簡易檢索 / 詳目顯示

研究生: 游柏堅
論文名稱: 鎳基合金於FLiNaK融鹽之腐蝕行為研究
Study on Corrosion Behavior of Nickel-Based Alloys in FLiNaK Molten Salt
指導教授: 開執中
葉宗洸
口試委員:
學位類別: 碩士
Master
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2010
畢業學年度: 99
語文別: 中文
論文頁數: 72
中文關鍵詞: 熔鹽式反應器熔鹽腐蝕鎳合金
外文關鍵詞: Molten salt reactor, Molten salt, Corrosion, FLiNaK, Hastelloy N, Hastelloy B3
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 熔鹽式反應器(Molten Salt Reactor, MSR)是第四代反應器設計中的一款,特點是熱傳媒介與燃料皆是高熱傳的液態氟化鹽。相對於現今輕水式反應器,熔鹽式反應器的設計簡化使得安全性提高且降低成本,且可轉化核燃料的錒系元素以及產氫功能。

    鎳基合金的結構材料在熔鹽環境下所表現的腐蝕行為成為開發MSR中必須研究的題目,腐蝕原因主要有本質腐蝕、不純物腐蝕、溫度梯度腐蝕、加凡尼腐蝕。其中不純物腐蝕,乃因非純化融鹽中含有水份,會在高溫與融鹽作用形成HF而腐蝕金屬元素,特別是合金成分中的Cr,因而Cr量低的材料方適合為MSR的結構材料。目前認為最合適的材料為Hastelloy N。本實驗以Hastelloy N、Haynes 242、Haynes 262、Hastelloy B3、TZM試片置於鎳製高溫釜內,實驗溫度測定於600℃,時間分為100、300、600、1000小時,以水分占3 wt%的FLiNaK熔鹽透過腐蝕前後試片的單位面積質量改變量與微結構分析探討材料的腐蝕特性。實驗結果以低Cr的Hastelloy B3、Hastelloy N最抗腐蝕,但腐蝕表現不同,前者出現均勻腐蝕,後者為粒間腐蝕。高Mo量的鎳基合金會趨向均勻腐蝕,並加大腐蝕損失。


    摘要 I 章節目錄 II 圖目錄 IV 表目錄 IX 第一章前言及研究動機 1 第二章文獻回顧 4 2-1昔日實驗 4 2-1-1ANP實驗 5 2-1-2 MSRE實驗 5 2-1-3威斯康辛大學實驗 5 2-1-4日本核融合科學研究所實驗 6 2-2熔鹽的分類與選擇 6 2-3融鹽腐蝕種類 7 2-3-1本質腐蝕 7 2-3-2不純物腐蝕 8 2-3-2-1水氣不純物與Mo脫溶 10 2-3-3溫度梯度腐蝕 11 2-3-3-1擴散係數與溫度 12 2-3-3-2溶解度與溫度 13 2-3-4加凡尼腐蝕 14 2-4結構材料研發 14 2-5FLiNaK純化處理 15 第三章實驗原理與方法 35 3-1靜態腐蝕實驗 35 3-1-1實驗裝置 35 3-1-2材料選擇 35 3-2過程實驗 36 第四章結果與討論 43 4-1質量變化 43 4-2 SEM分析 44 4-3TEM分析 45 4-4綜合討論 45 第五章結論 65 第六章未來研究方向 66 參考文獻 67

    [1] D. D. SOOD, Molten Salt Reactor Concept," Board of Research in Nuclear Science, Bombay (1980)

    [2] R. C. Robertson et al., Conceptual Design Study of a Single-Fluid Molten-Salt Breeder Reactor, ORNL-4541, Oak Ridge National Laboratory, Oak Ridge, Tennessee, (1971)

    [3] David J. Diamond, Generation IV Nuclear Energy Systems: How They Got Here And Where They Are Going", Brookhaven National Laboratory, (2003)

    [4] 高溫(熔鹽式)核反應器之技術評估 Technology Evaluation Of High Temperature(Molten Salt) Nuclear Reactors, 國立清華大學工程與系統系,中華民國98年7月3日

    [5]
    W. R. Grimes et al., “Chemical Aspects of Molten Fluoride Salt Reactor Fuels in Fluid-Fueled Reactors”, ed. J. A. Lane et al., Addison-Wesley, NY, Chap. 12 (1958)

    [6] A. P. Fraas and A. W. Savolainen, Design Report on the Aircraft Reactor Test,
    ORNL-2095, Oak Ridge National Laboratory, Oak Ridge, Tennessee, (May 1956)

    [7] W. D. Manly et al., ARE–Metallurgical Aspects, ORNL-2349, Oak Ridge National Laboratory, Oak Ridge, TN (1957)

    [8] W. B. Cottrell, “Disassmbly and Postoperative Examination of the Aircraft Reactor Experiment”, Oak Ridge National Laboratory Report, ORNL-1868, Oak Ridge National Laboratory, Oak Ridge, TN (1958)

    [9]
    Lackey, W.J et al., “Molten-Salt Reactor Program Semi-Annual Progress Report for Period Ending February 29, 1976,” ORNL-5132, Oak Ridge National Laboratory (1976)

    [10] D. F. Williams, “Assessment of Candidate Molten Salt Coolants for the Advanced High-Temperature Reactor (AHTR)” ORNL/TM-2006/12, Oak Ridge National Laboratory, Oak Ridge, TN (2006)

    [11]
    H. E. McCoy and B. McNabb, “Postirradiation Examination of Materials from the MSRE”, ORNL/TM-4174, Oak Ridge National Laboratory, Oak Ridge, TN (1972)

    [12] Luke C. Olson, et al.Materials corrosion in molten LiF-NaF-KF salt, Journal of Fluorine Chemistry 130, 67-73, (2009)

    [13] M. Kondo, et al., Corrosion of reduced activation ferritic martensitic steel JLF-1 in purified Flinak at static and flowing conditions, Fusion Eng. Des. (2010)

    [14]
    W. R. Grimes, Chemical Research and Development for the Molten-Salt Breeder Reactor,
    ORNL/TM-1853, Oak Ridge National Laboratory, Oak Ridge, TN (1967)

    [15]
    D. T. Jamieson et al., Liquid Thermal Conductivity: A Data Survey to 1973, National Engineering Laboratory, Her Majesty’s Stationery Office, Edinburgh (1975)

    [16]
    R. E. Thoma, Phase Diagrams of Nuclear Reactor Materials, ORNL-2548, Oak Ridge National Laboratory, Oak Ridge, TN (1959)

    [17]
    W. R. Grimes et al., “Chemical Aspects of Molten Fluoride Salt Reactor Fuels,” in Fluid-Fueled Reactors, ed. J. A. Lane et al., Addison-Wesley, NY, Chap. 12 (1958)

    [18]
    D. E. Robertson et al., Low-Level Radioactive Waste Classification, Characterization, and Assessment: Waste Streams and Neutron-Activated Metals, NUREG/CR-6567, PNNL-11659 (2000)

    [19]
    Manohar S. Sohal et al., “Engineering Database of Liquid Salt Thermophysical and Thermochemical Properties”INL/EXT-10-18297 (2010)

    [20]
    W. D. Manly et al., “Metallurgical Problems in Molten Fluoride Systems,” Progress in Nuclear Energy, Series IV 2, pp. 164–179 (1960)

    [21]
    J. W. Koger, Effect Of FeF2 Addition On Mass Transfer In A Hastelloy N-LiF-BeF2-UF4 Thermal Convection Loop System , ORNL-4188, Oak Ridge National Laboratory, Oak Ridge, TN (1972)

    [22]
    I. Ozeryanaya, “Corrosion of molten by molten salts in heat-treatment processes, “ Metal Scienece and Heat Treatmeat, Vol. 27, No. 3, pp. 184-188. (1985)

    [23]
    “Corrosion by Molten Nitrates, Nitrites, and Fluorides,” in ASM Handbook Vol 13A:Corrosion: Fundamentals, Testing, and Protection, ASM International, pp 124-128 (2003)

    [24] C. J. Tyreman, “The High Tem-perature Corrosion of Metals and Alloys in HF-containing Environments,” PhD thesis, University of Manchester (1986)

    [25] G.W. Horsely, “The LM-LS experiment: investigating corrosion control, in Liquid Fluoride Salts, by Liquid alkali Metal” Report UCBTH-06-002 (2006)

    [26] C.F.Weaver and H.A.Friedman“A Literature Survey Of Flourides And Oxyflurides Of Molybdenum”, ORNL-1976, Oak Ridge National Laboratory, Oak Ridge, TN (1967)

    [27]
    J. W. Koger, Mass Transfer between Hastelloy N and Alloy No.25 In a Molten Sodium Flurobrate Mixture Oct , 1971, ORNL-3488, Oak Ridge National Laboratory, Oak Ridge, TN (1971)

    [28]
    Mark T. Sautman, “Molten Salt Reactor Experiment: Potential Safety Issues” DEFENSE NUCLEAR FACILITIES SAFETY BOARD (1995)

    [29]
    罔毅民 “高鎳鉬合金在熔鹽中脫溶腐蝕的研究”中國腐蝕與防蝕學報第8期(1981)
    [30] J. W. Koger, Corrosion And Mass Transfer Characteristics Of NaBF4-NaF(92-8 mole %) In Hastelloy N , ORNL-3866, Oak Ridge National Laboratory, Oak Ridge, TN (1972)

    [31] J. H. DeVan, R. B. Evans III “Corrosion Behavior of Materials In Flouride Salt Mixtures”, ORNL-0328, Oak Ridge National Laboratory, Oak Ridge, TN (1962)

    [32]
    J. R. Keiser, “Compatibility Studies of Potential Molten-Salt Breeder Reactor Materials in Molten Fluoride Salts”, ORNL-TM-5783, Oak Ridge National Laboratory, Oak Ridge, TN (1977)

    [33]
    W.R GRIMES, ‘Molten Salt Reactor Chemistry’, Nuclear Applications and Technologies, v.8, 2, p137, Feb. (1970)

    [34] Piyush Sabharwall et al., “Molten Salt for High Temperature Reactors: Univeristy of Wisconsin-Madison Molten Salt Corrosion and Flow Loop Experiments- Issues Identified and Path Flow Loop Experiment” INL/EXT-10-18090 (2010)

    [35] G. J. Janz, Molten Salts Handbook, Academic Press, NY (1967)

    [36] B. Laurenty, G. Fukuda, D.D. Damba, P.F. Peterson “Inhibiting corrosion by molten fluoride salts: investigation on Flinak,” AIChE 2005 Annual Meeting, Cincinnati, Ohio, Oct. 31 – Nov. 4, 2005. (Selected for AIChE Nuclear Engineering Division Student Award for Best Paper)

    [37] Grimes, W. R. Grimes, Bohlmann, E. G., Meyer, A. S., and Dale, J. M. (1972). “Fuel can Coolant Chemistry,” Chapter 5 in M. W. Rosenthal, P. N. Haubenreich, and R. B. Briggs, The Development Status of Molten-Salt Breeder Reactors, Oak Ridge National Laboratory Report ORNL-4812

    [38] White, S. H. “Halides,” in D. G. Lovering and R. J. Gale, editors, Molten Salt Techniques, Volume 1, Chapter 2, Plenum Press, New York, (1983)

    [39] Jarmila Cibulková et al.,“Phase Equilibria, Volume Properties, Surface Tension, and Viscosity of the (FLiNaK)eut + K2NbF7 Melts,”. Chem. Eng. (2003)

    [40]
    Electroplating of Refractory Metals Using Haloaliminate MeltAuthor(s) : Gleb Mamatov
    Date: Aug, (1996)

    [41]
    Laboratory techniques in electroanalytical chemistryAuthor(s) : Peter T. Kissinger,William R. HeinemanDate:1996Laboratory techniques in electroanalytical chemistry

    [42]
    W. R. Grimes and D. R. Cuneo, “Molten Salts as Reactor Fuels,” Chapter 17 in Reactor Handbook, 2nd ed., Vol. 1: Materials, ed. C. R. Tipton, Jr., Interscience Publishers, Inc., NY (1960)

    [43]
    R. B. Briggs, “Molten Salt Reactor Program Semiannual Progress Report for Period Ending”, ORNL-3282, Oak Ridge National Laboratory, Oak Ridge, TN (1962)

    [44]
    W. D. Manly et al., “Metallurgical Problems in Molten Fluoride Systems,” Progress in Nuclear Energy, Series IV 2, pp. 164–179 (1960)

    [45] J.W. Koger, A.P. Litman, Compatibility of molybde-num-base alloy TZM with LiF±BeF2±ThF4±UF4 (68± 20-11.7±0.3 mole percent) at 1100°C, Oak Ridge National Lab, Oak Ridge, TN Report ORNL-TM-2724, (1969)

    [46] V. Kirillov, V. Fedulov, “The Corrosion Resistance of 12Kh18N10T Steel in Molten. Fluoride Salts,” translated from Fiziko-Khimicheskaya Mekhanika Materialov, Vol. 16, No. 6, pp 22-25 (1980)

    [47] M.Donachie. S. Donachie, ASM Desk Editions :Metals Handbook :Superalloys : General Background, (1998)

    [48] Greenwood, Norman N.; Earnshaw, A. (1997), Chemistry of the Elements (2nd ed.), Oxford: Butterworth-Heinemann

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE