簡易檢索 / 詳目顯示

研究生: 林強
Lin, Chiang
論文名稱: Synthesis and Characterization of Well-Aligned P-Doped Zinc Oxide Nanowires
高準直性磷摻雜氧化鋅奈米線的合成及特性研究
指導教授: 周立人
Chou, Li-Jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 英文
論文頁數: 67
中文關鍵詞: 氧化鋅磷摻雜p-型
外文關鍵詞: ZnO, P-doped, p-type
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • In this thesis, phosphorus-doped ZnO nanowires were grown on silicon substrate using chemical vapor transport and condensation process using zinc phosphide (Zn3P2) as the dopant source. Besides, single-crystal P-doped ZnO nanowires have their growth axis along with the <001> direction and form well-aligned arrays on Si substrate. Optimum process parameters of fabricating P-doped ZnO nanowires were proposed including growth temperature, weight of ZnO/C source, and growth time duration.
    Characterization and analysis of P-doped ZnO nanowires were discussed with many analytic techniques. EDX spectrum shows that the P atom ratio in the ZnO nanowire is approximately 0.8%. XPS spectrum shows that the peak related to the P (2p) is observed located at 133.3 eV, which could be regarded as P-O bonding state. PL spectra indicate the existence of PZn-2VZn complex defect in the P-doped ZnO nanowires, which is suggested to be the acceptor responsible for the p-type conduction. Furthermore, Single-NW-based field-effect transistors were used to study the electrical transport properties of nanowires.


    Contents I Acknowledgements III Abstract IV 摘要 V Chapter 1 Introduction 1 1.1 Nanotechology 1 1.2 Overview of Zinc Oxide 3 1.2.1 Crystal Structure 4 1.2.2 Optical Properties of ZnO Nanowires 6 1.2.3 Application of Zinc Oxide Nanostructures 8 1.3 Synthesis of ZnO Nanowires 9 1.3.1 Vapor-Liquid-Solid Growth Mechanism 10 1.3.2 Self-Catalyzed Vapor-Liquid-Solid Growth Mechanism 13 1.3.3 Solution-Base Synthesis Method 16 1.4 Dopant Sources Choice for Formation of p-Type ZnO 18 1.5 Motivation and Research Directions 21 Chapters 2 Experimental Procedures 22 2.1 Sample Preparation 23 2.2 Annealing Process 23 2.3 Analysis and Characterization of ZnO Nanowires 26 2.3.1 Scanning Electron Microscope Observation 26 2.3.2 X-Ray Diffractometer 27 2.3.3 Photoluminescence Measurement 28 2.3.4 Energy Dispersive Spectrometer Analysis 29 2.3.5 Transmission Electron Microscope Observation 30 2.3.6 X-ray Photoelectron Spectroscopy 30 Chapter 3 Results and Discussion 31 3.1 Optimum Experiment Parameters 31 3.1.1 The Growth Temperatures 31 3.1.2 The Weight of ZnO/C Powder 34 3.1.3 The Growth Time Duration 36 3.2 Characterization of P-Doped ZnO Nanowires 40 3.2.1 X-Ray Diffraction Analysis 40 3.2.2 TEM Analysis 42 3.2.3 EDX Analysis 44 3.2.4 Growth Mechanism of P-Doped ZnO Nanowires 46 3.2.5 XPS Analysis 50 3.3 Photoluminescence Measurement of P-Doped ZnO Nanowires 52 3.4 Electrical Properties of P-Doped ZnO Nanowires 57 Chapter 4 Summary and Conclusions 60 References 61

    [1] S. Iijima, “Helical Microtubules of Graphitic Carbon”, Nature, 354, 56 (1991)
    [2] P. C. Chang, Z.Y. Fan, W. Y. Tseng, A. Rajagopal, and J. G. Lu, “β-Ga2O3 nanowire : Synthesis characterization and p-channel field-effect transistor” Appl. Phys. Lett., 87, 222102 (2005)
    [3] P. Deb, H. Kim, Y. Qin, R. Lahiji, M. Olive, R. Reifenberger, and T. Sands, “GaN Nanorod Schottky and p-n Junction Diodes” Nano Lett., 6, 2893 (2006)
    [4] B. Y. Geng, X. W. Liu, X. W. Wei, S. W. Wang, and L. D. Zhang, “Low-temperature growth of β-Ga2O3 nanobelts through a simple thermochemical route and their phonon spectra properties”, Appl. Phys. Lett., 78, 113101 (2005)
    [5] P. G. Collins, A. Zettl, H. Bando, A. Thess, and R. E. Smalley, “Nanotube Nanodevice”, Science, 278, 100 (1997)
    [6] M. S. Sander, R. Gronsky, Y. M. Lin, and M. S. Dresseelhaus, “Plasmon excitation modes in nanowire array”, J. Appl. Phys., 89, 2733 (2001)
    [7] Y. Y. Wu, and P. D. Yang, “Germanium/carbon core-sheath nanostructures”, Appl. Phys. Lett, 77, 43 (2000)
    [8] J. D. Meindl, Q. Chen, and J. A. Davis, “Limits on Silicon Nanoelectronics for Terascale Integration”, Science, 293, 2044 (2001)
    [9] U. Ozgur, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doan, V. Avrutin, S. J. Cho and H. Morkocü, “A comprehensive review of ZnO materials and devices”, J. Appl. Phys., 98 041301 (2005)
    [10] C. Klingshirn “ZnO: Material, physics and applications”, ChemPhysChem , 8, 782 (2007)
    [11] H. Cao, J. Y. Xu, D.Z. Zhang, S. H. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. H. Chang, “Spatial confinement of laser light in active random media”, Phys. Rev. Lett., 84, 5584 (2000).
    [12] D. M. Bagnall, D. M. Bagnall, Y. F. Chen, Z. Zhu, T. Yao, S. Koyama, M. Y. Shen and T. Goto “Optically pumped lasing of ZnO at room temperature”, Appl. Phys. Lett., 70, 2230 (1997).
    [13] P. Yu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, “Room-temperature gain spectra and lasing in microcrystalline ZnO thin films”, J. Cryst. Growth, 184, 601 (1998).
    [14] P. D. Yang, H. Q. Yan, S. Mao, R. Russo, J. Johnson, R. Saykally, N. Morris, J. Pham, R. R. He, and H. J. Choi, “Controlled growth of ZnO nanowires and their optical properties”, Adv. Funct. Mater, 12, 323 (2002)
    [15] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Voigt, and B. E. Gnage, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J. Appl. Phys., 79, 7983 (1996)
    [16] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-temperature Ultraviolet Nanowire Nanolasers” , Science 292, 1897 (2001).
    [17] C. Liu, J. A. Zapien, Y. Yao, X. Meng, C. S. Lee, S. Fan, Y. Lifshitz and S. T. Lee, “High-density, Ordered Ultraviolet Light-emitting ZnO Nanowire Arrays” , Adv. Mater., 15, 838 (2003).
    [18] W. L. Hughes and Z. L. Wang, “Formation of piezoelectric single-crystal nanorings and nanobows”, J. AM. CHEM. SOC, 126, 6703 (2004)
    [19] Z. L. Wang “The New Field of Nanopiezotronics” , Mater. Today 10, 20 (2007).
    [20] J. Zhou, N. Xu and Z. L. Wang, “Dissolving Behavior and Stability of ZnO Wires in Biofluids: A Study on Biodegradability and Biocompatibility of ZnO Nanostructures”, Adv. Mater., 18, 2432 (2006).
    [21] J. J. Wu, S. C. Liu, “Low-temperature and catalyst-free synthesis of well-aligned ZnO nanorods on Si (100)”, J. Mater. Chem., 12, 3125 (2002)
    [22] L. Vayssieres, “Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions”, Adv. Mater., 15, 464 (2003)
    [23] R. S. Wagner and W. C. Ellis, “Vapor-Liquid-Solid Mechanism of Single Crystal Growth”, Appl. Phys. Lett., 4, 89 (1964).
    [24] J. Westwater, D. P. Gosain, S. Tomiya and S. Usui, “Growth of Silicon Nanowires via Gold/Silane Vapor–Liquid–Solid reaction”, J. Vac. Sci. Technol. B, 15, 554 (1997).
    [25] A. M. Morales and C. M. Lieber, “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires”, Science 279, 208 (1998).
    [26] M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo and P. Yang, “Room-Temperature Ultraviolet Nanowire Nanolasers”, Science, 292, 1897 (2001).
    [27] Y. Q. Zhu, W. K. Hsu, M. Terrones, N. Grobert, H. Terrones, J. P. Hare, H. W. Kroto and D. R. M. Walton, “3D Silicon Oxide Nanostructures: From Nanoflowers to Radiolarian”, J. Mater. Chem., 8, 1859 (1998).
    [28] Z. Q. Liu, S. S. Xie, L. F. Sun, D. S. Tang, W. Y. Zhou, C. Y. Wang, W. Liu, Y. B. Li, X. P. Zhou and G. Wang, “Synthesis of Alpha-SiO2 Nanowires Using Au Nanoparticle Catalysts on a Silicon Substrate”, J. Mater. Res., 16, 683 (2001).
    [29] L. Skuja, “Optically Active Oxygen-Deficiency-related Centers in Amorphous Silicon Dioxide,” J. Non-Cryst. Solids., 239, 16 (1998).
    [30] Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, H. Y. Lee, G. S. Park, W. B. Choi, N. S. Lee and J. M. Kim, “Catalytic Growth of Beta-Ga2O3 Nanowires by Arc Discharge”, Adv. Mater., 12, 746 (2000).
    [31] M. H. Huang, Y. Y. Wu, H. Ferick, N. Tran, E. Weber and P. D. Yang, “Catalytic growth of zinc oxide nanowires by vapor transport”, Adv. Mater., 13,113 (2001)
    [32] L. E. Greene, M. Law, J. Goldberger, F. Kim, J. C. Johnson, Y. Zhang, R. J. Saykally, and P. D. Yang, “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays”, Angew. Chem. Int. Ed., 42, 3031 (2003)
    [33] J. Q. Hu, Q. Li, N. B. Wong, C. S. Lee, and S. T. Lee, “Synthesis of Uniform Hexagonal Prismatic ZnO Whiskers”, Chem. Mater., 14, 1216 (2002)
    [34] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation”, Appl. Phys. Lett., 81, 757 (2002)
    [35] C. Y. Geng, Y. Jiang, Y. Yao, X. M. Meng, J. A. Zapien, C. S. Lee, Y. Lifshitz and S. T. Lee, “Well-aligned ZnO nanowire arrays fabricated on silicon substrates”, Adv. Funct. Mater., 14, 589 (2004)
    [36] B. D. Yao, Y. F. Chan, and N. Wang, “Formation of ZnO nanostructures by a simple way of thermal evaporation”, Appl. Phys. Lett., 81, 757 (2002)
    [37] M. Andrés Vergés, A. Mifsud and C. J. Serna, “Formation of rod-like zinc oxide microcrystals in homogeneous solutions”, J. Chem. Soc., Faraday Trans., 86, 959 (1990)
    [38] L. Schmidt-Mende and J. L. MacManus-Driscoll, “ZnO-nanostructures, defects, and devices”, Mater. Today, 10, 40 (2007)
    [39] Y. Sato and S. Sato, “Preparation and some properties of nitrogen-mixed ZnO thin films”, Thin Solid Films, 282, 445 (1996)
    [40] X. L. Guo, H. Tabata, and T. Kawai, “Pulsed laser reactive deposition of p-type ZnO film enhanced by an electron cyclotron resonance source”, J. Cryst. Growth, 223, 135 (2001)
    [41] K. Nakahara, H. Takasu, P. Fons, A. Yamada, K. Iwata, K. Matsubara, R. Hunger, and S. Niki, “Interactions between gallium and nitrogen dopants in ZnO films grown by radical-source molecular-beam epitaxy”, Appl. Phys. Lett., 79, 4139 (2001)
    [42] D. C. Look, D. C. Reynolds, C. W. Litton, R. L. Jones, D. B. Eason, and G. Cantwell, “Characterization of homoepitaxial p-type ZnO grown by molecular beam epitaxy”, Appl. Phys. Lett., 81, 1830 (2002)
    [43] J. M. Bian, X. M. Li, C. Y. Zhang, W. D. Yu, and X. D. Gao, “p-type ZnO films by monodoping of nitrogen and ZnO-based p-n homojunctions”, Appl. Phys. Lett., 85, 4070 (2004)
    [44] A. Kobayashi, O. F. Sankey, and J. D. Dow, “Deep Energy-Level of Defects in the Wurtzite Semiconductors AlN, CdS, CdSe, ZnS and ZnO”, Phys. Rev. B, 28, 946 (1983)
    [45] C. H. Park, S. B. Zhang, and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective”, Phys. Rev. B 66, 073202 (2002)
    [46] E. C. Lee, Y. S. Kim, Y. G. Jin, and K. J. Chang, “Compensation mechanism for N acceptors in ZnO”, Phys. Rev. B, 64, 085120 (2001)
    [47] W. J. Lee, J. Kang, and K. J. Chang, “Defect properties and p-type doping efficiency in phosphorus-doped ZnO”, Phys. Rev. B, Condens. Matter, 73, 024117 (2007)
    [48] S. Limpijumnong, S. B. Zhang, S. H. Wei, and C. H. Park, “Doping by large-size-mismatched impurities: The microscopic origin of arsenic- or antimony-doped p-type zinc oxide”, Phys. Rev. Lett., 92, 155504 (2004)
    [49] D. K. Hwang, H. S. Kim, J. H. Lim, J. Y. Oh, J. H. Yang, S. J. Park, K. K. Kim, D. C. Look, and Y. S. Park, “Study of the photoluminescence of phosphorus-doped p-type ZnO thin films grown by radio-frequency magnetron sputtering”, Appl. Phys. Lett., 86, 151917 (2005)
    [50] Z. G. Yu, H. Gong, and P. Wu, “Dopant Sources Choice for Formation of p-Type ZnO: Phosphorus Compound Sources”, Chem. Mater., 17, 852 (2005)
    [51] C. L. Hsu, S. J. Chang, Y. R. Lin, S. Y. Tsai and I. C. Chen, “Vertically well aligned P-doped ZnO nanowires synthesized on ZnO-Ga/glass templates”, Chem. Commum., 3571 (2005)
    [52] G. D. Yaun, W. J. Zhang, S. J. Jie, X. Fan, J. A. Zapien, Y. H. Leung, L. B. Luo, P. F. Wang, C. S. Lee and S. T. Lee, “p-Type ZnO Nanowire Arrays”, Nano Lett., 8, 2591 (2008)
    [53] B. Xiang, P. Wang, X. Z. Zhang, S. A. Dayeh, D. P. R. Aplin, C. Soci, D. P. Yu and D. L. Wang, “Rational synthesis of p-type zinc oxide nanowire arrays using simple chemical vapor deposition”, Nano Lett., 7, 323 (2007)
    [54] J. Hu, T. W. Odom, and C. M. Lieber, “Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes”, Acc. Chem. Res., 32, 435 (1999)
    [55] Y. Y. Wu, H. Q. Yan, M. Huang. B. Messer. J. H. Song and P. D. Yang, “Inorganic semiconductor nanowires: Rational growth, assembly, and novel properties”, Chem. Eur. J., 8, 1261 (2002)
    [56] R. Qin, J. X. Zheng, J. Lu, L. Wang, L. Lai, G. F. Luo, J. Zhou, H. Li, Z. X. Gao, G. P. Li, and W. N. Mei, “Origin of p-Type Doping in Zinc Oxide Nanowires Induced by Phosphorus Doping: A First Principles Study”, J. Phys. Chem. C, 113, 9541 (2009)
    [57] C. H. Park, S. B. Zhang and S. H. Wei, “Origin of p-type doping difficulty in ZnO: The impurity perspective”, Phys. ReV. B, 66, 073202 (2002)
    [58] C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Muilenberg, “Handbook of X-ray Photoelectron Spectroscopy”, Perkin Elmer, Eden Prairie and Minnesota, p54 (1979)
    [59] V. Vaithianathan, B. T. Lee and S. S. Kim, “Pulsed-laser-deposited p-type ZnO films with phosphorus doping”, J. Appl. Phys., 98, 043519 (2005)
    [60] J. H. Jang, H. S. Kim, D. P. Norton and V. Craciun, “Study of microstructural evolutions in phosphorus-doped ZnO films grown by pulsed laser deposition”, J. of Cryst. Growth, 311, (2009), pp.3143-3146
    [61] K. Vanheusden, W. L. Warren, C. H. Seager, D. R. Tallant, J. A. Viogt and B. E. Gnage, “Mechanisms behind green photoluminescence in ZnO phosphor powders”, J.Appl.Phys., 79, 7983 (1996)
    [62] P. Jiang, J. J. Zhou, H. F. Fang, C. Y. Wang, Z. L. Wang and S. S. Xie, “Hierarchical Shelled ZnO Structures Made of Bunched Nanowire Arrays”, Adv. Funct. Mater., 17, 1303 (2007)
    [63] R. Martel, T. Schmidt, H. Shea, T. Hertel and P. Avouris, “Single- and multi-wall carbon nanotube field-effect transistors” Appl. Phys. Lett., 73, 2447 (1998)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE