn. 33 (1997) 2977.
17. K. Chen, H. Hegde, S. U. Jen, and F. J. Cadieu, J. Appl. Phys. 73 (1993) 5923.
18. J. Sayama, T. Asahi, K. Mizutani, and T. Osaka, J. Phys. D: Appl. Phys. 37 (2004) L1–L4.
19. J. Sayama, K. Mizutani, T. Asahi, and T. Osaka, Appl. Phys. Lett. 85 (2004) 5640.
20. J. Sayama et al., J. Magn. Magn. Mater. 287 (2005) 239.
21. J. Sayama et al., J. Magn. Magn. Mater. 301 (2006) 271.
22. S. Takei, A. Morisako, and M. Matsumoto, J. Magn. Magn. Mater. 272-276 (2004) 1703.
23. A. Morisako, X. Liu, J. Magn. Magn. Mater. 304 (2006) 46.
24. I. Kato, S. Takei, X. Liu, and A. Morisako, IEEE Trans. Magn. 42 (2006) 2366.
25. M. Q. Huang, W. E. Wallace, M. McHenry, Q. Chen, and B. M. Ma, J. Appl. Phys. 83 (1998) 6718.
26. K. H. Buschow and F. J. A. den Broeder, J. Less-Common Met. 3 (1973) 191.
27. H. Saito, M. Takahashi, T. Wakiyama, G. Kodoand, and H. Nakagawa, J. Magn. Magn. Mater. 82 (1989) 322.
28. H. H. Liebermann and C. D. Graham, Jr. IEEE Trans. Magn. 12 (1991) 921.
29. 中正大學物理學系碩士論文,合金元素對SmCo7合金薄帶磁性、相變化及顯微結構之影響,黃世騰,民95。
30. J. Yang, O. Mao, and Z. Altounian, IEEE Trans. Magn. 32 (1996) 4390.
31. J. Luo et al., Intermetallics, 13 (2005) 710.
32. R. Cerny, Y. Filinchuk, and S. Bruhne, Intermetallics, 17 (2009) 818.
33. Y. Guo et al., Appl. Phys. Lett. 86 (2005) 192513.
34. K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38 (1967) 1001.
35. T. Ojima et al., J. Appl. Phys. 4 (1977) 671.
36. J. Zhou, I. A. Al-Omari, J. P. Liu, and D. J. Sellmyer, J. Appl. Phys. 87 (2000) 5299.
37. C. Jiang, M. Venkatesan, K. Gallagher, and J. M. D. Coey, J. Magn. Magn. Mater. 236 (2001) 49.
38. J. Luo et al., Appl. Phys. Lett. 85 (2004) 5299.
39. H. W. Chang et al., Scripta Materialia 56 (2007) 1099.
40. H. M. Rietveld, J. Appl. Cryst. 2 (1969) 65.
41. A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004).
42. P. Hohenberg and W. Kohn, Phys. Rev. 136 (1964) B864.
43. W. Kohn and L. J. Sham, Phys. Rev. 140 (1965) A1133.
44. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77 (1996) 3865.
45. The Art of Molecular Dynamics Simulation, D. C. Rapaport.
46. X. Zhao, D. Ceresoli, and D. Vanderbilt, Phys. Rev. B 71 (2005) 085107.
47. D. R. Hamann, M. Schluter, and C. Chiang, Phy. Rev. Lett. 43 (1979) 1494.
48. M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, and J. D. Joannopoulos, Reviews of Modern Physics, Vol. 64, No. 4, 1045 (1992).
49. F. S. Ham and B. Segall, Phys. Rev. 124 (1961) 1786.
50. M. Methfessel, and M. Van Schilfgaarde, Phys. Rev. B, 48 (1993) 4937.
51. G. A. Sai-Halasz, L. Esaki, and W. A. Harrison, Phys. Rev. B 18 (1978) 2812.
52. Charles Kittel, Introduction to Solid State Physics, John Wiley and Sons (2005).
53. The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jürgen Furthmüller.
54. G. Kresse and J. Furthmuller, Phys. Rev. B 54 (1996) 11169.
55. D. Vanderbilt, Phys. Rev. B, 41 (1990) 7892.
56. C. G. Bmyden, Math. Comput 19 (155) 577.
57. P. Pulay, Chem. Phys. Lett. 73 (1980) 393
58. D. D. Johnson, Phys. Rev. B38, 12 (1988) 87.
59. In general the Kohn-Sham energy functional for an ultrasoft (US) Vanderbilt pseudopotential (PP) can be written as [25-271].
60. N. W. Ashcroft and N. D. Mermin, Solid state physics, Saunders College Publishing (1976).
61. M. P. Marder, Condensed matter physics, John Wiley and Sons (2000).
62. 江進福, 物理雙月刊, 廿三卷五期, P549-553 (2001)
63. L. H. Thomas, "The calculation of atomic fields". Mathematical Proceedings of the Cambridge Philosophical Society 23 (1927) 542.
64. E. Fermi, "Un Metodo Statistico per la Determinazione di alcune Prioprietà dell'Atomo". Rend. Accad. Naz. Lincei 6 (1927) 602.
65. E. Wigner, Transactions of the Faraday Society, 34 (1938) 0678.
66. D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45 (1980) 566.
67. S. H. Vosko, J. P. Perdew, and A. H. Macdonald, Phy. Rev. Lett. 35 (1975) 1725.
68. A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen, Phys. Rev. B 52 (1995) R5467.
69. G. Onida, L. Reining, and A. Rubio, Review of Modern Physics, vol. 74 (2002) 601.
70. B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Pub. Co. (1972).
71. V. A. Krutov and L. N. Savushkin, J. Phys. A: Math. Nucl. Gen. 6 (1973) 93.
72. Brant Fultz and James M. Howe, Transmission Electron Microscopy and Diffractometry of Materials, Springer Berlin Heidelberg (2008).
73. Manual of MacTempas.
74. JEMS software package that is developed by Pierre Stadelmann, http://cimesg1.epfl.ch/CIOL/ems.html
75. The guide of VASP, can be retrieved from:http://cms.mpi.univie.ac.at/VASP/ , written by Georg Kresse and Jürgen Furthmüller.
76. R. Ramesh and K. Srikrishna, J. Appl. Phys. 64 (1988) 6406.
77. R. Ramesh, G. Thomas and B. M. Ma, J. Appl. Phys. 64 (1988) 6416.
78. C. C. Hsieh, H. W. Chang, C. W. Chang, Z. H. Guo, C. C. Yang, and W. C. Chang, J. Appl. Phys. 105 (2009) 07A705.
79. P. Scherrer, Göttinger Nachrichten Gesell., 2 (1918) 98.
80. H. M. Rietveld, J. Appl. Cryst. 2 (1969) 65.
81. A.C. Larson and R.B. Von Dreele, General Structure Analysis System (GSAS), Los Alamos National Laboratory Report LAUR 86-748 (2004).
82. M. Q. Huang, W. E. Wallace, M. McHenry, Q. Chen, and B. M. Ma, J. Appl. Phys. 83 (1998) 6718.
83. J. Luo et al., Intermetallics, 13 (2005) 710.
84. K. J. Strnat, G. Hoffer, J. Olson, W. Ostertag and J. J. Becker, J. Appl. Phys. 38 (1967) 1001.
85. B. D. Cullity, Introduction to Magnetic Materials, Addison-Wesley Pub. Co. (1972).
86. S. G. Sankar, V. U. S. Rao, E. Segal, and W. E. Wallace, Phys. Rev. B 11 (1975) 435.
87. S. R. Trout and C. D. Graham, Jr, J. Appl. Phys. 50 (1979) 2361.
88. Y. K. Wang, G. Y. Guo, and H. T. Jeng, J. Magn. Magn. Mater. 282 (2004) 139.
89. G.. Y. Guo, D. J. Roberts, and G.. A. Gehring Phys. Rev. B 59 (1999) 14466
90. J. Deportes, D. Givord, J. Schweizer, and F. Tasset, IEEE Trans. Magn. 12 (1976) 1000.