簡易檢索 / 詳目顯示

研究生: 楊千瑩
Yang, Chien-Ying
論文名稱: 康普頓成像光譜儀 (COSI) 及康普頓偏光儀 (Compol) 的伽瑪射線偏極化量測
Polarization Measurements using Compton Spectrometer and Imager (COSI) and Compton Polarimeter (Compol)
指導教授: 張祥光
Chang, Hsiang-Kuang
口試委員: 周翊
Chou, Yi
江國興
Kong, Albert
賴詩萍
Lai, Shih-Ping
黃崇源
Hwang, Chorng-Yuan
學位類別: 博士
Doctor
系所名稱: 理學院 - 天文研究所
Institute of Astronomy
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 76
中文關鍵詞: 康普頓望遠鏡康普頓散射偏極伽瑪射線伽瑪射線爆天鵝座X-1康普頓成像光譜儀康普頓偏光儀
外文關鍵詞: Compton scattering, Compol, CeBr3
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 偏極化量測提供一個判斷天體內部機制與圖像的方法,例如磁場、吸積盤或噴流,但目前在MeV能量段的觀測仍然很少。偏極特性能夠給予不同天體內極端環境的線索,像是波霎、活躍星系核、黑洞和伽瑪射線爆。

    康普頓散射被用來觀測伽碼射線能量段內的偏極。本篇論文使用基於Geant4的模擬分析工具MEGAlib進行蒙地卡羅模擬,呈現康普頓成像光譜儀(COSI)及康普頓偏光儀(Compol)兩個康普頓望遠鏡的偏極化性能分析。

    康普頓成像光譜儀(COSI)為一密集康普頓望遠鏡,由高純度鍺探測器構成,在0.2至2.0 MeV波段中的偏極量測有高靈敏度。在2016年的太空氣球飛行任務中,COSI觀測到一顆長時間伽瑪射線爆GRB 160530A,並使用方位角散射分佈分析其偏極。為了確認COSI的偏極化儀器響應與系統誤差,我們於飛行前在實驗室進行偏極化性能驗證,量測藉由閃爍器散射放射源產生的一個部分偏極光束,然後將量測結果與模擬的未偏極放射源比較,以此確認系統誤差。在偏極調變與角度上,量測與模擬沒有明顯的系統誤差。在本篇論文中,除前述驗證結果外,也展示了COSI在不同通量伽瑪射線爆的可量測最小偏極值(MDP)。

    在天文觀測中,立方衛星搭載的小型儀器也能達成有意義的應用。搭載於3U立方衛星的康普頓偏光儀(Compol)是一個以觀測天鵝座X-1偏極為目標的儀器,其包含使用矽探測器與溴化鈰閃爍器構成的六種模型。我們發現這些模型於低軌道傾角與低海拔的地球軌道上一百萬秒的正軸方向觀測中,可量測最小偏極值(MDP)能在160-250 keV波段中降低到10%、250-400 keV到20%跟400-2000 keV到65%,此結果呈現出一個3U立方衛星可提供天鵝座X-1在伽瑪波段偏極的有用資訊。


    Polarization measurements offer a unique method to determine the emission mechanisms and source geometries (e.g. magnetic field, accretion disk, and jet), but there are still only few measurements in the MeV band. Determining the polarization characteristics will provide crucial clues about the extreme environments in different astrophysical sources such as pulsars, AGNs, Galactic black holes, and gamma­-ray bursts (GRBs).
    Gamma-­ray polarization can be determined by Compton scattering. In this thesis, we use Monte Carlo simulations with a Geant4­-based MEGAlib package (Zoglauer et al., 2006) to study the polarimetric performance of two Compton telescopes: Compton Spectrometer and Imager (COSI) and Compton Polarimeter (Compol).
    The Compton Spectrometer and Imager (COSI) is a compact Compton tele­ scope which is inherently sensitive to gamma­-ray polarization in the energy range of 0.2 – 2.0 MeV. A long duration gamma­-ray burst, GRB 160530A, was detected by COSI during its 2016 COSI's balloon flight. The polarization of GRB 160530A was constrained based on the distribution of azimuthal scattering angles from each incident photon inside COSI's germanium detector array (Lowell et al., 2017a). In order to determine COSI's polarization response and to identify systematic devia­tions from an ideal sinusoidal modulation, the polarization performance of COSI was validated in the laboratory prior to the 2016. A partially polarized beam was created by scattered emission from a radioactive source off a scintillator. In addi­tion, measurements and simulations of unpolarized radioactive sources were com­pared to validate our capability of capturing the instrument systematics in the sim­ulations. No statistically significant differences exist between the measured and simulated modulations and polarization angle, where the upper bound on the systematic error is 3% – 4% (Lowell, 2017). In this thesis, the aforementioned val­idation simulation is reported. The minimum detectable polarization of COSI for GRBs with different fluences is also presented. These results have been published in Yang et al. (2018).
    Instruments flown on CubeSats are small. Meaningful applications of Cube­ Sats in astronomical observations rely on the choice of a particular subject that is feasible for CubeSats. Compol is the instrument to observe gamma-­ray polariza­tion from Cygnus X­-1 using a small Compton polarimeter on board a 3U CubeSat. Silicon detectors and cerium bromide scintillators were employed in the instru­ment models that we discuss in this study. We found that, with a 10 Ms on­ axis, zenith-­direction observation in a low­-inclination, low-­altitude, Earth-­orbit radia­tion background environment, the minimum detectable polarization degree can be down to about 10% in 160–250 keV, 20% in 250–400 keV, and 65% in 400–2000 keV. A 3U CubeSat dedicated to observing Cygnus X­-1 can therefore yield useful information on the polarization state of gamma-­ray emissions from the brightest persistent X­-ray black hole binary in the sky. These results have been published in Yang et al. (2020).

    1 Introduction ........................... .................. 1 1.1 Gamma­ Ray Bursts......................................... 1 1.1.1 Overview of GRBs....................................... 2 1.1.2 Fireball Model ........................................ 5 1.1.3 Polarization of GRBs .................................. 5 1.2 Black Hole Binaries...................................... 6 1.2.1 V404 Cygni............................................. 7 1.2.2 Cygnus X­-1............................................. 7 2 The Working Principle of Compton Telescopes ............... 9 2.1 Compton Scattering....................................... 10 2.2 Polarization............................................. 11 2.2.1 Minimum Detectable Polarization ....................... 14 2.3 Reconstruction .......................................... 14 2.4 Event Selections......................................... 16 2.4.1 Energy Cut ............................................ 17 2.4.2 Angular Resolution Measure............................. 17 2.4.3 Distance Between Two Interactions ..................... 18 2.4.4 Earth Horizon Cut ..................................... 18 3 Compton Spectrometer and Imager (COSI) .................... 21 3.1 COSI Instruments......................................... 21 3.1.1 Detectors ............................................. 21 3.1.2 Cryostat and Cryocooler ............................... 22 3.1.3 Scintillator Shields .................................. 23 3.1.4 Missions .............................................. 24 3.2 Calibrations............................................. 27 3.3 Polarimetric Validation of COSI ......................... 27 3.3.1 Laboratory Setup....................................... 28 3.3.2 Simulation Runs ....................................... 29 3.3.3 Event Selections ...................................... 29 3.3.4 Polarization Analysis.................................. 31 3.4 Minimum Detectable Polarization (MDP) of Gamma­Ray Bursts by COSI ... 33 3.5 Summary ................................................. 35 4 Compton Polarimeter (Compol) .............................. 37 4.1 Motivation............................................... 37 4.2 Background Model ........................................ 38 4.3 Source Model (Cygnus X­-1) ............................... 39 4.4 Instrument Models ....................................... 40 4.5 Instrument Performance................................... 44 4.5.1 Detector Compton Efficiency ........................... 44 4.5.2 ShieldEffects.......................................... 46 4.5.3 Data Rate in LEO and Source Detection.................. 47 4.6 Minimum Detectable Polarization (MDP) of Cygnus X­1 by Compol ... 52 4.7 Summary ................................................. 54 A Detailed Information for Deriving the MDP in Section 4.6 ... 57 B Study on Some Modifications for Compol Model 1 ............ 63 Bibliography .................................................73

    Agostinelli, S., Allison, J., Amako, K., et al. 2003, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 506, 250
    Amman, M., Luke, P., & Boggs, S. 2007, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 579, 886
    Band, D., Matteson, J., Ford, L., et al. 1993, The Astrophysical Journal, 413, 281
    Bandstra, M. S., Bellm, E. C., Boggs, S. E., et al. 2011, The Astrophysical Journal, 738, 8
    Basak, R., Iyyani, S., Chand, V., et al. 2017, Monthly Notices of the Royal Astronomical Soci­ety, 472, 891
    Berger, M., Hubbell, J., Seltzer, S., et al. 2010, XCOM: Photon cross sections database. NIST Standard Reference Database 8 (XGAM)
    Boggs, S. E., & Jean, P. 2000, Astronomy and Astrophysics Supplement Series, 145, 311–321 Boggs, S. E., & Jean, P. 2001, Astronomy & Astrophysics, 376, 1126
    Bouchet, L., Jourdain, E., Roques, J.­P., et al. 2008, The Astrophysical Journal, 679, 1315 Bowen, J. D. 2009, PhD thesis, University of California, Berkeley
    Chakravarti, I., Laha, R., & Roy, J. 1967, Handbook of Methods of Applied Statistics (Wiley)
    Chang, H.­K., Boggs, S., & Chang, Y.­H. 2007, Advances in Space Research, 40, 1281
    Chang, Y.­C., Yang, C.­Y., Liang, H.­H., et al. 2019, in Proceedings of the 12th INTEGRAL conference and 1st AHEAD Gamma-­ray Workshop, Geneva, Switzerland, 11­15 February
    Chattopadhyay, T., Vadawale, S. V., Aarthy, E., et al. 2019, The Astrophysical Journal, 884, 123
    Chauvin, M., Florén, H.­G., Friis, M., et al. 2018, Nature Astronomy, 2, 652
    Chauvin, M., Florén, H.­G., Jackson, M., et al. 2019, Monthly Notices of the Royal Astronom­ical Society: Letters, 483, L138
    Coburn, W., & Boggs, S. E. 2003, Nature, 423, 415
    Costa, E., Frontera, F., Heise, J., et al. 1997, Nature, 387, 783
    Eichler, D., Livio, M., Piran, T., & Schramm, D. N. 1989, Nature, 340, 126
    Feng, H., & Bellazzini, R. 2020, Nature Astronomy, 4, 547
    Feng, H., Jiang, W., Minuti, M., et al. 2019, Experimental Astronomy, 47, 225
    Foley, S. 2011, Gamma­-ray Coordinates Network, Circular Service, No. 11771
    Golenetskii, S., Aptekar, R., Mazets, E., Pal’shin, V., F., & Cline, T. 2006, Gamma­-ray Coor­dinates Network, Circular Service, No. 5841
    Golenetskii, S., Aptekar, R., Frederiks, D., et al. 2010, Gamma-­ray Coordinates Network, Cir­ cular Service, No. 11158
    Gostojić, A., Tatischeff, V., Kiener, J., et al. 2016, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 832, 24
    Götz, D., Laurent, P., Antier, S., et al. 2014, Monthly Notices of the Royal Astronomical Society, 444, 2776
    Götz, D., Laurent, P., Lebrun, F., Daigne, F., & Bošnjak, Ž. 2009, The Astrophysical Journal, 695, L208
    Götz, D., Covino, S., Fernández-­Soto, A., Laurent, P., & Bošnjak, Ž. 2013, Monthly Notices of the Royal Astronomical Society, 431, 3550
    Jourdain, E., Roques, J. P., Chauvin, M., & Clark, D. J. 2012, The Astrophysical Journal, 761, 27
    Kaaret, P., Zajczyk, A., LaRocca, D. M., et al. 2019, The Astrophysical Journal, 884, 162
    Khargharia, J., Froning, C. S., & Robinson, E. L. 2010, The Astrophysical Journal, 716, 1105
    Kierans, C., Boggs, S., Chiu, J.­L., et al. 2017, in Proceedings of 11th INTEGRAL Conference Gamma­-Ray Astrophysics in Multi­Wavelength Perspective — PoS(INTEGRAL2016), Vol. 285, 075
    Kierans, C. A., Boggs, S. E., Zoglauer, A., et al. 2020, The Astrophysical Journal, 895, 44
    Klebesadel, R. W., Strong, I. B., & Olson, R. A. 1973, The Astrophysical Journal, 182, L85
    Klein, O., & Nishina, Y. 1929, Zeitschrift für Physik, 52, 853
    Knapp, J. L. A., von Freyberg, J., Studer, B., Kiewiet, L., & Kirchner, J. W. 2020, Hydrology and Earth System Sciences, 24, 2561
    Kouveliotou, C., Meegan, C. A., Fishman, G. J., et al. 1993, The Astrophysical Journal, 413, L101
    Laurent, P., Gouiffes, C., Rodriguez, J., & Chambouleyron, V. 2017, in Proceedings of 11th INTEGRAL Conference Gamma-­Ray Astrophysics in Multi­Wavelength Perspective — PoS(INTEGRAL2016), Vol. 285, 022
    Laurent, P., Rodriguez, J., Wilms, J., et al. 2011, Science, 332, 438
    Lei, F., Dean, A. J., & Hills, G. L. 1997, Space Science Reviews, 82, 309
    Long, K. S., Chanan, G. A., & Novick, R. 1980, The Astrophysical Journal, 238, 710 Lowell, A. 2017, PhD thesis, University of California, Berkeley
    Lowell, A. W., Boggs, S. E., Chiu, C. L., et al. 2017a, The Astrophysical Journal, 848, 119 —. 2017b, The Astrophysical Journal, 848, 120
    Lubinski, P., Bazzano, A., Natalucci, L., et al. 2017, in Proceedings of 11th INTEGRAL Confer­ence Gamma-­Ray Astrophysics in Multi­Wavelength Perspective — PoS(INTEGRAL2016), Vol. 285, 023
    Lucchetta, G., Berlato, F., Rando, R., Bastieri, D., & Urso, G. 2017, The Astronomical Journal, 153, 237
    Makino, F. 1989, The International Astronomical Union Circular, 4782, 1
    Mason, J. P., Woods, T. N., Chamberlin, P. C., et al. 2020, Advances in Space Research, 66, 3
    McBreen, S., Hanlon, L., McGlynn, S., et al. 2006, Astronomy & Astrophysics, 455, 433
    Metzger, M. R., Djorgovski, S. G., Kulkarni, S. R., et al. 1997, Nature, 387, 878
    Miller­Jones, J. C. A., Jonker, P. G., Dhawan, V., et al. 2009, The Astrophysical Journal, 706, L230
    Miller­Jones, J. C. A., Bahramian, A., Orosz, J. A., et al. 2021, Science, 371, 1046
    Moran, P., Kyne, G., Gouiffès, C., et al. 2016, Monthly Notices of the Royal Astronomical Society, 456, 2974
    Mészáros, P. 2002, Annual Review of Astronomy and Astrophysics, 40, 137
    Paczyński, B. 1998, The Astronomical Journal, 494, L45
    Paczyński, B. 1986, The Astrophysical Journal, 308, L43
    Petry, D., Beckmann, V., Halloin, H., & Strong, A. 2009, Astronomy & Astrophysics, 507, 549
    Picone J. M., Hedin A. E., Drob D. P., & Aikin A. C. 2002, Journal of Geophysical Research: Space Physics, 107, SIA 15
    Rando, R., Canevarolo, S., Xiao, H., & Bastieri, D. 2019, The Astronomical Journal, 158, 42
    Roberts, J. M., Tomsick, J., Boggs, S., et al. 2019, in American Astronomical Society, HEAD meeting No. 17, 112.29
    Rodriguez, J., Grinberg, V., Laurent, P., et al. 2015, The Astrophysical Journal, 807, 17
    Schoenfelder, V., Aarts, H., Bennett, K., et al. 1993, The Astrophysical Journal Supplements, 86, 657
    Shkolnik, E. L. 2018, Nature Astronomy, 2, 374
    Sleator, C., Beechert, J., Boggs, S., et al. 2019, in American Astronomical Society, HEAD meeting No. 17, 203.02
    Sleator, C., Boggs, S., Chiu, J.L., et al. 2017, 11th INTEGRAL Conference Gamma­-Ray As­ trophysics in Multi­Wavelength Perspective
    Smith, J. R., Briggs, M. S., Bruno, A., et al. 2019, in the 36th International Cosmic Ray Con­ ference, Madison, WI, USA
    Strohmayer, T. E., & Kallman, T. R. 2013, The Astrophysical Journal, 773, 103
    Svinkin, D., Golenetskii, S., Aptekar, R., et al. 2016, Gamma-­ray Coordinates Network, Circu­ lar Service, No. 19476
    Tierney, D., von Kienlin, A. 2011, Gamma-­ray Coordinates Network, Circular Service, No. 12187
    Toma, K., Sakamoto, T., Zhang, B., et al. 2009, The Astrophysical Journal, 698, 1042
    von Kienlin, A., Meegan, C. A., Paciesas, W. S., et al. 2020, The Astrophysical Journal, 893, 46
    Weisskopf, M. C., Elsner, R. F., & O’Dell, S. L. 2010, in Space Telescopes and Instrumentation 2010: Ultraviolet to Gamma Ray, Vol. 7732, International Society for Optics and Photonics (SPIE), 98 – 102
    Wigger, C., Wigger, O., Bellm, E., & Hajdas, W. 2008, The Astrophysical Journal, 675, 553
    Woosley, S. E. 1993, The Astrophysical Journal, 405, 273
    Yang, C.­Y., Lowell, A., Zoglauer, A., et al. 2018, in Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, Vol. 10699, International Society for Optics and Photonics (SPIE), 642 – 651
    Yang, C.­Y., Chang, Y.­C., Liang, H.­H., et al. 2020, The Astronomical Journal, 160, 54
    Yonetoku, D., Murakami, T., Gunji, S., et al. 2011, The Astrophysical Journal, 743, L30
    Yonetoku, D., Murakami, T., Gunji, S., et al. 2012, The Astrophysical Journal, 758, L1
    Zdziarski, A. A., Pjanka, P., Sikora, M., & Stawarz, Ł. 2014, Monthly Notices of the Royal Astronomical Society, 442, 3243
    Zhang, S.­N., Kole, M., Bao, T.­W., et al. 2019, Nature Astronomy, 3, 258
    Ziółkowski, J. 2014, Monthly Notices of the Royal Astronomical Society: Letters, 440, L61 Zoglauer, A., Andritschke, R., & Schopper, F. 2006, New Astronomy Reviews, 50, 629

    QR CODE