簡易檢索 / 詳目顯示

研究生: 陳可潔
論文名稱: 溫度敏感性產氣式微脂粒載體於藥物傳輸上之應用
Development of a Thermo-responsive Bubble-generating Liposomal System and its Application for Drug Delivery
指導教授: 宋信文
口試委員: 王先知
胡宇方
甘霈
林昆儒
劉浩澧
梁祥發
宋信文
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 67
中文關鍵詞: 微脂體藥物傳輸癌症二氧化碳
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以癌症治療為目的,研發一具有藥物控制釋放能力之傳遞系統。實驗設計是將具有產氣能力之碳酸氫銨(NH4HCO3)材料包覆進載體水相核層內,做為一穴蝕(caviation)化核心,藉由碳酸氫銨與碳酸氫鈉分別在高溫(40  50 °C)與酸性環境下具有能及時分解產生二氧化碳之特性。此系統不需經由外加超聲波,即能藉由局部環境變化的觸發,產生瞬間穴蝕效應,達到破壞腫瘤細胞,或輔助調控釋放藥物傳遞之目的。系統中,載體內氣泡的生成,除了可加速藥物的釋放,亦具有增強聲場散射信號的作用,因此,本系統同時也可做為一可應用在至醫學影像上之超聲波對比劑,為一相當具潛力之治療及追蹤癌症疾病的平台技術。


    The therapeutic effectiveness of chemotherapy is optimal only when tumor cells have maximum drug exposure. A thermoresponsive liposomal formulation (ThermoDox; Lysolipid liposomes) rapidly releases DOX in regions where local tissue temperatures are elevated to at least 40 °C. Although Lysolipid liposomes have considerable therapeutic potential, roughly 50% of encapsulated DOX is released within 1 h in physiological environments. Lysolipid dissociation from liposomes, which is mediated by plasma proteins, is a highly likely cause of their intravenous instability.
    Thus, in study I, a thermoresponsive bubble-generating liposomal system that does not contain lysolipids was evaluated for its ability to trigger localized extracellular drug delivery. The key component in this liposomal formulation is encapsulated ammonium bicarbonate (ABC), which creates the transmembrane gradient needed for highly efficient DOX encapsulation. At an elevated temperature of 42 °C, ABC decomposition generates CO2 bubbles, creating permeable defects in the lipid bilayer that rapidly releases DOX and instantly increases the drug concentration locally. Because the generated CO2 bubbles are hyperechogenic, they also enhance ultrasound imaging results. Consequently, this novel liposomal system encapsulated with ABC may be able to monitor a temperature-controlled drug delivery process.
    Study II examined the feasibility of using this thermoresponsive bubble-generating liposomal system (ABC liposomes) for tumor-specific chemotherapy under mild hyperthermia. Incubation of ABC liposomes with rat whole blood resulted in a significantly smaller decrease in the retention of encapsulated DOX than that by Lysolipid liposomes, indicating superior plasma stability. Biodistribution study results demonstrate that the ABC formulation circulated longer than its Lysolipid counterpart. After the ABC liposome suspension was injected into mice with tumors that were heated locally, decomposition of the ABC encapsulated in liposomes facilitated immediate thermal activation for CO2 bubble generation, leading to increased intratumoral DOX accumulation. Consequently, the antitumor efficacy of ABC liposomes was superior to that of their Lysolipid counterparts. These analytical results indicate that this thermoresponsive bubble-generating liposomal system is a promising local drug delivery system activated at hyperthermia temperatures for tumor-specific chemotherapy.
    Since nonspecific distribution of therapeutic agents and nontargeted heating frequently cause undesirable side effects during cancer treatment, study III describes a novel liposomal system that can deliver both heat and a therapeutic agent, DOX, simultaneously into targeted tumor cells to exert its cytotoxicity intracellularly. A hybridized Mucin-1 aptamer was conjugated on the surface of test liposomes, which can function as a recognition probe to enhance their cell uptake, as well as a molecular beacon to signal when the internalized particles were maximized. Additionally, gold nanocages encapsulated in liposomes effectively converted near-infrared light irradiation into localized heat to directly damage cancerous cells and thermally trigger a high DOX release to reach the therapeutic threshold instantly. This combined treatment can significantly increase the drug potency, making it a promising approach for cancer therapy.

    ABSTRACT I TABLE OF CONTENT III LIST OF FIGURES VI LIST OF TABLES X Chapter 1 Introduction 1 Chapter 2 A Thermoresponsive Bubble-generating Liposomal System for Triggering Localized Extracellular Drug Delivery 4 2-1 Materials and Methods 6 2-1-1 Materials 6 2-1-2 Liposome preparation 7 2-1-3 Characterization of test liposomes 7 2-1-4 Release of DOX from test liposomes 7 2-1-5 Ultrasound imaging 8 2-1-6 SAXS measurements 8 2-1-7 Internalization of ABC liposomes 8 2-1-8 Intracellular accumulation of DOX 9 2-1-9 Cell viability assay 9 2-1-10 Statistical analysis 10 2-2 Results and Discussion 10 2-2-1 Characteristics of the test liposomes 10 2-2-2 In vitro release profiles 11 2-2-3 The role of ABC in triggering drug release 13 2-2-4 Extracellular release of DOX and its intracellular accumulation 17 2-3 Conclusions 20 Chapter 3 A Thermoresponsive Bubble-generating Liposomal System for Triggering Localized Extracellular Drug Delivery 21 3-1 Materials and Methods 23 3-1-1 Materials 23 3-1-2 Liposome preparation 24 3-1-3 Characterization of test liposomes 24 3-1-4 In vitro release of DOX from test liposomes 24 3-1-5 Animals and tumor cells 25 3-1-6 Ultrasound imaging and fluorescence imaging of tumor tissues 25 3-1-7 SPECT/CT imaging 26 3-1-8 Plasma stability assay 26 3-1-9 Antitumor efficacy study 27 3-1-10 Statistical analysis 27 3-2 Results and Discussion 27 3-2-1 Characteristics of test liposomes 27 3-2-2 In vitro drug release profiles 28 3-2-3 In vivo thermal activation of CO2 bubble generation and DOX release 30 3-2-4 Biodistribution of the test liposomes with and without lysolipids 32 3-2-5 Plasma stability 35 3-2-5 Antitumor efficacy 36 3-3 Conclusions 38 Chapter 4 Targeted Therapy of Locally Delivered Heat and Drug Using a Multifunctional Bubble-generating Liposomal System 39 4-1 Materials and Methods 41 4-1-1 Materials 41 4-1-2 Liposome preparation 41 4-1-3 In vitro drug release study 41 4-1-4 MD simulations 42 4-1-5 Internalization of test liposomes 42 4-1-6 Intracellular trafficking 42 4-1-7 Intracellular accumulation of DOX 43 4-1-8 Cell viability assay 43 4-1-9 Statistical analysis 43 4-2 Results and Discussion 43 4-2-1 Characteristics of the prepared Au NGs and test liposomes 43 4-2-2 In vitro drug release profiles 47 4-2-3 FRET measurements 47 4-2-4 Cellular uptake and intracellular trafficking 50 4-2-5 Intracellular release of DOX and its intracellular accumulation 52 4-3 Conclusions 54 References 55 著作目錄 64

    1. Barenholz, Y. Doxil®--The First FDA-approved Nano-drug: Lessons Learned. J. Control Release 2012, 160, 117–134.
    2. Yang, F.; Jin, C.; Jiang, Y.; Li, J.; Di, Y.; Ni, Q.; Fu, D. Liposome Based Delivery Systems in Pancreatic Cancer Treatment: From Bench to Bedside. Cancer Treat. Rev. 2011, 37, 633–642.
    3. Elbayoumi, T. A.; Torchilin, V. P. Tumor-targeted Nanomedicines: Enhanced Antitumor Efficacy In Vivo of Doxorubicin-loaded, Long-circulating Liposomes Modified with Cancer-specific Monoclonal Antibody. Clin. Cancer Res. 2009, 15, 1973–1980.
    4. Pornpattananangkul, D.; Olson, S.; Aryal, S.; Sartor, M.; Huang, C. M.; Vecchio, K.; Zhang, L. Stimuli-responsive Liposome Fusion Mediated by Gold Nanoparticles. ACS Nano 2010, 4, 1935–1942.
    5. Tagami, T.; Ernsting, M. J.; Li, S. D. Optimization of a Novel and Improved Thermosensitive Liposome Formulated with DPPC and a Brij Surfactant Using a Robust In Vitro System. J. Control Release 2011, 154, 290–297.
    6. Allen, T. M.; Cullis, P. R. Drug Delivery Systems: Entering the Mainstream. Science 2004, 303, 1818–1822.
    7. Chang, H. I.; Yeh, M. K. Clinical Development of Liposome-based Drugs: Formulation, Characterization, and Therapeutic Efficacy. Int. J. Nanomedicine 2012, 7, 49–60.
    8. Dromi, S.; Frenkel, V.; Luk, A.; Traughber, B.; Angstadt, M.; Bur, M.; Poff, J.; Xie, J.; Libutti, S. K.; Li, K. C.; et al. Pulsed-high Intensity Focused Ultrasound and Low Temperature-sensitive Liposomes for Enhanced Targeted Drug Delivery and Antitumor Effect. Clin. Cancer Res. 2007, 13, 2722–2727.
    9. Shenoi, M. M.; Shah, N. B.; Griffin, R. J.; Vercellotti, G. M.; Bischof, J. C. Nanoparticle Pre-conditioning for Enhanced Thermal Therapies in Cancer. Nanomedicine 2011, 6, 545–563.
    10. Chiu, G. N.; Abraham, S. A.; Ickenstein, L. M.; Ng, R.; Karlsson, G.; Edwards, K.; Wasan, E. K.; Bally, M. B. Encapsulation of Doxorubicin into Thermosensitive Liposomes via Complexation with the Transition Metal Manganese. J. Control Release 2005, 104, 271–288.
    11. Chang, H. I.; Yeh, M. K. Clinical Development of Liposome-Based Drugs: Formulation, Characterization, and Therapeutic Efficacy. Int. J. Nanomedicine 2012, 7, 49–60.
    12. Yarmolenko, P. S.; Zhao, Y.; Landon, C.; Spasojevic, I.; Yuan, F.; Needham, D.; Viglianti, B. L.; Dewhirst, M. W. Comparative Effects of Thermosensitive Doxorubicin-Containing Liposomes and Hyperthermia in Human and Murine Tumours. Int. J. Hyperthermia 2010, 26, 485–498.
    13. Tagami, T.; Foltz, W. D.; Ernsting, M. J.; Lee, C. M.; Tannock, I. F.; May, J. P.; Li, S. D. MRI Monitoring of Intratumoral Drug Delivery and Prediction of the Therapeutic Effect with a Multifunctional Thermosensitive Liposome. Biomaterials 2011, 32, 6570–6578.
    14. Banno, B.; Ickenstein, L. M.; Chiu, G. N.; Bally, M. B.; Thewalt, J.; Brief, E.; Wasan, E. K. The Functional Roles of Poly(ethylene glycol)-lipid and Lysolipid in the Drug Retention and Release from Lysolipid-Containing Thermosensitive Liposomes In Vitro and In Vivo. J. Pharm. Sci. 2010, 99, 2295–2308.
    15. Cullis, P. R.; Chonn, A.; Semple, S. C. Interactions of Liposomes and Lipid-Based Carrier Systems with Blood Proteins: Relation to Clearance Behaviour In Vivo. Adv. Drug Deliv. Rev. 1998, 32, 3–17.
    16. Mills, J. K.; Needham, D. Lysolipid Incorporation in Dipalmitoylphosphatidylcholine Bilayer Membranes Enhances the Ion Permeability and Drug Release Rates at the Membrane Phase Transition. Biochim. Biophys. Acta. 2005, 1716, 77–96.
    17. Chen, K. J.; Liang, H. F.; Chen, H. L.; Wang, Y.; Cheng, P. Y.; Liu, H. L.; Xia, Y.; Sung, H. W. A Thermoresponsive Bubble-Generating Liposomal System for Triggering Localized Extracellular Drug Delivery. ACS Nano 2013, 7, 438–446.
    18. Chung, M. F.; Chen, K. J.; Liang, H. F.; Liao, Z. X.; Chia, W. T.; Xia, Y.; Sung, H. W. A New Liposomal System Capable of Generating CO2 Bubbles to Induce Transient Cavitation, Lysosomal Rupturing, and Cell Necrosis. Angew. Chem. Int. Ed. 2012, 51, 10089–10093.
    19. Boddien, A.; Gärtner, F.; Federsel, C.; Sponholz, P.; Mellmann, D.; Jackstell, R.; Junge, H.; Beller M. CO2-"Neutral" Hydrogen Storage Based on Bicarbonates and Formates. Angew. Chem. Int. Ed. 2011, 50, 6411–6414.
    20. Yang, Y.; Bajaj, N.; Xu, P.; Ohn, K.; Tsifansky, M. D.; Yeo, Y. Development of Highly Porous Large PLGA Microparticles for Pulmonary Drug Delivery. Biomaterials 2009, 30, 1947–1953.
    21. Cern, A.; Golbraikh, A.; Sedykh, A.; Tropsha, A.; Barenholz, Y.; Goldblum, A. Quantitative Structure-property Relationship Modeling of Remote Liposome Loading of Drugs. J. Control Release 2012, 160, 147–157.
    22 Yu, C.; Hu, Y.; Duan, J.; Yuan, W.; Wang, C.; Xu, H.; Yang, X. D. Novel Aptamer-Nanoparticle Bioconjugates Enhances Delivery of Anticancer Drug to MUC1-Positive Cancer Cells In Vitro. PLoS One 2011, 6, e24077.
    23. Min, B.; Bae, I. Y.; Lee, H. G.; Yoo, S. H.; Lee, S. Utilization of Pectin-enriched Materials from Apple Pomace as a Fat Replacer in a Model Food System. Bioresour. Technol. 2010, 101, 5414–5418.
    24. Tagami, T.; May, J. P.; Ernsting, M. J.; Li, S. D. A Thermoscensitive Liposome Prepared with a Cu²⁺ Gradient Demonstrates Improved Pharmacokinetics, Drug Delivery and Antitumor Efficacy. J. Control Release 2012, 161, 142–149.
    25. Bolotin, E. M.; Cohen, R.; Bar, L.; Emanuel, N.; Ninio, S.; Barenholz, Y.; Lasic, D. D. Ammonium Sulfate Gradients for Efficient and Stable Remote Loading of Amphipathic Weak Bases into Liposomes and Ligandoliposomes. J. Liposome Res. 1994, 4, 455–479.
    26. Eisenbrey, J. R.; Burstein, O. M.; Kambhampati, R.; Forsberg, F.; Liu, J. B.; Wheatley, M. A. Development and Optimization of a Doxorubicin Loaded Poly(lactic acid) Contrast Agent for Ultrasound Directed Drug Delivery. J. Control Release 2010, 143, 38–44.
    27. Riehemann, K.; Schneider, S. W.; Luger, T. A.; Godin, B.; Ferrari, M.; Fuchs, H. Nanomedicine--Challenge and Perspectives. Angew. Chem. Int. Ed. 2009, 48, 872–897.
    28. Riganti, C.; Miraglia, E.; Viarisio, D.; Costamagna, C.; Pescarmona, G.; Ghigo, D.; Bosia, A. Nitric Oxide Reverts the Resistance to Doxorubicin in Human Colon Cancer Cells by Inhibiting the Drug Efflux. Cancer Res. 2005, 65, 516–525.
    29. Soussan, E.; Cassel, S.; Blanzat, M.; Rico-Lattes, I. Drug Delivery by Soft Matter: Matrix and Vesicular Carriers. Angew. Chem. Int. Ed. 2009, 48, 274–288.
    30. Boyer, C.; Zasadzinski, J. A. Multiple Lipid Compartments Slow Vesicle Contents Release in Lipases and Serum. ACS Nano 2007, 1, 176–182.
    31. Allen, T. M. Ligand-targeted Therapeutics in Anticancer Therapy. Nat. Rev. Cancer 2002, 2, 750–763.
    32. Nowak, P.; Skrzypek, J. The Kinetics of Chemical Decomposition of Ammonium Bicarbonate and Carbonate in Aqueous Solutions. J. Chem. Eng. Sci. 1989, 44, 2375–2376.
    33. Ke, C. J.; Su, T. Y.; Chen, H. L.; Liu, H. L.; Chiang, W. L.; Chu, P. C.; Xia, Y.; Sung, H. W. Smart Multifunctional Hollow Microspheres for the Quick Release of Drugs in Intracellular Lysosomal Compartments. Angew. Chem. Int. Ed. 2011, 50, 8086–8089.
    34. Kang, E.; Min, H. S.; Lee, J.; Han, M. H.; Ahn, H. J.; Yoon, I. C.; Choi, K.; Kim, K.; Park, K.; Kwon, I. C. Nanobubbles from Gas-generating Polymeric Nanoparticles: Ultrasound Imaging of Living Subjects. Angew. Chem. Int. Ed. 2010, 49, 524–528.
    35. Yamada, A.; Taniguchi, Y.; Kawano, K.; Honda, T.; Hattori, Y.; Maitani Y. Design of Folate-linked Liposomal Doxorubicin to Its Antitumor Effect in Mice. Clin. Cancer Res. 2008, 14, 8161–8168.
    36. Gary, D. J.; Lee, H.; Sharma, R.; Lee, J. S.; Kim, Y.; Cui, Z. Y.; Jia, D.; Bowman, V. D.; Chipman, P. R.; Wan, L.; et al. The Influence of Nano-Carrier Architecture on In Vitro siRNA Delivery Performance and In Vivo Biodistribution: Polyplexes vs. Micelleplexes. ACS Nano 2011, 5, 3493–3505.
    37. McNeeley, K. M.; Karathanasis, E.; Annapragada, A. V.; Bellamkonda, R. V. Masking and Triggered Unmasking of Targeting Ligands on Nanocarriers to Improve Drug Delivery to Brain Tumors. Biomaterials 2009, 30, 3986–3995.
    38. Plosker, G. L. Pegylated Liposomal Doxorubicin: A Review of Its Use in the Treatment of Relapsed or Refractory Multiple Myeloma. Drugs 2008, 68, 2535–2551.
    39. Laginha, K. M.; Verwoert, S.; Charrois, G. J.; Allen, T.M. Determination of Doxorubicin Levels in Whole Tumor and Tumor Nuclei in Murine Breast Cancer Tumors. Clin. Cancer Res. 2005, 11, 6944–6949.
    40. Romero, M. F.; Chen, A. P.; Parker, M. D.; Boron, W. F. The SLC4 Family of Bicarbonate (HCO3⁻) Transporters. Mol. Aspects Med. 2013, 34, 159–82.
    41. Martin, N. K.; Gaffney, E. A.; Gatenby, R. A.; Gillies, R. J.; Robey, I. F.; Maini, P. K. A Mathematical Model of Tumour and Blood pH Regulation: The HCO3⁻/CO2 Buffering System. Math Biosci. 2011, 230, 1–11.
    42. Bartlett, G. R. Phosphorus Assay in Column Chromatography. J. Biol. Chem. 1959, 234, 466–468.
    43. de Smet, M.; Langereis, S.; van den Bosch, S.; Grüll, H. Temperature-Sensitive Liposomes for Doxorubicin Delivery under MRI Guidance. J. Control Release 2010, 143, 120–127.
    44. Teicher, B. A.; Chen, V.; Shih, C.; Menon, K.; Forler, P. A.; Phares, V. G.; Amsrud, T. Treatment Regimens Including the Multitargeted Antifolate LY231514 in Human Tumor Xenografts. Clin. Cancer Res. 2000, 3, 1016–1023.
    45. Ranjan, A.; Jacobs, G. C.; Woods, D. L.; Negussie, A. H.; Partanen, A.; Yarmolenko, P. S.; Gacchina, C. E.; Sharma, K. V.; Frenkel, V.; Wood. B. J. et al. Image-Guided Drug Delivery with Magnetic Resonance Guided High Intensity Focused Ultrasound and Temperature Sensitive Liposomes in a Rabbit Vx2 Tumor Model. J. Control Release 2012, 158, 487–494.
    46. Negishi, Y.; Hamano, N.; Tsunoda, Y.; Oda, Y.; Choijamts, B.; Endo-Takahashi, Y.; Omata, D.; Suzuki, R.; Maruyama, K.; Nomizu, M.; et al. AG73-Modified Bubble Liposomes for Targeted Ultrasound Imaging of Tumor Neovasculature. Biomaterials 2013, 2, 501–507.
    47. Ahn, R. W.; Chen, F.; Chen, H.; Stern, S. T.; Clogston, J. D.; Patri, A. K.; Raja, M. R.; Swindell, E. P.; Parimi, V.; Cryns, V. L.; et al. A Novel Nanoparticulate Formulation of Arsenic Trioxide with Enhanced Therapeutic Efficacy in a Murine Model of Breast Cancer. Clin. Cancer Res. 2010, 16, 3607–3617.
    48. Tseng, L. P.; Liang, H. J.; Chung, T. W.; Huang, Y. Y.; Liu, D. Z. Liposome Incorporated with Cholesterol for Drug Release Triggered By Magnetic Field. Journal of Medical and Biological Engineering 2007, 27, 29–34.
    49. Matsuzaki, T.; Takagi, A.; Furuta, T.; Ueno, S.; Kurita, A.; Nohara, G.; Kodaira, H.; Sawada, S.; Hashimoto, S. Antitumor Activity of IHL-305, a Novel Pegylated Liposome Containing Irinotecan, in Human Xenograft Models. Oncol. Rep. 2012, 27, 189–197.
    50. Lowery, A.; Onishko, H.; Hallahan, D. E.; Han, Z. Tumor-Targeted Delivery of Liposome-Encapsulated Doxorubicin by Use of a Peptide that Selectively Binds to Irradiated Tumors. J. Control Release 2011, 150, 117–124.
    51. Tagami, T.; Ernsting, M. J.; Li, S. D. Efficient Tumor Regression by a Single and Low Dose Treatment with a Novel and Enhanced Formulation of Thermosensitive Liposomal Doxorubicin. J. Control Release 2011, 152, 303–309.
    52. Kono, K.; Ozawa, T.; Yoshida, T.; Ozaki, F.; Ishizaka, Y.; Maruyama, K.; Kojima, C.; Harada, A.; Aoshima, S. Highly Temperature-Sensitive Liposomes Based on a Thermosensitive Block Copolymer for Tumor-Specific Chemotherapy. Biomaterials 2010, 27, 7096–7105.
    53. Greco, A.; Di Benedetto, A.; Howard, C. M.; Kelly, S.; Nande, R.; Dementieva, Y.; Miranda, M.; Brunetti, A.; Salvatore, M.; Claudio, L.; et al. Eradication of Therapy-Resistant Human Prostate Tumors Using an Ultrasound-Guided Site-Specific Cancer Terminator Virus Delivery Approach. Mo.l Ther. 2010, 2, 295–306.
    54. Ke, C. J.; Su, T. Y.; Chen, H. L.; Liu, H. L.; Chiang, W. L.; Chu, P. C.; Xia, Y.; Sung, H. W. Smart Multifunctional Hollow Microspheres for the Quick Release of Drugs in Intracellular Lysosomal Compartments. Angew. Chem., Int. Ed. 2011, 50, 8086–8089.
    55. James, M. L.; Gambhir, S. S. A Molecular Imaging Primer: Modalities, Imaging Agents, and Applications. Physiol. Rev. 2012, 2, 897–965.
    56. Gomes, C. M.; Abrunhosa, A. J.; Ramos, P.; Pauwels, E. K. Molecular Imaging with SPECT as a Tool for Drug Development. Adv. Drug Deliv. Rev. 2011, 63, 547–554.
    57. Bao, A.; Goins, B.; Klipper, R.; Negrete, G.; Phillips, W. T. Direct 99mTc Labeling of Pegylated Liposomal Doxorubicin (Doxil) for Pharmacokinetic and Non-Invasive Imaging Studies. J. Pharmacol. Exp. Ther. 2004, 308, 419–425.
    58. Landon,C. D.; Park, J. Y.; Needham, D.; Dewhirst, M. W. Nanoscale Drug Delivery and Hyperthermia: The Materials Design and Preclinical and Clinical Testing of Low Temperature-Sensitive Liposomes Used in Combination with Mild Hyperthermia in the Treatment of Local Cancer. The Open Nanomedicine Journal 2011, 3, 38–64.
    59. Klimtová, I.; Simůnek, T.; Mazurová, Y.; Hrdina, R.; Gersl, V.; Adamcová, M. Comparative Study of Chronic Toxic Effects of Daunorubicin and Doxorubicin in Rabbits. Hum. Exp. Toxicol. 2002, 12, 649–657.
    60. Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic Nanoparticles for Drug Delivery in Cancer. Clin. Cancer Res. 2008, 14, 1310–1316.
    61. Hauck, T. S.; Jennings, T. L.; Yatsenko, T.; Carl Kumaradas, J.; Chan, W. C. W. Enhancing the Toxicity of Cancer Chemotherapeutics with Gold Nanorod Hyperthermia. Adv. Mater. 2008, 20, 3832–3838.
    62. Rao, W.; Deng, Z. S.; Liu, J. A Review of Hyperthermia Combined with Radiotherapy/Chemotherapy on Malignant Tumors. Crit. Rev. Biomed. Eng. 2010, 38, 101–116.
    63. Park, H.; Yang, J.; Lee, J.; Haam, S.; Choi, I. H.; Yoo, K. H. Multifunctional Nanoparticles for Combined Doxorubicin and Photothermal Treatments. ACS Nano 2009, 3, 2919–2926.
    64. Peng, S. F.; Tseng, M. T.; Ho, Y. C.; Wei, M. C.; Liao, Z. X.; Sung, H. W. Mechanisms of Cellular Uptake and Intracellular Trafficking with Chitosan/DNA/Poly(γ-Glutamic Acid) Complexes as A Gene Delivery Vector. Biomaterials 2011, 32:239–248.
    65. Pettersen, E. F.; Goddard, T. D.; Huang, C. C.; Couch, G. S.; Greenblatt, D. M.; Meng, E. C.; Ferrin, T. E. UCSF Chimera--A Visualization System for Exploratory Research and Analysis. J. Comput. Chem. 2004, 25, 1605–1612.
    66. Skrabalak, S. E.; Au, L.; Li, X.; Xia, Y. Facile Synthesis of Ag Nanocubes and Au Nanocages. Nat. Protoc. 2007, 2, 2182–2190.
    67. Chen, J.; Glaus, C.; Laforest, R.; Zhang, Q.; Yang, M.; Gidding, M.; Welch, M. J.; Xia, Y. Gold Nanocages as Photothermal Transducers for Cancer Treatment. Small 2010, 6, 811–817.
    68. Gupta, A.; Kane, R. S.; Borca-Tasciuc, D.-A. Local Temperature Measurement in The Vicinity of Electromagnetically Heated Magnetite and Gold Nanoparticles J. Appl. Phys. 2010, 108, 064901.
    69. Stone, R.; Willi, T.; Rosen, Y.; Mefford, O. T.; Alexis, F. Targeted Magnetic Hyperthermia. Ther Deliv. 2011, 2, 815–838.
    70. Shin, S.; Nam, H. Y.; Lee, E. J.; Jung, W.; Hah, S. S. Molecular Beacon-Based Quantitiation of Epithelial Tumor Marker Mucin 1. Bioorg. Med. Chem. Lett. 2012, 22, 6081–6084.
    71. Matayoshi, E. D.; Wang, G. T.; Krafft, G. A.; Erickson, J. Novel Fluorogenic Substrates for Assaying Retroviral Proteases by Resonance Energy Transfer. Science 1990, 247, 954–958.
    72. Singh, P. K.; Behrens, M. E.; Eggers, J. P.; Cerny, R. L.; Bailey, J. M.; Shanmugam, K.; Gendler, S. J.; Bennett, E. P.; Hollingsworth, M. A. Phosphorylation of MUC1 by Met Modulates Interaction with p53 and MMP1 Expression. J. Biol. Chem. 2008, 283, 26985–26995.
    73. Kranenborg, M. H.; Boerman, O. C.; Oosterwijk-Wakka, J. C.; de Weijert, M. C.; Corstens, F. H.; Oosterwijk, E. Two-Step Radio-Immunotargeting of Renal-Cell Carcinoma Xenografts in Nude Mice with Anti-Renal-Cell-Carcinoma X Anti-DTPA Bispecific Monoclonal Antibodies. Int. J. Cancer 1998, 75, 74–80.
    74. Lou, P. J.; Lai, P. S.; Shieh, M. J.; Macrobert, A. J.; Berg, K.; Bown, S. G. Reversal of Doxorubicin Resistance in Breast Cancer Cells by Photochemical Internalization. Int. J. Cancer 2006, 119, 2692–2698.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE