研究生: |
索 夫 Bhattacharjee, Saurav |
---|---|
論文名稱: |
以加氫脫氧、加氫裂化及加氫異構化從模型化合物和蓖麻油中生產生物燃料和生物噴氣燃料 Production of Biofuels and Bio Jet-Fuels from Model Compounds and Castor Oil via Hydrodeoxygenation, Hydrocracking and Hydroisomerization |
指導教授: |
談駿嵩
Tan, Chung-Sung |
口試委員: |
蔣孝澈
Chiang, Anthony S. T. 陳郁文 Chen, Yu-Wen 游文岳 Yu, Wen-Yueh 蔡德豪 Tsai, De-Hao 潘詠庭 Pan, Yung-Tin |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2021 |
畢業學年度: | 109 |
語文別: | 英文 |
論文頁數: | 276 |
中文關鍵詞: | 加氫脫氧 、生物燃料 、生物噴氣燃料 、蓖麻油 、加壓二氧化碳 、加氫裂化 、加氫異構化 、多相催化 |
外文關鍵詞: | Hydrodeoxygenation, Biofuel, Bio jet-fuel, Castor oil, Pressurized CO2, Hydrocracking, Hydroisomerization, Heterogeneous catalysis |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在過去的幾十年,從非食物競爭來源之生物燃料和生物噴氣燃料作為日益減少的化石燃料儲備替代品一直在激增。然而,生物油中的大量含氧基團導致生物燃料的能量密度低、黏度高和穩定性差等不良燃料特性。加氫脫氧 (HDO) 是一種用於降低生物油氧含量的燃料升級過程,目前已成功將生物油直接轉化為燃料範圍的碳氫化合物。 HDO 傳統上涉及使用硫化的 Ni、Mo、Co 或負載的貴金屬(如 Pt 或 Pd)作為催化劑。然而,這些催化劑的穩定性差、HDO 選擇性、硫污染敏感性和高成本是 HDO 工藝的挑戰。因此,開發高選擇性但廉價且穩定的 HDO 催化劑是當前所需。此外,傳統的 HDO 反應是能源和成本密集型的,由於溫度、H2 壓力和時間等反應條件苛刻,因此需要更環保的操作條件來使 HDO 過程可進行。本論文中提出關於生產生物燃料和生物噴氣燃料的研究,試圖透過以下策略解決這些問題:
(1) 使用功能性和更環保的溶劑系統
(2) 透過選擇金屬、催化劑載體和催化劑合成方法開發和表徵新型多相催化劑
(3) 優化更適當的反應條件以最優化所需的產物選擇性
根據先前研究,在使用 Fe/SBA-15 催化劑對油酸進行加氫處理後,透過部分抑制涉及去除 CO2/CO 的競爭性脫羧/脫羰途徑,含有加壓 CO2更環保的己烷溶劑系統在最優化 HDO 選擇性方面非常有效,由勒夏特列原理,加壓的 CO2 進一步降低黏度和顆粒內擴散阻力,同時增加了催化劑的分散性、H2 溶解度和界面質傳速率。根據本研究結果,油酸轉化率為 100.0%,對 HDO 產物十八烷 (C18) 的選擇性最大為 83.3%,對脫羧/脫羰產物十七烷 (C17) 的選擇性最大為 8.7%。
在本論文中,透過使用開孔、3 維中孔泡沫 (MCF) 載體以及添加 Pd 和 Ni 作為功能金屬,結合濕浸漬法 (WI) 合成三金屬 Fe- Pd-Ni 催化劑。使用MCF作為載體材料,可以完全切斷脫羧/脫羰途徑,因為MCF的大孔徑和籠狀結構減少了顆粒內擴散阻力,從而減少了反應過程中的停留時間。在 278 ℃、40 bar H2 和 20 bar CO2 壓力下反應 4 小時,使用 Fe-Pd-Ni/MCF 由結果可得油酸轉化率為 100.0%,對 C18 的選擇性為 93.0%。由於 H2 在 Pd-Ni 合金奈米粒子 (NPs) 表面上的吸附和解離能力提高,使得H2 溢出到活性 Fe0 的表面上,因此提高了Fe-Pd-Ni/MCF的活性,並加快了反應速率。
蓖麻油在黏度和極性方面與其他生物油不同,因為它的主要成分是蓖麻油酸,一種羥基化蓖麻油酸的甘油三酯,這代表具有良好的冷流動性和潤滑性的蓖麻油的生物燃料。因此,冷榨蓖麻油被用作本研究中的原料。在溫度275 ℃、H2壓力40 bar 和 CO2壓力20 bar操作條件下,使用 Fe-Pd-Ni/MCF反應4 小時,獲得了 95.8% 的蓖麻油轉化率,對 C18 的選擇性為 65.9%。為了進一步提高蓖麻油的轉化率和 HDO 選擇性,故引入 TiO2 以開發熱穩定的 SiO2-TiO2 混合載體材料,能夠誘導強烈的金屬-載體相互作用。在WI上使用一步驟溶膠-凝膠催化劑合成方法,製備具有良好分散活性位點的SiO2-TiO2包封催化劑。使用 Fe-Ni-Pd@SiO2-TiO2 催化劑的蓖麻油 HDO 在溫度275 ℃、H2壓力40 bar 和 CO2壓力20 bar操作條件下,對 C18 產生 89.3% 的選擇性,持續反應 4 小時。透過以 33.3% Pd 濃度的 Au 取代 Fe-Ni-Pd@SiO2-TiO2 中的 Ni,結果產生明顯改善。使用 Fe-Au-Pd@SiO2-TiO2,在溫度250 ℃、H2壓力40 bar 和 CO2壓力20 bar條件下,即使使用高蓖麻油與催化劑的比例,也能在 3 小時內實現蓖麻油完全轉化,對 C18 的選擇性為 96.0%,重量比為 18.4。這種十八烷選擇性比使用 Fe-Ni-Pd@SiO2-TiO2 催化劑所得的選擇性高 72.6%,在相同的反應條件下,蓖麻油與催化劑的比率僅為 9.2。催化劑揭示了 Fe-Au-Pd@SiO2-TiO2 中不同類型的活性位點,協助催化蓖麻油的 HDO。單晶 X-射線衍射將 Au 中心四方雙錐晶體系統分配給 Fe-Au-Pd。 Fe-Au-Pd@SiO2-TiO2 具有由 Fe-Au-Pd 奈米粒子驅動所展現出優異的 H2 溢出能力,以及由 Pd-Au 相互作用通過電荷轉移產生的大量孤立的缺電子 Pdδ+ 表面物質。 Fe-Au-Pd@SiO2-TiO2 中的 Fe 組分以單獨的 Fe、雙金屬 Fe-Au/Fe-Pd 或三金屬 Fe-Au-Pd 奈米粒子的形式存在,這些Fe0奈米顆粒表面是主要的 HDO 位點。在一步法合成中可以實現高實際金屬負載量(Fe 為 96.7%),這為 HDO 提供了豐富的活性位點, Fe-Ni-Pd@SiO2-TiO2 和 Fe-Au-Pd@SiO2-TiO2 在至少五次循環中都具有活性和熱穩定性。
使用一步法合成的 Al 改性 MCF 包封的 Ni-Pd 催化劑(Ni-Pd@Al-MCF),透過同時加氫裂化和加氫異構化將來自蓖麻油的 HDO 的 C18 轉化為生物噴氣燃料。由實驗結果得知,雖然 Ni-Pd 負責加氫/脫氫,但酸性 Al-MCF 載體會催化加氫裂化及加氫異構化。由於生物噴氣燃料必須符合嚴格的監管標準 (ASTM D1655) ,因此加氫裂化和加氫異構化的最佳平衡至關重要。使用模型 C18,在溫度227 ℃、H2壓力57 bar 和CO2 壓力 20 bar下持續反應 2.5 小時,轉化率為 99.4%,對液體噴氣燃料產品 (LJFP) 的選擇性為 98.2%。本研究中的 C7-C17 與異正烷烴得到 1.1 的烷烴比,使用加壓的 CO2-己烷-水官能和更環保的溶劑系統,它不僅增加了顆粒內擴散速率,而且釋放了碳酸,碳酸在 C18 的酸催化加氫裂化/加氫異構化中發揮促進劑的作用。為了進行結果驗證,使用來自蓖麻油的 C18,獲得了 100% 的轉化率和 98.8% 的 LJFP 選擇性,且 Ni-Pd@Al-MCF 至少穩定了 8 個循環。
綜上所述,本論文中的研究提供了新的方法來提高 HDO 和加氫裂化/加氫異構化過程的可持續性和效率,參考模型油酸、C18、生物油以及蓖麻油,用於生產清潔燃燒的生物燃料和生物噴射燃料。透過溶劑選擇更環保的反應系統、比文獻中的反應條件有更適合、高實用金屬負載量的一步法直接催化劑合成,並以廉價過渡金屬及Fe 作為主要 HDO 位點的高度穩定之新型催化劑,此為本論文的突出發現,並與當前可比較技術水平相較之下有了顯著的進步。
Exploration of biofuels and bio-jet fuels obtained from non-food competing sources as an alternative to rapidly dwindling fossils fuel reserves has been on the surge over the last few decades. However, large number of oxygen-containing groups in bio-oils result into undesirable fuel properties such as low energy density, high viscosity and poor stability in biofuels. Hydrodeoxygenation (HDO), a fuel upgrading process for lowering the oxygen content of bio-oils, has been investigated with success for converting bio-oils directly into fuel range hydrocarbons. HDO has traditionally involved the use of sulfided Ni, Mo, Co or supported noble metals such as Pt or Pd as catalysts. The poor stability, HDO selectivity, sulfur contamination susceptibility and high costs of these catalysts are, however, challenging impediments to the HDO process. Therefore, there is an immediate need to develop highly selective yet cheap and stable catalysts for HDO. Further, traditional HDO reactions being energy and cost intensive, due to severe reaction conditions of temperature, H2 pressure and time, greener operating conditions are desirable to make HDO processes sustainable. The research presented in this thesis for the production of biofuels and bio jet-fuels attempts to address these concerns through the following strategies:
(1) the use of functional and greener solvent systems
(2) development and characterization of novel heterogeneous catalysts through choice of metals, catalyst support and catalyst synthesis methods
(3) optimization of milder reaction conditions to maximize desired product selectivity
A previous publication by the author served as the prequel to the research presented in this thesis. A greener solvent system of hexane containing pressurized CO2 was reported as very efficient in maximizing HDO selectivity during the hydrotreatment of oleic acid using a Fe/SBA-15 catalyst through partial suppression of the competitive decarboxylation/decarbonylation pathways involving the removal of CO2/CO by obeying Le Chatelier’s principle. Pressurized CO2 further lowered viscosity and intraparticle diffusion resistance while increasing catalyst dispersion, H2 solubility and interphase mass transfer rate. 100.0% conversion of oleic acid with a maximum 83.3% yield of the HDO product, octadecane (C18) and 8.7% yield of the decarboxylation/decarbonylation product, heptadecane (C17) was reported.
In this thesis, the HDO selectivity during the hydrotreatment of oleic acid was further enhanced by the use of an open cell, 3-dimesional mesocellular foam (MCF) support and through the addition of Pd and Ni as functional metals to develop a trimetallic Fe-Pd-Ni catalyst synthesized using wet impregnation (WI). Using MCF as the support material, decarboxylation/decarbonylation pathway could be completely cut-off as the large pore size and cage-like structure of MCF curtailed intraparticle diffusion resistance, thereby reducing residence time during reaction. At 278 ℃, 40 bars H2 and 20 bars CO2 pressure for 4 h of reaction, 100.0% conversion of oleic acid with 93.0% yield of C18 was reported using Fe-Pd-Ni/MCF. An enhanced H2 spillover onto the surface of active Fe0 species as a result of an improved adsorption and dissociation capability of H2 on the surface of Pd-Ni alloy nanoparticles (NPs) was responsible for the activity of Fe-Pd-Ni/MCF in enhancing reaction rate.
Castor oil differs from other bio-oils in terms of viscosity and polarity owing to its major constituent ricinolein, a triglyceride of hydroxylated ricinoleic acid. This characterizes biofuels derived from castor oil with good cold flow and lubricity. Cold pressed castor oil was therefore identified and used as a real time feedstock in this research. At 275 ℃, 40 bars H2 and 20 bars CO2 pressure for 4 h, 95.8% conversion of castor oil with 65.9% selectivity towards C18 was obtained using Fe-Pd-Ni/MCF. To further enhance the conversion and HDO selectivity of castor oil, TiO2 was introduced to develop a thermally stable SiO2-TiO2 hybrid support material with the ability to induce strong metal-support interactions. A one-pot sol-gel catalyst synthesis method was used over WI, to produce a SiO2-TiO2 encapsulated catalyst with well-dispersed active sites. HDO of castor oil using a Fe-Ni-Pd@SiO2-TiO2 catalyst could produce 89.3% selectivity towards C18 at 275 ℃ 40 bar H2 and 20 bars CO2 pressure for 4 h. By substituting Ni in Fe-Ni-Pd@SiO2-TiO2 with Au at 33.3% of Pd concentration, results were substantially improved. Using Fe-Au-Pd@SiO2-TiO2, at 250 ℃, 40 bars H2 and 20 bars CO2 pressure, a complete conversion of castor oil with 96.0% selectivity towards C18 was obtained in 3 h even with a high castor oil to catalyst ratio (weight/weight) of 18.4. This C18 selectivity was 72.6% higher than what was obtained using a Fe-Ni-Pd@SiO2-TiO2 catalyst with only half the castor oil to catalyst ratio of 9.2 at the same reaction conditions. Catalyst characterization revealed different types of active sites in Fe-Au-Pd@SiO2-TiO2, acting synergistically to catalyse the HDO of castor oil. Single crystal X-ray diffraction assigned an Au centric tetragonal dipyramidal crystal system to the Fe-Au-Pd ensemble. Fe-Au-Pd@SiO2-TiO2 possessed impressive H2 spillover capability driven by the Fe-Au-Pd nanoparticles and a large number of isolated electron-deficient Pdδ+ surface species arising out of Pd-Au interaction via charge transfer. The Fe component in Fe-Au-Pd@SiO2-TiO2 existed either as individual Fe, bimetallic Fe-Au/Fe-Pd or trimetallic Fe-Au-Pd nanoparticles. The Fe0 surface of these nanoparticles was the primary HDO site. High practical metal loading (96.7% for Fe) could be achieved in one-pot synthesis, that provided abundant active sites for HDO. Both Fe-Ni-Pd@SiO2-TiO2 and Fe-Au-Pd@SiO2-TiO2 were active and thermally stable over at least five cycles.
The conversion of derivates obtained from HDO of castor oil to bio jet-fuel was carried out via simultaneous hydrogenation/dehydrogenation and hydrocracking/hydroisomerization, using a one-pot synthesized Al modified MCF encapsulated Ni-Pd catalyst (Ni-Pd@Al-MCF). It was observed that while Ni-Pd was responsible for hydrogenation/dehydrogenation, the acidic Al-MCF support catalysed hydrocracking/hydroisomerization. Since bio jet-fuels must comply with stringent regulatory standards (ASTM D1655), optimal balancing of hydrocracking and hydroisomerization was crucial. Using model C18, at 227 ℃, 57 bars H2 and 20 bars CO2 pressure for 2.5 h, 99.4% conversion with 98.2% selectivity towards liquid jet-fuel products (LJFPs), C7-C17 in this study, and a moderate iso:n-alkane ratio of 1.1 was obtained. A pressurized CO2-hexane-water functional and greener solvent system was used, which not only increased intraparticle diffusion rate but also released carbonic acid that acted as a promoter in the acid-catalysed hydrocracking/hydroisomerization of C18. As a validation, upon using the derivates obtained from HDO of castor oil, 100% conversion with 98.8% selectivity towards LJFPs was obtained. Ni-Pd@Al-MCF was stable for at least eight cycles.
To summarize, the research presented in this thesis provides novel approaches for increasing sustainability and efficiency of HDO and hydrocracking/hydroisomerization processes with reference to model oleic acid, C18 and a real time bio-oil, castor oil for producing clean burning biofuel and bio jet-fuel. By utilizing greener reaction systems through solvent selection, milder than reported reaction conditions, one-pot direct catalyst synthesis with high practical metal loading and highly stable novel catalysts with cheap transition metal, Fe as the primary HDO site, the salient findings of this thesis indeed present a significant advance over comparable current state of art.
(1) Agusdinata, D. B.; Zhao, F.; Ileleji, K.; DeLaurentis, D. J. Life Cycle Assessment of Potential Biojet Fuel Production in The United States. Environ. Sci. Technol. 2011, 45 (21), 9133-9143.
(2) Al Alwan, B.; Sari, E.; Salley, S. O.; Ng, K. Y. S. Effect of Metal Ratio and Preparation Method on Nickel–Tungsten Carbide Catalyst for Hydrocracking of Distillers Dried Grains with Solubles Corn Oil. Ind. Eng. Chem. Res. 2014, 53 (17), 6923-6933.
(3) Alam, F.; Mobin, S.; Chowdhury, H. Third Generation Biofuel from Algae. Procedia Eng. 2015, 105, 763-768.
(4) Amritphale, S. S.; Mishra, D.; Mudgal, M.; Chouhan, R. K.; Chandra, N. A Novel Green Approach for Making Hybrid Inorganic-Organic Geopolymeric Cementitious Material Utilizing Fly Ash and Rice Husk, J. Environ. Chem. Eng. 2016, 4, 3856-3865.
(5) Ardiyanti, A. R.; Gutierrez, A.; Honkela, M. L.; Krause, A. O. I.; Heeres, H. J. Hydrotreatment of Wood-Based Pyrolysis Oil using Zirconia-Supported Mono- And Bimetallic (Pt, Pd, Rh) Catalysts. Appl. Catal., A 2011, 407 (1), 56-66.
(6) Ashraful, A. M.; Masjuki, H. H.; Kalam, M. A.; Rizwanul Fattah, I. M.; Imtenan, S.; Shahir, S. A.; Mobarak, H. M. Production and Comparison of Fuel Properties, Engine Performance, and Emission Characteristics of Biodiesel from Various Non-Edible Vegetable Oils: A Review. Energy Conversion and Management 2014, 80, 202-228
(7) Atabani, A. E.; Silitonga, A. S.; Badruddin, I. A.; Mahlia, T. M. I.; Masjuki, H. H.; Mekhilef, S. A Comprehensive Review on Biodiesel as an Alternative Energy Resource and Its Characteristics. Renewable Sustainable Energy Rev. 2012, 16 (4), 2070-2093.
(8) Ayodele, O. B.; Farouk, H. U.; Mohammed, J.; Uemura, Y.; Daud, W. M. A. W. Effect of Precursor Acidity on Zeolite Supported Pd Catalyst Properties and Hydrodeoxygenation Activity for The Production of Biofuel. J. Mol. Catal. A: Chem. 2015a, 400, 179-186.
(9) Ayodele, O. B.; Farouk, H. U.; Mohammed, J. Uemura, Y.; Daud, W. M. A. W. Hydrodeoxygenation of Oleic Acid into n- and Iso-Paraffin Biofuel using Zeolite Supported Fluoro-Oxalate Modified Molybdenum Catalyst: Kinetics Study. J. Taiwan Inst. Chem. Eng. 2015b, 50, 142-152.
(10) Azad, A. K.; Rasul, M.; Khan, M. M. K.; Sharma, S. C. In Review of Non-Edible Biofuel Resources in Australia For Second Generation (2G) Biofuel Conversion, International Green Energy Conference, Tianjin, China, 2014, 867-878.
(11) Bagheri, S, Muhd Julkapli, N.; Bee Abd Hamid, S. Titanium Dioxide as a Catalyst Support in Heterogeneous Catalysis. Sci. World J. 2014, 2014, 727496.
(12) Baliban, R. C.; Elia, J. A.; Floudas, C. A.; Xiao, X.; Zhang, Z.; Li, J.; Cao, H.; Ma, J.; Qiao, Y.; Hu, X. J. Thermochemical Conversion of Duckweed Biomass to Gasoline, Diesel, and Jet Fuel: Process Synthesis and Global Optimization. Ind. Eng. Chem. Res. 2013, 52 (33), 11436-11450.
(13) Banković-Ilić, I. B.; Stamenković, O. S.; Veljković, V. B. Biodiesel Production from Non-Edible Plant Oils, Renewable Sustainable Energy Rev. 2012, 16, 3621-3647. https://doi.org/10.1016/j.rser.2012.03.002.
(14) Barbosa, D. d. C.; Serra, T. M.; Meneghetti, S. M. P.; Meneghetti, M. R. Biodiesel Production by Ethanolysis of Mixed Castor and Soybean Oils. Fuel 2010, 89 (12), 3791-3794.
(15) Berenblyum, A. S.; Podoplelova, T. A.; Shamsiev, R. S.; Katsman, E. A.; Danyushevsky, V. Y. On the Mechanism of Catalytic Conversion of Fatty Acids into Hydrocarbons in The Presence of Palladium Catalysts on Alumina. Pet. Chem. 2011, 51 (5), 336.
(16) Besse, X.; Schuurman, Y.; Guilhaume, N. Hydrothermal Conversion of Linoleic Acid and Ethanol for Biofuel Production. Appl. Catal., A 2016, 524, 139-148.
(17) Bhattacharjee, S.; Tan, C. -S. Hydrodeoxygenation of Oleic Acid in Hexane Containing Pressurized CO2 Using Fe/SBA-15 as Catalyst, J. Cleaner Prod. 2017, 156, 203-213.
(18) Bhattacharjee, S.; Lu, W. -Y.; Tan, C. -S. A Cleaner Route for Hydrodeoxygenation of Oleic Acid in Hexane Containing Pressurized CO2 over a MCF Supported Fe-Pd-Ni Trimetallic Catalyst, Fuel 2019, 243, 210-220.
(19) Bindwal, A. B.; Vaidya, P. D. Kinetics of Aqueous-Phase Hydrogenation of Levoglucosan over Ru/C Catalyst. Ind. Eng. Chem. Res. 2013, 52 (50), 17781-17789.
(20) Boccuzzi, F.; Guglielminotti, E.; Pinna, F.; Signoretto, M. Surface Composition of Pd–Fe Catalysts Supported on Silica, J. Chem. Soc. 1995, 91, 3237-3244.
(21) Boubiche, N.; Cibaka-Ndaya, C.; Brioude, A.; Javahiraly, N. Au–Pd Core–Shell Nanoparticle Film for Optical Detection of Hydrogen Gas. AIP Adv. 2020, 10, 105225.
(22) Braun-Unkhoff, M.; Kathrotia, T.; Rauch, B.; Riedel, U. About the Interaction Between Composition and Performance of Alternative Jet Fuels. CEAS Aeronaut. J. 2016, 7 (1), 83-94.
(23) Bui, V. N.; Laurenti, D.; Afanasiev, P.; Geantet, C. Hydrodeoxygenation of Guaiacol with Como Catalysts. Part I: Promoting Effect of Cobalt on HDO Selectivity and Activity. Appl. Catal., B 2011, 101 (3), 239-245.
(24) Bunch, A. Y.; Ozkan, U. S. Investigation of the Reaction Network of Benzofuran Hydrodeoxygenation over Sulfided and Reduced Ni–Mo/Al2O3 Catalysts. J. Catal. 2002, 206 (2), 177-187.
(25) Chang, C. J.; Randolph, A. D. Solvent Expansion and Solute Solubility Predictions in Gas-Expanded Liquids. AIChE J. 1990, 36 (6), 939-942.
(26) Cheah, K. W.; Yusup, S.; Taylor, M. J.; How, B. S.; Osatiashtiani, A.; Nowakowski, D. J.; Bridgwater, A. V.; Skoulou, V.; Kyriakou, G.; Uemura, Y. Kinetic Modelling of Hydrogen Transfer Deoxygenation of a Prototypical Fatty Acid over a Bimetallic Pd60Cu40 Catalyst: An Investigation of The Surface Reaction Mechanism and Rate Limiting Step. Reaction Chem. Eng. 2020, 5 (9), 1682-1693.
(27) Chen, H.; Wang, Q.; Zhang, X.; Wang, L. Quantitative Conversion of Triglycerides to Hydrocarbons over Hierarchical ZSM-5 Catalyst. Appl. Catal., B: Environmental 2015, 166-167, 327-334.
(28) Chen, Y. -C.; Tan, C. -S. Hydrogenation of p-Chloronitrobenzene by Ni–B Nanocatalyst in CO2-Expanded Methanol. J. Supercrit. Fluids 2007, 41 (2), 272-278.
(29) Cheng, J.; Zhang, Z.; Zhang, X.; Liu, J.; Zhou, J.; Cen, K. Hydrodeoxygenation and Hydrocracking of Microalgae Biodiesel to Produce Jet Biofuel Over H3PW12O40-Ni/Hierarchical Mesoporous Zeolite Y Catalyst. Fuel 2019, 245, 384-391.
(30) Cheng, W.; Dong, S.; Wang, E. Synthesis and Self-Assembly of Cetyltrimethylammonium Bromide-Capped Gold Nanoparticles. Langmuir 2003, 19, 9434-9439.
(31) Chintakanan, P.; Vitidsant, T.; Reubroycharoen, P.; Kuchonthara, P.; Kida, T.; Hinchiranan, N. Bio-Jet Fuel Range in Biofuels Derived from Hydroconversion of Palm Olein over Ni/Zeolite Catalysts and Freezing Point of Biofuels/Jet A-1 Blends. Fuel 2021, 293, 120472.
(32) Choi, I. -H.; Hwang, K.-R.; Han, J. -S.; Lee, K. -H.; Yun, J. S.; Lee, J. -S., The Direct Production of Jet-Fuel from Non-Edible Oil in a Single-Step Process. Fuel 2015, 158, 98-104.
(33) Crawford, J. M.; Smoljan, C. S.; Lucero, J.; Carreon, M. A. Deoxygenation of Stearic Acid over Cobalt-Based NaX Zeolite Catalysts. Catalysts 2019, 9 (1), 42.
(34) Crocker, M. Thermochemical Conversion of Biomass to Liquid Fuels and Chemicals. RSC Energy Environ. Series, 2001.
(35) Cui, X.; Li, W.; Ryabchuk, P.; Junge, K.; Beller, M. Bridging Homogeneous and Heterogeneous Catalysis by Heterogeneous Single-Metal-Site Catalysts, Nat. Catal. 2018, 1, 385-397.
(36) de Sousa, F. P.; Cardoso, C. C.; Pasa, V. M. D. Producing Hydrocarbons for Green Diesel and Jet Fuel Formulation from Palm Kernel Fat over Pd/C. Fuel Process. Technol. 2016, 143, 35-42.
(37) Demirbas, A. Importance of Biodiesel as Transportation Fuel, Energy Policy 2007, 35, 4661-4670.
(38) Denk, C.; Foraita, S.; Kovarik, L.; Stoerzinger, K.; Liu, Y.; Baráth, E.; Lercher, J. A. Rate Enhancement by Cu in NixCu1−x/ZrO2 Bimetallic Catalysts for Hydrodeoxygenation Of Stearic Acid. Catal. Sci. Technol. 2019, 9 (10), 2620-2629.
(39) Di, L.; Yao, S.; Song, S.; Wu, G.; Dai, W.; Guan, N.; Li, L. Robust Ruthenium Catalysts for The Selective Conversion of Stearic Acid to Diesel-Range Alkanes. Appl. Catal., B 2017, 201, 137-149.
(40) Díaz-Pérez, M. A.; Serrano-Ruiz, J. C. Catalytic Production of Jet Fuels from Biomass. Molecules 2020, 25 (4), 802.
(41) Ding, Y.; Fan, F.; Tian, Z.; Wang, Z. L. Atomic Structure of Au−Pd Bimetallic Alloyed Nanoparticles. J. Am. Chem. Soc. 2010, 132, 12480-12486.
(42) Dongil, A. B.; Ghampson, I. T.; García, R.; Fierro, J. L. G.; Escalona, N. Hydrodeoxygenation of Guaiacol over Ni/Carbon Catalysts: Effect of The Support and Ni Loading. RSC Advances 2016, 6 (4), 2611-2623.
(43) Donnis, B.; Egeberg, R. G.; Blom, P.; Knudsen, K. G. Hydroprocessing of Bio-Oils and Oxygenates to Hydrocarbons. Understanding the Reaction Routes. Top. Catal. 2009, 52 (3), 229-240.
(44) Duan, J.; Han, J.; Sun, H.; Chen, P.; Lou, H.; Zheng, X. Diesel-Like Hydrocarbons Obtained by Direct Hydrodeoxygenation of Sunflower Oil over Pd/Al-SBA-15 Catalysts. Catal. Commun. 2012, 17, 76-80.
(45) Dwiatmoko, A. A.; Zhou, L.; Kim, I.; Choi, J.-W.; Suh, D. J.; Ha, J.-M. Hydrodeoxygenation of Lignin-Derived Monomers and Lignocellulose Pyrolysis Oil on The Carbon-Supported Ru Catalysts. Catal. Today 2016, 265, 192-198.
(46) Elia, J. A.; Baliban, R. C.; Floudas, C. A.; Gurau, B.; Weingarten, M. B.; Klotz, S. D. Hardwood Biomass to Gasoline, Diesel, and Jet Fuel: 2. Supply Chain Optimization Framework for A Network of Thermochemical Refineries. Energy Fuels 2013, 27 (8), 4325-4352.
(47) Elliott, D. C. Historical Developments in Hydroprocessing Bio-oils. Energy Fuels 2007, 21 (3), 1792-1815.
(48) Euna, J.; Chul-Ung, K.; Jong-Ki, J. Study on Pt-Mg/Mesoporous Aluminosilicate Catalyst for Aviation Oil Production from n-Octadecane. Korean Chem. Eng. Res. 2016, 54, 712–718.
(49) Fan, M.; Li, T.; Hu, J.; Cao, R.; Wu, Q.; Wei, X.; Li, L.; Shi, X.; Ruan, W. Synthesis and Characterization of Reduced Graphene Oxide-Supported Nanoscale Zero-Valent Iron (Nzvi/Rgo) Composites Used for Pb (II) Removal, Materials 2016, 9, 687.
(50) Fontes, E. H.; Nandenha, J.; De Souza, R. F. B.; Antonio, F. C. T.; Homem-de-Mello, P.; Neto, A. O. Au Core Stabilizes CO Adsorption onto Pd Leading to CO2 Production, Mater. Today Adv. 2020, 6, 100070.
(51) Furimsky, E. Catalytic Hydrodeoxygenation. Appl. Catal., A 2000, 199 (2), 147-190.
(52) Galadima, A.; Muraza, O. Catalytic Upgrading of Vegetable Oils into Jet Fuels Range Hydrocarbons using Heterogeneous Catalysts: A Review. J. Ind. Eng. Chem. 2015, 29, 12-23.
(53) García-Cerda, L. A.; Bernal-Ramos, K. M.; Montemayor, S. M.; Quevedo-López, M. A.; Betancourt-Galindo, R.; Bueno-Báques, D. Preparation of hcp and fcc Ni and Ni/Nio Nanoparticles using a Citric Acid assisted Pechini-Type Method. J. Nanomater. 2011, 2011, 162495.
(54) Ghampson, I. T.; Sepúlveda, C.; García, R.; Fierro, J. L. G.; Escalona, N. Carbon Nanofiber-Supported ReOx Catalysts for the Hydrodeoxygenation of Lignin-Derived Compounds. Catal. Sci. Technol. 2016, 6 (12), 4356-4369.
(55) Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts, Acc. Chem. Res. 2019, 52, 237–247.
(56) Goodrum, J. W.; Geller, D. P. Influence of Fatty Acid Methyl Esters from Hydroxylated Vegetable Oils on Diesel Fuel Lubricity, Bioresour. Technol. 2005, 96, 851-855.
(57) Gosselink, R. W.; Hollak, S. A. W.; Chang, S.-W.; van Haveren, J.; de Jong, K. P.; Bitter, J. H.; van Es, D. S. Reaction Pathways for the Deoxygenation of Vegetable Oils and Related Model Compounds. ChemSusChem 2013, 6 (9), 1576-1594.
(58) Grilc, M.; Likozar, B.; Levec, J. Hydrodeoxygenation and Hydrocracking of Solvolysed Lignocellulosic Biomass by Oxide, Reduced and Sulphide Form of NiMo, Ni, Mo And Pd Catalysts. Appl. Catal., B 2014, 150-151, 275-287.
(59) Grosvenor, A. P.; Biesinger, M. C.; Smart, R. S. C.; McIntyre, N. S. New Interpretations of XPS Spectra of Nickel Metal and Oxides, Surf. Sci. 2006, 600, 1771-1779.
(60) Hachemi, I.; Jeništová, K.; Mäki-Arvela, P.; Kumar, N.; Eränen, K.; Hemming, J.; Murzin, D. Y. Comparative Study of Sulfur-Free Nickel and Palladium Catalysts in Hydrodeoxygenation of Different Fatty Acid Feedstocks for Production of Biofuels. Catal. Sci. Technol. 2016, 6 (5), 1476-1487.
(61) Hadjiivanov, K.; Knözinger, H.; Mihaylov, M. FTIR Study of CO Adsorption on Ni− ZSM-5, J. Phys. Chem. B 2002, 106, 2618-2624.
(62) Han, J.; Sun, H.; Ding, Y.; Lou, H.; Zheng, X. Palladium-Catalysed Decarboxylation of Higher Aliphatic Esters: Towards A New Protocol to The Second Generation Biodiesel Production. Green Chem. 2010, 12 (3), 463-467.
(63) Han, J.; Duan, J.; Chen, P.; Lou, H.; Zheng, X. Molybdenum Carbide-Catalysed Conversion of Renewable Oils into Diesel-like Hydrocarbons. Adv. Synth. Catal. 2011, 353 (14-15), 2577-2583.
(64) Han, Y.; Lee, S. S.; Ying, J. Y. Spherical Siliceous Mesocellular Foam Particles for High-Speed Size Exclusion Chromatography. Chem. Mater. 2007, 19 (9), 2292-2298.
(65) Hanaoka, T.; Miyazawa, T.; Shimura, K.; Hirata, S., Jet Fuel Synthesis from Fischer–Tropsch Product Under Mild Hydrocracking Conditions using Pt-Loaded Catalysts. Chem. Eng. J. 2015, 263, 178-185.
(66) Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-Atom Alloy Catalysis, Chem. Rev. 2020, 120, 12044-12088.
(67) Hari, T. K.; Yaakob, Z. Production of Diesel Fuel by The Hydrotreatment of Jatropha Oil Derived Fatty Acid Methyl Esters over γ-Al2O3 And SiO2 Supported Nico Bimetallic Catalysts. Reac Kinet Mech Cat 2015, 116 (1), 131-145.
(68) Healey, A. L.; Lee, D. J.; Furtado, A.; Simmons, B. A.; Henry, R. J. Efficient Eucalypt Cell Wall Deconstruction and Conversion for Sustainable Lignocellulosic Biofuels. Bioeng. Biotechnol. 2015, 3 (190).
(69) Hengsawad, T.; Srimingkwanchai, C.; Butnark, S.; Resasco, D. E.; Jongpatiwut, S. Effect of Metal–Acid Balance on Hydroprocessed Renewable Jet Fuel Synthesis from Hydrocracking and Hydroisomerization of Biohydrogenated Diesel over Pt-Supported Catalysts. Ind. Eng. Chem. Res. 2018, 57 (5), 1429-1440.
(70) Hensley, A. J. R.; Hong, Y.; Zhang, R.; Zhang, H.; Sun, J.; Wang, Y.; McEwen, J. -S. Enhanced Fe2O3 Reducibility via Surface Modification with Pd: Characterizing the Synergy within Pd/Fe Catalysts for Hydrodeoxygenation Reactions. ACS Catal. 2014, 4 (10), 3381-3392.
(71) Hong, Y.; Zhang, H.; Sun, J.; Ayman, K. M.; Hensley, A. J. R.; Gu, M.; Engelhard, M. H.; McEwen, J.-S.; Wang, Y. Synergistic Catalysis between Pd and Fe in Gas Phase Hydrodeoxygenation of m-Cresol. ACS Catal. 2014, 4 (10), 3335-3345.
(72) Huber, G. W.; Iborra, S.; Corma, A. Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering. Chem. Rev. 2006, 106 (9), 4044-4098.
(73) IATA, I. J. A. R., International Air Transport Association. 2017.
(74) International Energy Outlook, Energy Information Administration 2009. https://www.eia.gov/outlooks/ieo/index.php.
(75) IPCC Special Report on Aviation Global Emissions. 2015. https://archive.ipcc.ch/.
(76) Janampelli, S.; Darbha, S. Highly Efficient Pt-MoOx/ZrO2 Catalyst for Green Diesel Production. Catal. Commun. 2019, 125, 70-76.
(77) Jessop, P. G.; Subramaniam, B. Gas-Expanded Liquids. Chem. Rev. 2007, 107 (6), 2666-2694.
(78) Jessop, P. G. Searching for Green Solvents. Green Chem. 2011, 13 (6), 1391-1398.
(79) Jiang, D. E.; Carter, E. A. Diffusion of Interstitial Hydrogen into and Through Bcc Fe from First Principles, Phys. Rev. B 2004, 70, 064102.
(80) Jin, H.; Subramaniam, B., Homogeneous Catalytic Hydroformylation of 1-Octene in CO2-Expanded Solvent Media. Chem. Eng. Sci. 2004, 59 (22), 4887-4893.
(81) Jongerius, A. L.; Gosselink, R. W.; Dijkstra, J.; Bitter, J. H.; Bruijnincx, P. C. A.; Weckhuysen, B. M. Carbon Nanofiber Supported Transition-Metal Carbide Catalysts for the Hydrodeoxygenation of Guaiacol. ChemCatChem 2013, 5 (10), 2964-2972.
(82) K Kandel, K.; Anderegg, J. W.; Nelson, N. C.; Chaudhary, U.; Slowing, I. I. Supported Iron Nanoparticles for the Hydrodeoxygenation of Microalgal Oil to Green Diesel, J. Catal. 2014, 314, 142-148.
(83) Kerler, B.; Robinson, R. E.; Borovik, A. S.; Subramaniam, B. Application of CO2-Expanded Solvents in Heterogeneous Catalysis: A Case Study. Appl. Catal., B 2004, 49 (2), 91-98.
(84) Keyvanloo, K.; Huang, B.; Okeson, T.; Hamdeh, H. H.; Hecker, W. C. Effect of Support Pretreatment Temperature on the Performance of an Iron Fischer–Tropsch Catalyst Supported on Silica-Stabilized Alumina, Catalysts 2018, 8, 77.
(85) Kikhtyanin, O. V.; Rubanov, A. E.; Ayupov, A. B.; Echevsky, G. V. Hydroconversion of Sunflower Oil on Pd/SAPO-31 Catalyst. Fuel 2010, 89 (10), 3085-3092.
(86) Kon, K.; Toyao, T.; Onodera, W.; Siddiki, S. M. A. H.; Shimizu, K. -i. Hydrodeoxygenation of Fatty Acids, Triglycerides, and Ketones to Liquid Alkanes by a Pt–MoOx/TiO2 Catalyst. ChemCatChem 2017, 9 (14), 2822-2827.
(87) Konda, S. K.; Chen, A. Palladium Based Nanomaterials for Enhanced Hydrogen Spillover and Storage, Mater. Today 2016, 19, 100-108.
(88) Konwar, L. J.; Oliani, B.; Samikannu, A.; Canu, P.; Mikkola, J. -P. Efficient Hydrothermal Deoxygenation of Tall Oil Fatty Acids Into N-Paraffinic Hydrocarbons and Alcohols in The Presence of Aqueous Formic Acid. Biomass Conv. Bioref. 2020.
(89) Kosir, S.; Stachler, R.; Heyne, J.; Hauck, F. High-performance Jet Fuel Optimization and Uncertainty Analysis. Fuel 2020, 281, 118718.
(90) Kotnik, P.; Škerget, M.; Knez, Ž. Phase Equilibria of FFAs Enriched Vegetable Oils and Carbon Dioxide: Experimental Data, Distribution Coefficients and Separation Factors. J. Supercrit. Fluids 2014, 87, 65-72.
(91) Kruk, M.; Jaroniec, M.; Ko, C. H.; Ryoo, R. Characterization of the Porous Structure of SBA-15. Chem. Mater. 2000, 12 (7), 1961-1968.
(92) Kubička, D.; Kaluža, L. Deoxygenation of Vegetable Oils over Sulfided Ni, Mo and NiMo Catalysts, Appl. Catal., A 2010, 372, 199-208.
(93) Kuhn, W. K.; Szanyi, J.; Goodman, D. W. CO Adsorption on Pd(111): The Effects of Temperature and Pressure, Surf. Sci. 1992, 274, L611-L618.
(94) Kumar, P.; Yenumala, S. R.; Maity, S. K.; Shee, D. Kinetics of Hydrodeoxygenation of Stearic Acid using Supported Nickel Catalysts: Effects of Supports. Appl. Catal. A 2014, 471, 28-38.
(95) Kuo, H. K.; Ganesan, P.; De Angelis, R. J. The Sintering of a Silica-Supported Nickel Catalyst. J. Catal. 1980, 64 (2), 303-319.
(96) Kustov Leonid, M.; Al-Abed Souhail, R.; Virkutyte, J.; Kirichenko Olga, A.; Shuvalova Elena, V.; Kapustin Gennady, I.; Mishin Igor, V.; Nissenbaum Vera, D.; Tkachenko Olga, P.; Finashina Elena, D. Novel Fe-Pd/SiO2 Catalytic Materials for Degradation of Chlorinated Organic Compounds in Water. Pure Appl. Chem. 2014, 86, 1141.
(97) Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Isolated Metal Atom Geometries as a Strategy for Selective Heterogeneous Hydrogenations, Science 2012, 335, 1209-1212.
(98) Lanzafame, P.; Perathoner, S.; Centi, G.; Heracleous, E.; Iliopoulou, E. F.; Triantafyllidis, K. S.; Lappas, A. A. Effect of the Structure and Mesoporosity in Ni/Zeolite Catalysts for n-Hexadecane Hydroisomerisation and Hydrocracking. 2017, 9 (9), 1632-1640.
(99) Lee, A. F.; Bennett, J. A.; Manayil, J. C.; Wilson, K. Heterogeneous Catalysis for Sustainable Biodiesel Production Via Esterification and Transesterification. Chem. Soc. Rev. 2014, 43 (22), 7887-7916.
(100) Lende, A. B.; Bhattacharjee, S.; Lu, W. -Y.; Tan, C. -S. Hydrogenation of Dioctyl Phthalate over a Rh-Supported Al Modified Mesocellular Foam Catalyst. New J. Chem. 2019, 43 (14), 5623-5631.
(101) Leung, D. Y. C.; Wu, X.; Leung, M. K. H. A Review on Biodiesel Production using Catalysed Transesterification. Appl. Energy 2010, 87 (4), 1083-1095.
(102) Li, C.; Yang, M.; Liu, Z.; Zhang, Z.; Zhu, T.; Chen, X.; Dong, Y.; Cheng, H. Ru–Ni/Al2O3 Bimetallic Catalysts with High Catalytic Activity for N-Propylcarbazole Hydrogenation, Catal. Sci. Technol. 2020, 10, 2268-2276.
(103) Li, J.; Zhang, J.; Wang, S.; Xu, G.; Wang, H.; Vlachos, D. G. Chemoselective Hydrodeoxygenation of Carboxylic Acids to Hydrocarbons over Nitrogen-Doped Carbon–Alumina Hybrid Supported Iron Catalysts. ACS Catal. 2019, 9 (2), 1564-1577.
(104) Li, T.; Cheng, J.; Huang, R.; Yang, W.; Zhou, J.; Cen, K. Hydrocracking of Palm Oil to Jet Biofuel over Different Zeolites. Int. J. Hydrogen Energy 2016, 41 (47), 21883-21887.
(105) Li, Y.; El-Sayed, M. A. The Effect of Stabilizers on the Catalytic Activity and Stability of Pd Colloidal Nanoparticles in the Suzuki Reactions in Aqueous Solution†. J. Phys. Chem. B 2001, 105 (37), 8938-8943.
(106) Liang, C.; Liu, H.; Zhou, J.; Peng, X.; Zhang, H. One-Step Synthesis of Spherical Fe2O3 Nanopowders and the Evaluation of their Photocatalytic Activity for Orange I Degradation, J. Chem. 2015, 2015, 791829.
(107) Lin, H. -W.; Yen, C. H.; Tan, C. -S. Aromatic Hydrogenation of Benzyl Alcohol and Its Derivatives using Compressed CO2/Water as the Solvent. Green Chem. 2012, 14 (3), 682-687.
(108) Liu, B.; Liu, L. R.; Liu, X. J.; Liu, M. J.; Xiao, Y. S. Variation of Crystal Structure in Nickel Nanoparticles Filled in Carbon Nanotubes. Mater. Sci. Technol. 2012, 28 (11), 1345-1348.
(109) Liu, H.; Han, J.; Huang, Q.; Shen, H.; Lei, L.; Huang, Z.; Zhang, Z.; Zhao, Z. K.; Wang, F. Catalytic Hydrodeoxygenation of Methyl Stearate and Microbial Lipids to Diesel-Range Alkanes over Pd/HPA-SiO2 Catalysts. Ind. Eng. Chem. Res. 2020, 59 (39), 17440-17450.
(110) Liu, J.; He, J.; Wang, L.; Li, R.; Chen, P.; Rao, X.; Deng, L.; Rong, L.; Lei, J. NiO-PTA supported on ZIF-8 as a Highly Effective Catalyst for Hydrocracking of Jatropha Oil. Sci Rep. 2016, 6, 23667-23667.
(111) Liu, R.; Yu, Y.; Yoshida, K.; Li, G.; Jiang, H.; Zhang, M.; Zhao, F.; Fujita, S. -i.; Arai, M. Physically and Chemically Mixed TiO2-Supported Pd and Au Catalysts: Unexpected Synergistic Effects on Selective Hydrogenation of Citral in Supercritical CO2. J. Catal. 2010, 269, 191-200.
(112) Liu, S.; Zhu, Q.; Guan, Q.; He, L.; Li, W. Bio-Aviation Fuel Production from Hydro-Processing Castor Oil Promoted by the Nickel-Based Bifunctional Catalysts, Bioresour. Technol. 2015, 183, 93-100.
(113) Liu, Y.; Zeng, F.; Sun, B.; Jia, P.; Graham, I. T. Structural Characterizations of Aluminosilicates in Two Types of Fly Ash Samples from Shanxi Province, North China. Minerals 2019, 9 (6), 358.
(114) Lokesh, K.; Sethi, V.; Nikolaidis, T.; Goodger, E.; Nalianda, D. Life Cycle Greenhouse Gas Analysis of Biojet Fuels with a Technical Investigation into Their Impact on Jet Engine Performance. Biomass Bioenergy 2015, 77, 26-44.
(115) Lu, M.; Liu, X.; Li, Y.; Nie, Y.; Lu, X.; Deng, D.; Xie, Q.; Ji, J. Hydrocracking of Bio-Alkanes over Pt/Al-MCM-41 Mesoporous Molecular Sieves for Bio-Jet Fuel Production. J. Renewable Sustainable Energy 2016, 8 (5), 053103.
(116) Lucci, F. R.; Darby, M. T.; Mattera, M. F. G.; Ivimey, C. J.; Therrien, A. J.; Michaelides, A.; Stamatakis, M.; Sykes, E. C. H. Controlling Hydrogen Activation, Spillover, and Desorption with Pd–Au Single-Atom Alloys. J. Phys. Chem. Lett. 2016, 7, 480-485.
(117) Ma, K.; Gong, Y.; Aubert, T.; Turker, M. Z.; Kao, T.; Doerschuk, P. C.; Wiesner, U. Self-Assembly of Highly Symmetrical, Ultrasmall Inorganic Cages Directed by Surfactant Micelles. Nature 2018, 558, 577-580.
(118) Mäki-Arvela, P.; Snåre, M.; Eränen, K.; Myllyoja, J.; Murzin, D. Y. Continuous Decarboxylation of Lauric Acid over Pd/C catalyst. Fuel 2008, 87 (17), 3543-3549.
Maloney, S. The Gulf's Renewed Oil Wealth: Getting it Right This Time? Survival 50 2008, 129-150.
(119) Manyar, H. G.; Paun, C.; Pilus, R.; Rooney, D. W.; Thompson, J. M.; Hardacre, C. Highly Selective and Efficient Hydrogenation of Carboxylic Acids to Alcohols using Titania Supported Pt Catalysts. Chem. Commun. 2010, 46 (34), 6279-6281.
(120) Marchetti, J. M.; Miguel, V. U.; Errazu, A. F. Possible Methods for Biodiesel Production, Renewable Sustainable Energy Rev. 2007, 11, 1300-1311.
(121) Martini, N.; Shell, J. S. Plant Oils as Fuels-Present State of Science and Future Development, first ed., Springer, Berlin, 1998, pp. 276. https://doi.org/10.1007/978-3-642-72269-1.
(122) Mirzayanti, Y. W.; Prajitno, D. H.; Roesyadi, A. Catalytic Hydrocracking of Kapuk Seed Oil (Ceiba Pentandra) to Produce Biofuel using Zn-Mo Supported HZSM-5 Catalyst. IOP Conf. Ser.: Earth Environ. Sci. 2017, 67, 012023.
(123) Mizugaki, T.; Kaneda, K., Development of High Performance Heterogeneous Catalysts for Selective Cleavage of C−O and C−C Bonds of Biomass-derived Oxygenates. Chem. Rec. 2018, 0 (0).
(124) Moniruzzaman, M.; Yaakob, Z.; Khatun, R. Biotechnology for Jatropha improvement: A Worthy Exploration. Renewable Sustainable Energy Rev. 2016, 54, 1262-1277.
(125) Monnier, J.; Sulimma, H.; Dalai, A.; Caravaggio, G. Hydrodeoxygenation of Oleic Acid and Canola Oil Over Alumina-Supported Metal Nitrides. Appl. Catal., A 2010, 382 (2), 176-180.
(126) Montgomery, D. C. Design and Analysis of Experiments, fifth ed., John Wiley and Sons, USA, 2001.
(127) Morgan, T.; Santillan-Jimenez, E.; Harman-Ware, A. E.; Ji, Y.; Grubb, D.; Crocker, M. Catalytic Deoxygenation of Triglycerides to Hydrocarbons over Supported Nickel Catalysts. Chem. Eng. J. 2012, 189-190, 346-355.
(128) Mortensen, P. M.; Grunwaldt, J. D.; Jensen, P. A.; Knudsen, K. G.; Jensen, A. D. A Review of Catalytic Upgrading of Bio-Oil to Engine Fuels. Appl. Catal., A 2011, 407 (1), 1-19.
(129) Moulijn, J. A.; Makkee, M.; van Diepen, A. Chemical Process Technology, second ed., John Wiley and Sons, USA, 2001.
(130) Mubofu, E. B. Castor Oil as a Potential Renewable Resource for The Production of Functional Materials, Sustain. Chem. Process. 2016, 4, 11.
(131) Murata, K.; Liu, Y.; Inaba, M.; Takahara, I. Production of Synthetic Diesel by Hydrotreatment of Jatropha Oils Using Pt−Re/H-ZSM-5 Catalyst. Energy Fuels 2010, 24 (4), 2404-2409.
(132) Namba, K.; Ogura, S.; Ohno, S.; Di, W.; Kato, K.; Wilde, M.; Pletikosić, I.; Pervan, P.; Milun, M.; Fukutani, K. Acceleration of Hydrogen Absorption by Palladium Through Surface Alloying with Gold. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 7896-7900.
(133) Nava, R.; Pawelec, B.; Castaño, P.; Álvarez-Galván, M. C.; Loricera, C. V.; Fierro, J. L. G. Upgrading of Bio-Liquids on Different Mesoporous Silica-Supported Como Catalysts. Appl. Catal. B 2009, 92 (1), 154-167.
(134) Nie, R.; Jiang, H.; Lu, X.; Zhou, D.; Xia, Q. Highly Active Electron-Deficient Pd Clusters on N-Doped Active Carbon for Aromatic Ring Hydrogenation. Catal. Sci. Technol. 2016, 6, 1913-1920.
(135) Peña, R.; Romero, R.; Martínez, S. L.; Ramos, M. J.; Martínez, A.; Natividad, R. Transesterification of Castor Oil: Effect of Catalyst and Co-Solvent. Ind. Eng. Chem. Res. 2009, 48 (3), 1186-1189.
(136) Peng, B.; Zhao, C.; Kasakov, S.; Foraita, S.; Lercher, J. A. Manipulating Catalytic Pathways: Deoxygenation of Palmitic Acid on Multifunctional Catalysts. Chem. - Eur. J. 2013, 19 (15), 4732-4741.
(137) Phan, D. -P.; Le, V. N.; Nguyen, T. H.; Kim, H. B.; Park, E. D.; Kim, J.; Lee, E. Y. Effect of Amino-Defective-MOF Materials on The Selective Hydrodeoxygenation of Fatty Acid over Pt-Based Catalysts. J. Catal. 2021, 400, 283-293.
(138) Piumetti, M.; Hussain, M.; Fino, D.; Russo, N. Mesoporous Silica Supported Rh Catalysts for High Concentration N2O Decomposition. Appl. Catal., B 2015, 165, 158-168.
Prakash, T.; Geo, V. E.; Martin, L. J.; Nagalingam, B. Effect of Ternary Blends of Bio-Ethanol, Diesel and Castor Oil on Performance, Emission and Combustion in a CI Engine. Renewable Energy 2018, 122, 301-309.
(139) Rao, R. G.; Blume, R.; Hansen, T. W.; Fuentes, E.; Dreyer, K.; Moldovan, S.; Ersen, O.; Hibbitts, D. D.; Chabal, Y. J.; Schlögl, R.; Tessonnier, J. P. Interfacial Charge Distributions in Carbon-Supported Palladium Catalysts, Nat. Commun. 2017, 8, 340.
(140) Rasyid, R.; Prihartantyo, A.; Mahfud, M.; Roesyadi, A. Hydrocracking of Calophyllum inophyllum Oil with Non-sulfide CoMo Catalysts. Bull. Chem. React. Eng. Catal. 2015, 10, 61-69.
(141) Ren, J.; Liao, S.; Liu, J. Hydrogen Storage of Multiwalled Carbon Nanotubes Coated with Pd-Ni Nanoparticles Under Moderate Conditions. Chinese Sci. Bull. 2006, 51 (24), 2959-2963.
(142) Resende, K. A.; Teles, C. A.; Jacobs, G.; Davis, B. H.; Cronauer, D. C.; Jeremy Kropf, A.; Marshall, C. L.; Hori, C. E.; Noronha, F. B. Hydrodeoxygenation of Phenol over Zirconia Supported Pd Bimetallic Catalysts. The Effect of Second Metal on Catalyst Performance, Appl. Catal., B 2018, 232, 213-231.
(143) Ritchie, H.; Climate Change and Flying: What Share of Global CO2 Emissions Come from Aviation? Our World in Data. 2020.
(144) Romero, Y.; Richard, F.; Brunet, S. Hydrodeoxygenation of 2-ethylphenol as a Model Compound of Bio-Crude over Sulfided Mo-Based Catalysts: Promoting Effect and Reaction Mechanism. Appl. Catal., B 2010, 98 (3), 213-223.
(145) Ruangudomsakul, M.; Osakoo, N.; Wittayakun, J.; Keawkumay, C.; Butburee, T.; Youngjan, S.; Faungnawakij, K.; Poo-arporn, Y.; Kidkhunthod, P.; Khemthong, P. Hydrodeoxygenation Of Palm Oil to Green Diesel Products on Mixed-Phase Nickel Phosphides. Mol. Catal. 2021, 111422.
(146) Saeong, P.; Saisriyoot, M.; Thanapimmetha, A.; Srinophakun, P. The Response Surface Optimization of Steryl Glucosides Removal in Palm Biodiesel using Silica Adsorption. Fuel 2017, 191, 1-9.
(147) Sáez-Bastante, J.; Pinzi, S.; Jiménez-Romero, F. J.; Luque de Castro, M. D.; Priego-Capote, F.; Dorado, M. P. Synthesis of Biodiesel from Castor Oil: Silent Versus Sonicated Methylation and Energy Studies, Energy Convers. Manage. 2015, 96, 561-567.
(148) Sano, N.; Taniguchi, K.; Tamon, H. Hydrogen Storage in Porous Single-Walled Carbon Nanohorns Dispersed with Pd–Ni Alloy Nanoparticles. J. Phys. Chem. C 2014, 118 (7), 3402-3408.
(149) Santillan-Jimenez, E.; Crocker, M. Catalytic Deoxygenation of Fatty Acids and Their Derivatives to Hydrocarbon Fuels Via Decarboxylation/Decarbonylation. J. Chem. Technol. Biotechnol. 2012, 87 (8), 1041-1050.
(150) Schmidt-Winkel, P.; Lukens, W. W.; Zhao, D.; Yang, P.; Chmelka, B. F.; Stucky, G. D. Mesocellular Siliceous Foams with Uniformly Sized Cells and Windows. J. Am. Chem. Soc. 1999, 121 (1), 254-255.
(151) Seisenbaeva, G. A.; Kessler, V. G. Precursor Directed Synthesis “Molecular” Mechanisms in the Soft Chemistry Approaches and Their Use for Template-Free Synthesis of Metal, Metal Oxide and Metal Chalcogenide Nanoparticles and Nanostructures, Nanoscale 2014, 6, 6229-6244.
(152) Şenol, O. İ.; Viljava, T. R.; Krause, A. O. I. Effect of Sulphiding Agents on The Hydrodeoxygenation Of Aliphatic Esters on Sulphided Catalysts. Appl. Catal., A: 2007, 326 (2), 236-244.
(153) Sepúlveda, C.; Leiva, K.; García, R.; Radovic, L. R.; Ghampson, I. T.; DeSisto, W. J.; Fierro, J. L. G.; Escalona, N. Hydrodeoxygenation of 2-Methoxyphenol over Mo2N Catalysts Supported on Activated Carbons. Catal. Today 2011, 172 (1), 232-239.
(154) Serrano, D. P.; Escola, J. M.; Briones, L.; Arroyo, M. Selective Hydrodecarboxylation of Fatty Acids into Long-Chain Hydrocarbons Catalysed by Pd/Al-SBA-15. Microporous Mesoporous Mater. 2019, 280, 88-96.
(155) Šimáček, P.; Kubička, D.; Šebor, G.; Pospíšil, M. Hydroprocessed Rapeseed Oil as a Source of Hydrocarbon-Based Biodiesel. Fuel 2009, 88 (3), 456-460.
(156) Simakova, I.; Simakova, O.; Mäki-Arvela, P.; Simakov, A.; Estrada, M.; Murzin, D. Y. Deoxygenation of Palmitic and Stearic Acid over Supported Pd Catalysts: Effect of Metal Dispersion. Appl. Catal., A 2009, 355 (1), 100-108.
(157) Sneed, B. T.; Young, A. P.; Jalalpoor, D.; Golden, M. C.; Mao, S.; Jiang, Y.; Wang, Y.; Tsung, C. K. Shaped Pd–Ni–Pt Core-Sandwich-Shell Nanoparticles: Influence of Ni Sandwich Layers on Catalytic Electrooxidations, ACS Nano 2014, 8, 7239-7250.
(158) Song, H.; Gong, J.; Song, H. -L.; Li, F.; Zhang, J.; Chen, Y. -G. Preparation of Core-Shell Structured Ni2P/Al2O3@TiO2 and Its Hydrodeoxygenation Performance for Benzofuran. Catalysis Communications 2016, 85, 1-4.
(159) Srivastava, A.; Prasad, R. Triglycerides-Based Diesel Fuels. Renewable Sustainable Energy Rev. 2000, 4 (2), 111-133.
(160) Sugami, Y.; Minami, E.; Saka, S. Renewable Diesel Production from Rapeseed Oil with Hydrothermal Hydrogenation and Subsequent Decarboxylation. Fuel 2016, 166, 376-381.
(161) Sun, Z.; Shen, H.; Wei, X.; Hu, X. Electrocatalytic Hydrogenolysis of Chlorophenols in Aqueous Solution on Pd58Ni42 Cathode Modified with PPy and SDBS. Chem. Eng. J. 2014, 241, 433-442.
(162) Suresh, P. Environmental and Economic Assessment of Transportation Fuels from Municipal Solid Waste. Massachusetts Institute of Technology, 2016.
(163) Surisetty, V. R.; Eswaramoorthi, I.; Dalai, A. K. Comparative Study of Higher Alcohols Synthesis Over Alumina and Activated Carbon-Supported Alkali-Modified MoS2 Catalysts Promoted with Group VIII Metals. Fuel 2012, 96, 77-84.
(164) Tanneru, S. K.; Steele, P. H. Direct Hydrocracking of Oxidized Bio-Oil to Hydrocarbons. Fuel 2015, 154, 268-274.
(165) Tauster, S. J.; Fung, S. C.; Baker, R. T. K.; Horsley, J. A. Strong Interactions in Supported-Metal Catalysts, Science 1987, 211, 1121-1125.
(166) Tiwari, R.; Rana, B. S.; Kumar, R.; Verma, D.; Kumar, R.; Joshi, R. K.; Garg, M. O.; Sinha, A. K. Hydrotreating And Hydrocracking Catalysts for Processing of Waste Soya-Oil and Refinery-Oil Mixtures. Catal. Commun. 2011, 12 (6), 559-562.
(167) Tiwari, R.; Rana, B. S.; Kumar, R.; Verma, D.; Kumar, R.; Joshi, R. K.; Garg, M. O.; Sinha, A. K. Hydrotreating and Hydrocracking Catalysts for Processing of Waste Soya-Oil and Refinery-Oil Mixtures. Catal. Commun. 2011, 12 (6), 559-562.
(168) Todea, M.; Vanea, E.; Bran, S.; Berce, P.; Simon, S. XPS Analysis of Aluminosilicate Microspheres Bioactivity Tested In Vitro. Appl. Surf. Sci. 2013, 270, 777-783.
(169) Topose, H.; Clausen, B.; Massoth, F. Hydrotreating Catalysis: Science and Technology, Berlin. 1996.
(170) Toyao, T.; Hakim Siddiki, S. M. A.; Kon, K.; Shimizu, K. -i., The Catalytic Reduction of Carboxylic Acid Derivatives and CO2 by Metal Nanoparticles on Lewis-Acidic Supports. Chem. Rec. 2018, 18 (10), 1374-1393.
(171) Transport Biofuels, International Energy Agency 2020. https://www.iea.org/reports/transport-biofuels.
(172) Veriansyah, B.; Han, J. Y.; Kim, S. K.; Hong, S. -A.; Kim, Y. J.; Lim, J. S.; Shu, Y. -W.; Oh, S. -G.; Kim, J. Production of Renewable Diesel by Hydroprocessing of Soybean Oil: Effect of Catalysts. Fuel 2012, 94, 578-585.
(173) Verma, D.; Kumar, R.; Rana, B. S.; Sinha, A. K. Aviation Fuel Production from Lipids by a Single-Step Route using Hierarchical Mesoporous Zeolites. Energy Environ. Sci. 2011, 4 (5), 1667-1671.
(174) Wang, H.; Luo, Q.; Liu, W.; Lin, Y.; Guan, Q.; Zheng, X.; Pan, H.; Zhu, J.; Sun, Z.; Wei, S.; Yang, J.; Lu, J. Quasi Pd1Ni Single-Atom Surface Alloy Catalyst Enables Hydrogenation of Nitriles to Secondary Amines, Nat. Commun. 2019, 10, 4998.
(175) Wang, H.; Yan, S.; Salley, S. O.; Ng, K. Y. S. Hydrocarbon Fuels Production from Hydrocracking of Soybean Oil Using Transition Metal Carbides and Nitrides Supported on ZSM-5. Ind. Eng. Chem. Res. 2012, 51 (30), 10066-10073.
(176) Wang, H.; Yan, S.; Salley, S. O.; Simon Ng, K. Y. Support Effects on Hydrotreating of Soybean Oil over NiMo Carbide Catalyst. Fuel 2013, 111, 81-87.
(177) Wei, Q.; Li, Y.; Zhang, T.; Tao, X.; Zhou, Y.; Chung, K.; Xu, C. TiO2–SiO2-Composite-Supported Catalysts for Residue Fluid Catalytic Cracking Diesel Hydrotreating, Energy Fuels 2014, 28, 7343-7351.
(178) Working Towards Ambitious Targets. IATA-Climate Change. 2021 https://www.iata.org/en/programs/environment/climate-change/.
(179) World Energy Outlook, International Energy Agency 2009. https://www.iea.org/publications/freepublications/publication/weo2009.pdf.
(180) Wu, H. C.; Chang, Y. C.; Wu, J. H.; Lin, J. H.; Lin, I. K.; Chen, C. S. Methanation of CO2 and Reverse Water Gas Shift Reactions on Ni/SiO2 Catalysts: The Influence of Particle Size on Selectivity and Reaction Pathway. Catal. Sci. Technol. 2015, 5 (8), 4154-4163.
(181) Xie, X.; Liotta, C. L.; Eckert, C. A. CO2-Catalyzed Acetal Formation in CO2-Expanded Methanol and Ethylene Glycol. Ind. Eng. Chem. Res. 2004, 43 (11), 2605-2609.
(182) Xing, F.; Jeon, J.; Toyao, T.; Shimizu, K. I.; Furukawa, S. A Cu–Pd Single-Atom Alloy Catalyst for Highly Efficient NO Reduction, Chem. Sci. 2019, 10, 8292-8298.
(183) Xing, G.; Liu, S.; Guan, Q.; Li, W. Investigation on Hydroisomerization And Hydrocracking of C15–C18 n-Alkanes Utilizing a Hollow Tubular Ni-Mo/SAPO-11 Catalyst with High Selectivity of Jet Fuel. Catal. Today 2019, 330, 109-116.
(184) Xiu, S.; Shahbazi, A. Bio-Oil Production and Upgrading Research: A review. Renewable Sustainable Energy Rev. 2012, 16 (7), 4406-4414.
(185) Xu, D.; Carbonell, R. G.; Kiserow, D. J.; Roberts, G. W. Hydrogenation of Polystyrene in CO2-Expanded Solvents: Catalyst Poisoning. Ind. Eng. Chem. Res. 2005, 44 (16), 6164-6170.
(186) Yaakob, Z.; Sukarman, I. S. B.; Narayanan, B.; Abdullah, S. R. S.; Ismail, M. Utilization of Palm Empty Fruit Bunch for The Production of Biodiesel from Jatropha Curcas Oil. Bioresource Technol 2012, 104, 695-700.
(187) Yamashita, T.; Hayes, P. Analysis of XPS Spectra of Fe2+ and Fe3+ Ions in Oxide Materials, Appl. Surf. Sci. 2008, 254, 2441-2449.
(188) Yang, P.; Zhao, D.; Chmelka, B. F.; Stucky, G. D. Triblock-Copolymer-Directed Syntheses of Large-Pore Mesoporous Silica Fibers. Chem. Mater. 1998, 10 (8), 2033-2036.
(189) Yang, X.; Chen, D.; Liao, S.; Song, H.; Li, Y.; Fu, Z.; Su, Y. High-Performance Pd–Au Bimetallic Catalyst with Mesoporous Silica Nanoparticles as Support and Its Catalysis of Cinnamaldehyde Hydrogenation. J. Catal. 2012, 291, 36-43.
(190) Yang, X.; Guo, F.; Xue, S.; Wang, X. Carbon Distribution of Algae-Based Alternative Aviation Fuel Obtained by Different Pathways. Renewable Sustainable Energy Rev. 2016, 54, 1129-1147.
(191) Yoosuk, B.; Tumnantong, D.; Prasassarakich, P. Amorphous Unsupported Ni–Mo Sulfide Prepared by One Step Hydrothermal Method for Phenol Hydrodeoxygenation. Fuel 2012, 91 (1), 246-252.
(192) Yu, W.; Bhattacharjee, S.; Lu, W. -Y.; Tan, C. -S. Synthesis of Al-Modified SBA-15-Supported Ru Catalysts by Chemical Fluid Deposition for Hydrogenation of Dimethyl Terephthalate in Water. ACS Sustainable Chem. Eng. 2020, 8, 4058-4068.
(193) Yu, W.; Lin, H. -W.; Tan, C. -S. Direct Synthesis of Pd Incorporated in Mesoporous Silica for Solvent-Free Selective Hydrogenation of Chloronitrobenzenes, Chem. Eng. J. 2017, 325, 124-133.
(194) Yu, Y.; Zhao, Y.; Huang, T.; Liu, H. Shape-Controlled Synthesis of Palladium Nanocrystals by Microwave Irradiation. Pure Appl. Chem. 2009, 81 (12), 2377-2385.
(195) Zandonai, C. H.; Yassue-Cordeiro, P. H.; Castellã-Pergher, S. B.; Scaliante, M. H. N. O.; Fernandes-Machado, N. R. C., Production of Petroleum-Like Synthetic Fuel by Hydrocracking of Crude Soybean Oil Over ZSM5 Zeolite – Improvement of Catalyst Lifetime by Ion Exchange. Fuel 2016, 172, 228-237.
(196) Zanuttini, M. S.; Lago, C. D.; Querini, C. A.; Peralta, M. A. Deoxygenation of m-Cresol on Pt/γ-Al2O3 catalysts. Catal. Today 2013, 213, 9-17.
(197) Zhang, H.; Wang, Q.; Mortimer, S. R. Waste Cooking Oil as An Energy Resource: Review of Chinese Policies. Renewable Sustainable Energy Rev. 2012, 16 (7), 5225-5231.
(198) Zhang, L.; Wang, A.; Miller, J. T.; Liu, X.; Yang, X.; Wang, W.; Li, L.; Huang, Y.; Mou, C. -Y.; Zhang, T. Efficient and Durable Au Alloyed Pd Single-Atom Catalyst for the Ullmann Reaction of Aryl Chlorides in Water, ACS Catal. 2014, 4, 1546-1553.
(199) Zhang, Z.; Tang, J.; Wang, Y.; Wang, H.; Normand, B.; Zuo, Y. Electrodeposition of a Pd-Ni/TiO2 Composite Coating on 316L SS and Its Corrosion Behavior in Hot Sulfuric Acid Solution. Coatings 2018, 8 (5), 182.
(200) Zhao, C.; Bruck, T.; Lercher, J. A. Catalytic Deoxygenation of Microalgae Oil to Green Hydrocarbons, Green Chem. 2013, 15, 1720-1739.
(201) Zhu, L. D.; Xu, Z. B.; Qin, L.; Wang, Z. M.; Hiltunen, E.; Li, Z. H. Oil Production from Pilot-Scale Microalgae Cultivation: An Economics Evaluation. Energy Sources, Part B 2016, 11 (1), 11-17.
(202) Zhu, X.; Tu, X.; Mei, D.; Zheng, C.; Zhou, J.; Gao, X.; Luo, Z.; Ni, M.; Cen, K. Investigation of Hybrid Plasma-Catalytic Removal of Acetone over Cuo/γ-Al2O3 Catalysts using Response Surface Method. Chemosphere 2016, 155, 9-17.
(203) Zou, W.; Gonzalez, R. D. Thermal Stability of Silica Supported Palladium Catalysts Prepared by The Sol-Gel Method. Appl. Catal., A 1995, 126 (2), 351-364.