研究生: |
劉展宏 Liou, Jhan-Hong |
---|---|
論文名稱: |
運作中平板熱管在不同燒結毛細結構與工作流體下之蒸發區可視化觀察與量測 Visualization and Measurement for Evaporator of Different Sintered-Wicks and Working Fluids in Operating Flat-Plate Heat Pipes |
指導教授: |
王訓忠
Wong, Shwin-Chung |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 78 |
中文關鍵詞: | 熱管 、薄膜蒸發 、蒸發熱阻 、燒結毛細 、工作流體 、可視化 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用自行設計之可視化平板熱管,分別使用水和丙酮為工作流體、採用多層燒結銅網、燒結銅粉、或複合式燒結銅網/銅粉毛細結構之平板熱管,進行可視化觀察及蒸發熱阻量測。以水為工作流體搭配上述所有燒結毛細結構下,當熱通量超過100W/cm2時,仍無核沸騰發生,蒸發區僅觀察到表面蒸發。透過可視化觀察,水膜會隨熱通量增加而下退,並在毛細間形成皺曲半月液面,在部分乾化發生之前,蒸發熱阻隨熱通量增加而逐漸降低至一最小值。此後,隨熱通量持續增加,蒸發區遠端會開始發生部分乾化,並逐漸擴大至蒸發區,蒸發熱阻也隨之上升。當底層使用較細的200目銅網或細銅粉時,由於其較薄並具較強毛細力,在高熱通量下可維持較薄水膜、擁有較多的固/液/汽界面而利於高效的薄膜蒸發(thin film evaporation)、並形成較大的縐折蒸發面積,故可導致較低之蒸發熱阻。
使用丙酮搭配多層燒結銅網毛細之熱阻變化趨勢與水相似,然其毛細力較弱,導致工作流體回流不易,與水相比較早發生乾化。且其表面張力遠小於水,因此在蒸發區毛細中半月液面與金屬壁交界面發生薄膜蒸發之面積較少,以致較多熱量藉由液面表面蒸發,故其蒸發熱阻大於水。由於丙酮其潛熱較小沸點較低,在運作中有局部發生微弱核沸騰,但不足以影響蒸發熱阻,顯示蒸發過程仍由液面蒸發所主導,蒸發熱阻主要仍是受到液膜厚度之影響,且熱管之操作極限仍屬毛細極限。
[1] S.-C. Wong, Y.-H. Kao, Visualization and performance measurement of operating mesh-wicked heat pipes, Int. J. Heat Mass Transfer 51 (2008) 4249-4259.
[2] 趙淇, ”含金屬毛細結構之平板熱管蒸發熱阻之研究”, 國立清華大學動力機械工程學系碩士論文, 2007
[3] 張家瑋, ”操作之平板熱管中燒結毛細蒸發區之可視化觀察與量測”, 國立清華大學動力機械工程學系碩士論文, 2008
[4] A. Faghri, Heat Pipe Science and Technology, Taylor & Francis, 1995.
[5] C. Li, G.P. Peterson, Y. Wang, Evaporation/boiling in thin capillary wicks (1)—wick thickness effects, ASME J. Heat Transfer 128 (2006) 1312-1319.
[6] C. Li, G.P. Peterson, Evaporation/boiling in thin capillary wicks(2)—effects of volumetric porosity and mesh size, ASME J. Heat Transfer 128 (2006) 1320-1328.
[7] Y. Wang, G.P. Peterson, Investigation of a novel flat heat pipe, ASME J. Heat Transfer 127 (2005) 165-170.
[8] D. Khrustalev, A. Faghri, Thermal characteristics of conventional and flat miniature axially grooved heat pipes, ASME J. Heat Transfer 117 (1995) 1048-1054.
[9] L. Lin, R. Ponnappan, J. Leland, High performance miniature heat pipe, Int. J. Heat Mass Transfer 45 (2002) 3131-3142.
[10] M. Mochizuki, T. Nguyen, Y. Saito, Y. Horiuchi, K. Mashiko, T. Sataphan, and Y. Kawahara, Latest vapor chamber technology for computer, The 8th International Heat Pipe Symposium, September 2006, Japan.
[11] T.W. Davis, S.V. Garimella, Thermal resistance measurement across a wick structure using a novel thermosyphon test chamber, Experimental Heat Transfer 21 (2008) 143-154.
[12] J.-Y. Chang, R. S. Prasher, S. Prstic, P. Cheng, H.B. Ma, Evaporative thermal performance of vapor chambers under nonuniform heating conditions, ASME J. Heat Transfer 130, Issue 12, 121501(2008) .
[13] K. Grubb, CFD modeling of a Therma-BaseTM heat sink, The 8th International FLOTHERM User Conference, 1999.
[14] M. Potash, P.C. Wayner, Evaporation from a two-dimensional extended meniscus, Int. J. Heat Mass Transfer 15 (1972) 1851-1863.
[15] F.W. Holm, S.P. Goplen, Heat transfer in meniscus thin-film transition region, ASME J. Heat Transfer 101 (1979) 543-547.
[16] C. Hohmann, P. Stephan, Microscale temperature measurement at an evaporation liquid meniscus, Experimental Thermal Fluid Sci. 26 (2002) 157-162.
[17] 潘欽, “沸騰熱傳與雙相流”, 國立編譯館, 2001.
[18] S.G. Bankoff, Ebullition from solid surface in the absence of a pre-existing gaseous phase, ASME J. Heat Transfer 79 (1957) 735-740.
[19] A.F. Mills, Heat Transfer, Irwin, Inc., 1992, p. 22.